NoTAS DE Ffsica
VOLUME XV
Ng 9

WEIGHTED APPROXIMATION OVER TOPOLOGICAL SPACES
AND THE BERNSTEIN PROBLEM OVER FINITE
DIMENSIONAL VECTOR SPACES

by
Leopoldo Nachbin

CENTRO BRASILEIRO DE PESQUISAS Fisicas
Av. Wenceslau Brasz, 71
RIO DE JANEIRO
1969



111
Notas de Fisica - Volume XV - No 9

WEIGHTED APPROXIMATION OVER TOPOLOGICAL SPACES
AND THE BERNSTEIN PROBLEM OVER FINITE
DIMENSIONAL VECTOR SPACES

Leopoldo Nachbin
Centro Brasileiro de Pesquisas F{sicas and
Instituto de Matematiea Pura e Aplicada
Universidade do Brasil, Rio de Janeiro

(Received August 11, 1969)

I. JINTRODUCTION

In this note, we shall present a proof of a general
result concerning the theory of weighted approximation over
topological spaces. It is concerned with the formulation and
solution of a problem which generalizes the classical Bernstein
approximation problem, in the same sense that the Welerstrass-
Stone theorem contains the classical Welerstrass approximation
theorem. The subject matter that we are going to discuss
engaged the interest of Arnold Shapiro and was the object of
some of our mathematical conversations. A special case of it
vas treated by Malliavin 1. The theorem stated below extends
our previous results in this field 2y 3. The proof indicated
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here follows the pattern of one already given in our Portuguese
expositoryarticleB. The adaptation of the proof ic the more
general case comsidered now becomes simple once we look at the

Problex as we do at present.

Let us describe ihe content of tkis note in 2 skelchy
manner. ¥e shall deal with a topologieal space E; which ve may
assume to be completely regular. Zet us introcdace the algebra
€(E) of all contimuous real-walued-function oo 5. ¥We shall also
consider a set ¥ of upper-semi-continucus positive real-wained
functions on B, referred to as weigzhts. In terms of it we cdefine
in £(E) a certain vector subspace £'7 (&) which is given 2
suitable weighted topclogy (§2). We finally consider in Z(E) a
subalgebra .¢ comtaining the mnit fanction; and fa ' {E) a
vector subspace % which 1s an %~module, that is # =%l The ap
proximation problem we propose to discuss, namely that of the
weighted approximation for continoous real-vaimed fTunctions on a
topological space, consists in asking for a description of the
closure of % in £ oo (E) ander such circunstanees that W is an
-,gf-module. This problem is as yet nnsolived ever in classical
situations. e shail dezl here with a mcre precise, hence less
generalyfora of this problem. ¥We shall iook for =z deseription
of the closure of‘li/by using in a natural nmanner the eguivaience
relation | ¥on E determined by # , namely through the notion
of localisability of 4 under / in ¥ {(E) (§3). ¥e then prove
a genaral snffieient condition for localisability (86) which in
a sense not described here is fairly close to being necessary.
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Our theorem reduces the weighted approximation over topological
spaces to the Bernstein problem over finite dimensional vector
spaces. In this note,y, we deal exclusively with the real case,
from which the self-adjoint complex case is an easy consequence.
The general complex case ls as yet beyond our reach.

§2. WEIGHTED TOPOLOGICAL VECTOR SPACES OF CONTINUOUS FUNCTIONS

Let E be a topological space, which we shalil assume to be
completely regular without losing generality. We shall denote
by G(E) the algebra of all continuous real-valued functions on
E. Put || £ “k = sup{lf(x)l; xeK} for f¢ % (E) and K c E
compact. We shall endow ¥ (E) with the topology determined by
the family of seml-norms f -vllfllx, Kc E compact, that is the

compact-open topology.

Consider a set*’l/ of upper-semi-continuocus positive real-
valued functions on E, whose elements shall be referr.ed to as
welights. Introduce the weighted topological vector space
@‘Q(E) formed by all f € Z(E) such that vf is bounded on E, for
any veVe Put |f| = sup{v(x).lf’(x)l; er} for fe %”VQ(E) and
Vv e¢¥% We shall endow &-{(E) with the weighted topology
determined by the family of all semi-norms £ = |f] ,v et.

Actually we shall be more interested in the weighted
topological vector subspace @'f/oo(E) of 64/1;(3) formed of all
fe 8 (EB) such that, for any ve~/ and any ¢ >0, the set of all
X € E where v(x):|f(x)|> € is compact (this set being a
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priori only closed). e“f/oo(E) is a closed subspace of @"f":D(E).

Without loss of generality, we shall assume ¥ to be
directed, in the sense that, given Vi Vo€ '//, there are ve ”f/a.nd
A2 0 such that v, v, { Av.

When "f/is reduced to a single function v, we shall write
ngb(E) and ifvw(E) in place of ¥41(E) and ¢ (E) respectively.

Remark. We notice that, if we wanted, we could also assume
YV to satisfy the following more stringent conditions: that if
ve+d and v'is an upper-semi-continuous positive real-valued
function on E such that v' £ v then v'e?’; that if v ¢ ¥ and
A » O then Av €5 and that if Vs vae“f/then vy + vaei.”f/." In
facty, if we replace 4/ by the smallest set containing ¥ and
satisfying these conditions, then the topological vector spaces
'@"‘Vb(E) and g’“//oo(E) will not change.

§3. LOCALISABILITY IN THE WEIGHTED APPROXIMATION

Let E, §(E), % and ¥ j_ (E) be as indicated in §2. Consider
a subalgebra ,4C%(E) containing the unit function 1. Consider
also a vector subspace V¢ ¢ ﬂ';O(E) which we shall assume to be
an A -module, that is HAWC % . Notice that # defines an
equivalence relation E|# on E, if we consider X5 X, € E as
being equivalent modulo E|# when £(xy) = £(x,) for any tes#.
We shall say that % is localisable under Jf in B/ (E), if, for
any given fe Q”/go(E), the following condition holds: a suf-

ficient (and always necessary) condition for f to belong to the
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closure of % in g?'ao(E) is that, corresponding to any ve?l/y any
€ > 0 and any equivalence class Xc E modulo Ei\,# 9 there 1is some

we #" such that v(x).|w(x) - f(x)] < for x¢X.

Notice that, with this terminology, the content of the
Welerstrass~Stone theorem may be phrased precisely as follows: if
7+~ i1s the set of characteristic functions of all compact subsets
of E and ¥ = 1.y then localisability holds good. More general
1y, if 7 1is the set of such characteristic functions it can be
shown, as a consequence of the Weierstrass=Stone theorem, that we
still have localisability, regardless of the circumstance that y 4
and }V are equal or not. This is the motivation of the above

definition.

§4. THE BHERNSTEIN PROBLEM OVER FINITE DIMENSIONAL VECTOR SPACES

Let E be a real vector space of finite dimension n. We

shall denote by "~ (E) the algebra of all real polynomials on E,
that is the subalgebra of the algebra of all real=valued functions
on E generated by the constant functions and the linear forms.
Given as upper-semi-continuous positive real-valued function w
on Ey we introduce the vector space wa( E) semi-normed by

f "“fua: and its semi-normed subspace ?‘?ﬁuw(E) (in the notation
set at 82)., The weight « is said to be rapidly decreasing at ‘
infinity if S°(E)c € wb(E) or equivalently % (E) = g,(&m(E)o In
such a case, w is called a fundamental weight function in the
sense of Bernstein provided %°(E) is dense in the semi-normed

space ¢ Wy ( B«



116

Notice, for future referencé, that if @b(E) represents the
algebra of all bounded continuous real-valued functions on E, tken
@b(E)c gwm(E) provided that w tends to zero at infinity, which
is the case if w 1is rapldly decreasing at infinity, hence if w is

a fundamental weight function,

We shall denote by SL(E) the set of all upper-semi-continuous
positive real-valued functions on E which are fundamental weight

functions in the sense of Bernstein.

When E = R", where R is the real number system, we shall
write ?n =%(R") and Qp =Q(R®) for short.

§5. A TOPOLOGICAL LEMMA

In the following, given a set E and an integer m)>1l, then
E® shall denote the cartesian m-power E X...x E(m times) and
ACE®) shall be the diagonal of E®. If f: E—>F is a mapping,
then £®: E® —F" shall be the mapping given by (Xyseees xm) —
—> (£(x;)y..0sf(x ).

LEMMA (1). Let fy: E~—=E,(i¢I) be a family of continuous
mappings from a topological space E into Hausdorff spaces Ei' Let
{fiziel be separating on E, that is, if Xq9 xzeE, X4 F X5y
there is some 1€1I such that £,(x;) £ £,(x,). Then, if X s a
collection of compact subsets of E with empty intersection, there
exist 1;5¢..5i €I such that, if we denote by ¢: E - E, x...xE

1l iq in
the mapping given by x —“(fi (x),...fin(x)), the collection
@(7{ ) will also have an empty intersection.
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Proof. We may assume that }f=-{Kl,..., Km} is finite. By
assumption Kn A(E®) = 0, where K = Ky Xeoux K © B, Ifx=
= (xl,...,xm)ELEm is outside A(E®), we may find an open subset
U< E® containing x and some i1i¢ I such that f?(U)f\A(E?) =0, In
fact, there are r, s such that X, 3 Xy e Choose i€1I so that
fi(xr) £ fi(xs) and then select open subsets V, W< E such that
x,€ Vy x,€ W, and such that ve V, we W imply fi(v) £ fj_(w). The
open subset U = A; X...X A < E®, where A,=E for p ATy s and

Ar=V,A

s = W, and the chosen i have the asserted properties.

Once these remarks are made,y we can cover K by a finite number
of such open subjects Ul""’ Uh < E® to which there are as~
sociated suitable indices 11,..., 1ne I. Let us introduce the
mapping ¥ : E® —e-E?lx...x E?n which is defined by

t -*(f!;l(t),...,f’;_’n(t)). Then the image ¥(K) will be disjoint
from 4A(E?l)X...x A(E?n)° If $ is the mapping referred to in
the statement of the lemma, we have $® = Ao ¥, where A:
E?lx...XE?A—*»(Eilx...inn)m is one of the finitely many natural
identifications between the two spaces in question. It follows
that $(K) = ¢ (K )x...x{§K;)1is disjoint from A((Eil""""Ein)m)’
that is $ (k)N ...nd (K,) = 0, as we wanted.

Corollary. Let E = E, be a cartesian product of Haus-
dorff spaces. Then if a é§1§ecticn K of compact subsets of E
has an empty intersection, there is a finite subset J& I such
that, letting Ty denoté the natural projection'from E onto. the

cartesian subproduct || Ei’ the gollegtien.vak) willl also

ieJ
have an empty intersection.

Notice that the lemma and its corollary imply each other.
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§6. AN APPROXIMATION LEMMA

Let E, 4(E), ¥, {ﬁ"f/éo(E),ﬂand 14/ be as described in §3. We
shall now introduce a subset A C 5 which topologically generates
# as an algebra with unit, that is such that the subalgebra of .5

generated by A and 1 is dense in ¥ for the topology of Z(E). Let
us also consider a subset WC%/ which topologically generates A
as an JF-module, that is the .#=submodule of ‘// generated by W is
dense in # for the topology of % '{éc(E). Let also ’rgb(Rn) be as
defined in $4.

LEMMA (2). Let £< €7 (E), ve? and & > O be given. As-
sume that, for every equivalence class XCE modulo Elﬂ, there
exists some w ¢ 7 such that v(x).|w(x) - £(x)|<E for xeX.

- n
Then there exist L EREEE L A, wl,...,wmew and Olygeces oame bﬁb(R )

such +that n

v(x)‘ > Qiiél(x),...,an(x)]wi(x)- f(x)|¢£ for x<E.
i1=1

Proof. Consider the space of all real-valued function on A:
denote it by RA and endow it with the carteslan product topology,
also called finite-open topology. Let m: E --'RA be the continuous
mapping which to every x € E associates the function m(x)eR® such
that m(x)(a) = a(x) if a€ A. To every y < w(E) we may associate
v-l(y)c E. We thus obtain a one-to-one correspondence between
m(E) and the set of equivalence classes of E modulo E| S because A
topologically generates Jfaé an algebra with unit. By the as-

sumption made in the lemma, for each yec w(E) there exists some

L 4/ such that v(x).lwy(x) - f(x)|< € for xev'l(y). We may
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assume that wy belongs to the vector subspace of %/ generated by
W, because W topologically generates B/as an /& -module and the
elements of & are constant on m 1(y). Let us denote by Kys the
compact subset of E of all x where v(x).lwy(x)-f(x)lzé . Then
W(Ky) is a compact subset of w(E). Since y £ v(Ky), the inter-
section of all W(Ky), as yem(E), is empty. We now apply the
corollary to Lemma (1). There are ay3e..9 a € A such that, if
we denote by $: E —=R™ the mapping t -->{’(t)=(al(t),--.,an(t)),
then the intersection of all ¢ (Ky), as yew(E), is empty too.
By compactness, we find Yy9eeea¥p€ w(E) such that the intersec-
tion of all ¢ (KY.’L)’ for 1 = 1,...5 m, is empty. We now use
normality of R? and the method of continuous partition of unit.
We then get positive functions ogjyeeeyx € ¢ (R®) such that
Xi#e.et o =1 and oy vanishes on ¢ (KY.‘L) for 1i=1y...ym. We

claim that n

V(X)ol Z: Ol'-i al(x),...,an(x)]
i=1

(x)-f(x)Kefor xcE. (1)

"4

This is a consequence of
V(X)d‘i[al(x),--. ,an(X)] .IWY.‘!.(X)- f(X)Is Edi[al(x),...,an(x)] (2)

for X€Ey 1 = 1yeeoy my
and from the fact that, once x is given, there is some i for
which the inequality (2) holds true in the striet sense. 1In
fact, t_? prove (2), we simply remark that, if Cﬁ(x)evr(KYi), then
o [§x)] = 05 ana 1 §x) £ w(xy,)5 then v(x). |y, (x) - £x)<E.
In both cases, (2) 1s satisfied. On the other hand, once x is
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given, there is some i for which ozi[%(x)] > 0. This requires
that $(x) ¢ W(Kyi), hence that v(x).lwyi(x)- f(x)|{ <% . We then
conclude that (2) is true in the strict sense. By addition,
(1) follows from (2). Finally, since each wy; is an element of
the vector subspace of 'Wgenerated by W, as we already said,
(1) implies the inequality in the statement of the lemma, as we

wanted.

§7. REDUCTION OF THE TOPOLOGICAL CASE TO THE FINITE DIMENSIONAL

VECTCR SPACE CASE

The notation will be that already introduced in §4 and §6.

THEOREM. Suppose that, for every vs‘:";”’, eVery aj9e-:18,€ A
and every we W, there are a ., s...ay< Ay where N > n, and ey
such that

vix).|w(x)| ¢ @ i-al(x),...,aN(x)-i for x € E.

Then %’ is localisable under ¥ in AN EIE

g

Proof. Let us start by remarking that, if v« !,
@yrecey 8 € Ay WE Wy xE€ @b(R“) and & > O are given, there
exists some w*€ 4/ for which

vix).jw (x) - oci:al(x),...,an(x):!w(x)lé & for xe E. (1)

In fact,y, by the assumption, there are ap4100 008y € Ay where

N > n, and (ue.QN, such that the inequality in the statement

of the theorem holds true. Now ¢ g’»b(Rn) determines x'e ég’b(RN)
by the fcrx;]lula O(-‘(tl,ooo’tN) = O(«(tl’tooytn) fOI‘ tl’-oo,tNERo
Since gb(R )< %:NOO(RN)(M), there is p e@N such that
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Q)(tl,...’tN).]p(tl’.‘.,tN) "d.(tl’ooo’tn>l<8 for tl,'oo’tﬂeR.

Therefore we shall have

V(X).‘p al(X),oo e ,an(x)]w(x)-oc[al(x)’ooc ,an(X):'W(X)lé

w[al(x),n.,aN(x)J.Ip[al(x),...,an(x)] -O([al(x),...,an(x)]|<§
which proves (1) with w* = p( al,...,aN)w.

We now complete the proof of the theorem. Let fe @’Vm(E)
be such thatycorresponding to any ve ’V, any £ >0 and any
equivalence class X € E modulo E|#, there is some we‘ﬁ/such
that v(x).|w(x) - £f(x)|<E for xe€X. By Lemma (2), once f, v
and £ are gilven, there are 8y920073, € A, WysesosWy € W and

oLyseeey o € € (R) such that

v(x).

m
> “1[81(")’“ .o ’an(X)]wi(X) - £(x)
i=1

<& for xc¢E .

We apply the preliminary remark made above to get W'J_""’wx'xle 7{/
such that

v(x).lw;(x)- oci[al(x),...,an(x):,wi(x)i<6 for x € Ey 1 = 1y...,m,

from which we get v(x).|w(x)-f(x)|< 2¢ for x¢ E, where w=3 W'y
provided 8= €/m. This finishes the proof.

COROLLARY. Suppose that 4 = {al,. oo ,an} y W= {wl,. .o ,wm}‘
and that, for every ve ’V and every i = l,...ym, there is weﬂn

such that

v(x).lwi(x)s(o[al(x),...,an(x)] for xc E.
Then #/1s localisable under % in g’f(o(E).
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Added in proof: For applications of the main theorem established above and a
different approach to its proof, the reader is referred to our article
UWeighted approximation for algebras and modules of continuocus functions:
real and self-adjoint complex cases® (submitted for publication).



