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ABSTRACT

The Discrete Variational method for molecules and clusters (DVM), in the framework of
Density Functional theory, is described in detail. The numerical grids utilized, basis func-
tions and potential are discussed, as well as spin-polarization for magnetic systems, total
energy and dynamics. The relativistic version of the DV method is also described. Appli-
cations to large molecules range from porphyrins, a transition metal complex of thiophene,
the circular molecule “ferric wheel” containing ten Fe atoms and other transition metal
complexes investigated by fragments. Examples of relativistic calculations are given for
5d-metal complexes. Calculations for solids, represented by embedded clusters as large as
65-75 atoms, include transition metals, perovskites, silicates and rare-earth borocarbides.
Properties investigated and analysed are structural, optical, hyperfine, magnetic and su-
perconducting. The electronic structure and chemical bonds are also studied by Mulliken
populations and charges, bond order, density of states and spin density maps; results are
related to experimentally observed characteristics.
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1 Introduction

For many decades, first principles computational Quantum Chemistry methods were
primarily based on Hartree-Fock (HF) theory and HF augmented by various levels of
perturbation theory. These methods have served well as tools to study in full detail the
spectroscopic and structural properties of small molecules, with perhaps as many as ten
light atoms [1],[2]. Much insight has been gained on the relationships between ground state
properties, single-electron orbitals and chemical reactions. While the energy-minimization
principle defining the HF wavefunction limits the accurracy of excited state descriptions,
nevertheless, much useful information has been obtained about excitation properties and
spectra. With perturbative treatment of electron correlation, the systems successfully
studied have been extended to “average”-sized molecules (10-50 atoms) containing first-
row elements such as C, N or O, or smaller molecules containing a transition element
of the first period. The development of effective core potentials, in which inner-shell
electrons are “frozen” and do not participate in variational relaxation, has permitted the
extension of HF methodology to transition metal particles and heavy atom systems [3],[4].
Nevertheless, the computational load rises rapidly with some power (N® or N* for HF,
N® or greater for correlation corrections) of the number of basis functions N, with the
exchange interaction being the main bottleneck.

Full-scale treatments of correlation effects, found to be necessary to repair some of
the known deficiencies of the HF model wavefunction, generally are done by Configura-
tion Interaction theory [1],[5]. With highly developed computer codes it has been found
possible to include more than 10° — 10° determinants, either explicitly or implicitly in
the wavefunction expansion. Unfortunately, procedures for selecting the most important
terms in the CI expansion have proved to be a source of difficulty, despite successes of
Coupled Cluster methods and related schemes [6],[7].

However, during the last decades we have witnessed a great evolution and development
in the synthesis of new and complex molecules. Large molecules with exotic geometries,
polynuclear transition-metal complexes, transition-metal planar molecules stacked to form
one-dimensional metals, are but a few examples of the challenging structures that can now
be prepared. Moreover, the extraordinary advances in material sciences, frequently moti-
vated by technological developments, have increased the relevance of solid-state materials
to chemists, with problems such as heterogeneous catalysis, adhesion and other surface
phenomena, synthesis of new complex crystals, impurities and defects in solids, etc.

To meet these new challenges, during the last decade Quantum Chemists have turned
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more and more frequently to first-principles methods based upon Density Functional (DF)
theory [8},9],[10]. Its simplest implementation, the Local Density approximation (LDA)
already provides a surprisingly accurate approximation to the many-body interelectronic
potential and a relatively fast means to obtain the electronic structure and properties of
molecules and solids [11],[12]. More sophisticated approaches, which employ gradients of
the electron density in approximating the electronic exchange and correlation have been
shown capable of delivering “chemical accuracy” (2 — 5 kcal/mole) in atomic binding
energies and precision in bond lengths and angles approaching that of experiment [8]-[12].

Since the LDA has been used in the huge majority of published work, we will largely
focus on it in the following. We want to emphasize however, that the newer methodologies
such as GGA (Generalized Gradient Approximation [13]) provide useful, but relatively
small corrections to an essentialy correct picture of electronic structures. One can of course
find examples (e.g., the magnetic ground state of bee iron), where LDA is qualitatively
incorrect and so-called nonlocal corrections are essential.

LDA methods have been employed to investigate solids in two types of approaches. If
the solid has translational symmetry, as in a pure crystal, Bloch’s theorem applies, which
states that the one-electron wave function ¢, at point (F+ ﬁ), where R is a Bravais lattice

vector, is equal to the wave function at point 7 times a phase factor:
oulF + B) = FFg,(7) (1)

Based on this property, LDA band-structure methods were generated [14], in which
the electronic energy levels are obtained in the reciprocal k space. Since the early 60’s,
there have been developed a large number of band structure methods, differing among
themselves mainly in the way the crystal potential is treated, and in the choice of expan-
sion bases. Frequently they may be recognized in the literature by their initials: APW,
LMTO, FLAPW, KKR, etc.

However, if translational symmetry is missing, band-structure calculations are not
possible, or else become highly artificial in nature. This includes a number of interesting
and important cases such as impurities in solids (substitutional or interstitial}, vacancies,
local geometry distortions, atoms or molecules on surfaces, disordered materials, etc. For
these cases, DF methods in real space may be applied, if one considers a group of atoms
(cluster) to represent the solid. In fact, the same methodology as designed for molecules
may be applied, with one important difference: an adequate embedding scheme has to be
devised, to insert the cluster in its proper environment in the solid.

The Discrete Variational (DV) Method [15],[16] is an all-numerical self-consistent
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method based on DF theory, in which the one-electron wave-functions of the molecule
or the cluster are expanded on a basis of numerical atomic orbitals (NAO), obtained from
DF calculations for atoms or ions. These features make the DVM less computer-time
consuming than the Gaussian-basis DF counterparts, and thus suitable to treat large
molecules and sizable clusters representing solid-state systems. Heavy atoms may also be
included, such as transition-metals, lanthanides and actinides. A relativistic version with
four-component one-electron functions is also available [17],[18]. For treating clusters,
embedding schemes are built in, which include short-range effects of the first neighbors,
as well as long-range Coulomb potentials, in the case of charged atoms.

Although most DVM applications so far have been made within the Local Density
approximation, non-local corrections to exchange and correlation [13],[19] have been im-
plemented for calculation of dissociation energies and structural properties.

In this review we shall attempt to describe the main features of the DV method in its
current form, and give examples of both molecular and cluster calculations, and of the

many different properties that may be investigated.
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2 The Discrete Variational Method for Molecules

and Clusters

2.1 General Formulation of the Method

The purpose of the DV method is to solve self-consistently the set of Kohn-Sham

equations [8], [9], [20] (in Hartree atomic units):

edi() = | —V2/9 — Z p(™) 3 () = e (F
hisi(7) = | -V?/2 Zlf—ﬁql+/|F—F’|d + Vae| 4il(F) = eidi(7)  (2)

q

with

p(7) = 3" il )

where ¢;(7) are the one-particle functions for the molecule or the cluster with occupation
ni, and p(7) is the n-representable density. The first term in Eq. (2) is the kinetic
energy, the second term is the Coulomb potential of the nuclei V,,, the third term the
electronic Coulomb potential V, and V. is the exchange and correlation potential. In
the DV scheme, the one-electron functions are expanded on a basis of numerical atomic

orbitals (NAO), obtained themselves by LDA calculations [14], [21]-[25]
$i(F) =Y xe(P)ew (4)
¢

An error functional A;; is defined, related to approximate solutions of Eqs. (2), which is
minimized with respect to variations of the coefficients ¢;; of Eq. (4), on a discrete set of
points 7 with weight w(r%) in three-dimensional space:
Aij = (filhics — els) = > w(F) o5 (7 (hics — €)8;(7%) (5)
k
Substituting (4) in (5), we obtain:

A=Y w() i (Fe) (his — €)xm(Te)em;) (6)

To minimize the functional A;; with respect to variations of the eigenfunctions ¢;, it

is required that
Ocy;

for all 7, j and ¢. This procedure results in the secular equations in matrix form, formally

identical to those of the analytical Rayleigh-Ritz variational method:

((H] - [E][SDIC]=0 (8)
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By solving Egs. (8) self-consistently, the eigenvalues and eigenvectors of the Kohn-
Sham operator in Eq. (2) are obtained. In fact, calculating [C] for a given initial hxs
leads to a new p(F) through Egs. (3) and (4), and thus to a new operator, since the
potential is a functional of p. The matrix elements of the energy matrix [H] and the

overlap matrix [S] are summations over the set of the points 7:

Hym =Y w(7)X3 (7 hcs (7o) xom (7
k

Sim = 3 (FXG ()X () (9)
k
More generally, after the self-consistent p is obtained, for any operator O the expectation
value is defined as:

(0) = > w(@) Y nigi (F)Oi(Fe) (10)

k i
2.2 The Three-Dimensional Point Grid

The scheme of sampling, with weights w(7%), is quite flexible, allowing concentration
of computational effort in regions of greatest interest. It also allows the users to choose
the level of precision of results, permitting rapid surveys of general features, as well as
precise calculation of sensitive quantities. Three types of sampling schemes have been
implemented, which can be used separately or in combination: pseudorandom, product

rules, and partitioning rules.

2.2.1 Pseudorandom Scheme

The basic grid of points in three dimensions is generated with the Diophantine method
[26]-[28], which is pseudo-random in the sense that the same “random” point distribution
is obtained for the same set of initial parameters. This grid is generally adequate for the
region between the atoms, where the valence functions dominate and no large variations
in the density occur.

In the Diophantine method as originally formulated [26], [27], the integral I of a

periodic function of n variables with period L is estimated by the summation:

N

I= / F(da - day = %Z F(in) (11)

m=1

This summation converges to I as N~¥ K > 1.
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The points 7, are given by [26]

—

Ty = mL& (12)

where @ = (caz -+ - 04y is & vector with components given by linearly independent irra-
tional numbers.

This method may be adapted for a molecule or crystal, by choosing spherical coor-
dinates centered at each nuclei as integration variables [28]. These may be mapped to

periodic variables in the interval [0,1]

0<r<oo—0<¢<1
0<f<m—0<v«l

0<¢<2r—0<p<l1

by the transformations:

£(r) = /0 2 D(r)dr

0 = arc cos(1 — 2v) (13)
¢=2mp

where D(7) is the Wronskian of the transformation

Ny

We may thus write from Eq. (11):

F(T-.') . _ 1 1 1 , ,
Dir) D(r)r smﬁdrdadqﬁ—/o /0 /0 G(&, v, p)dédvdy . (14)

ITRE S PTRWRIS SR 4RI SWELYES 09
= j\]k=1 ks Vi, Pk —‘k:l ND(_‘]C) = WTk Tk

1t is convenient to define the distribution function D(r) in such a way as to assure a
much higher density of points near the nuclei, where the core functions oscillate strongly.
This is achieved by defining D(7) as a summation of Fermi functions centered at the nuclei
q

D(r) = Z tg dg(ry) (16)
q
with
4,

d =
o(7a) 4rr2[1 + ealraRY))
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where ¢, is the fraction of points assigned to nucleus ¢ and A, a normalization constant
such that

/ dy(r)d®F =1
Parameters oy and R? are usually chosen as equal to one and to half the interatomic
distance, respectively.

In Fig. (1) is shown the mapping of variable r into ¢ through the Fermi function; the

point distribution is more dense near the nucleus:

=2 4

Fig. 1

Finally, the points generated around each nucleus as described above are referred to
a common cartesian coordinate system.

If N points are distributed in space according to the distribution function D(#), then
on the average the density of points around a point 7 will be ND(#). Thus the volume
per point around 7 will be

W) = /(N x D(7) (17)

which is the definition of the weight in Eqs. (5), (6), (9) and (10).

2.2.2 Product Rules

The classical product rules of numerical integration [29] are capablé of integrating
limited regions around an atom to high precision. They are typically of the form of a
Gauss-Legendre polynomial rule in (0, ¢), multiplied by a radial rule adapted for the

asymptotic exponential decay of integrand with distance from the nucleus:

w(%) = w(fi, ¢:)v(r;) (18)
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The angular mesh implemented consists of 6, 12, 24, 32, 50, or 74 points, capable of
integrating successively higher order polynomials, or a uniform-area mesh of N 2 points.
The radial integration is a modified Simpson’s rule in the variable £nr, with outer radius
Pmas, Number of points, and logarithmic step selected as input.

The scheme is recommended for atomic volumes in which better precision is needed in

the core region; e.g. for total energy, hyperfine interactions, and core-level spectroscopy.

2.2.3 Partitioning Rules

The Fermi distributions of the pseudorandom scheme form a set of overlapping atom-
centered functions whose density D(7) provides a sampling scheme with expectation values
(O) which converge to their integrals. A generalization of this approach can be derived

from the long-used partitioning methods of X-ray and neutron crystallography. Let
D(r) = thdq(rq) =1 (19)
7

where t, > 0 are weights and d,(r) are selected functions centered on atoms, bonds, points

of symmetry, etc. Then the expectation value of F(7) is given as
(F)=<DF):th<qu):thFq (20)
g q

so that each component F, can be treated independently.

The partitioning functions have been chosen variously as Gaussians, atomic-like den-
sities (proatoms, [30]), and inverse powers of r; the latter is implemented in the DV
program. One advantage of this approach, as emphasized by Becke [31], is that classical
product rules can be applied to the overlapping multicenter density, to obtain integrals

of high precision.

2.3 Basis Sets
2.3.1 Generation of NAOs

As described in Section 2.1, the one-electron functions are expanded on a numerical
atomic basis (NAQ) (LCAO approximation).
To obtain the basis functions, numerical Local Density calculations are performed for
free atoms or ions, employing the same type of exchange-correlation potential as in the
molecular (or cluster) calculation (this, of course, is not a necessary condition, but is

usually done for the sake of coherence). The atomic self-consistent calculations seek to
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solve the Kohn-Sham equations on a numerical grid in one-dimension, for an atom with

spherical density, such that the atomic orbitals are of the form:
Xne = Bre(r) V7" (08) (21)

where R,(r) are radial functions and };*(64) are real spherical harmonics, which are
linear combinations of the usual spherical harmonics Y;™.

The grid in the “r” coordinate has a maximum of 300 points, which are distributed
according to a logarithmic scale, such that their density is higher near the nucleus.

The LDA radial Schrédinger equation is solved by matching the outward numerical
finite-difference solution to an inward-going solution (which vanishes at infinity) of the
same energy, near the classical turning point. Continuity of P,(r) = rR..(r) and its
derivative determines the eigenvalue ¢,,;. The second order differential equation is actually
solved as a pair of simultaneous first-order equations, so that the nonrelativistic and
relativistic (Dirac equation) procedures appear similar.

One very significant feature of the DV method is thus the flexibility gained by creat-
ing the basis functions specifically for a given molecular or cluster calculation, as opposed
to methods where “standard” Gaussian basis are employed. This allows one to utilize
basis sets of good quality with a considerably smaller number of functions, thus making
possible calculations for large systems. There are several ways in which the basis func-
tions may be adapted to some molecule or cluster. One way is to perform a Mulliken
population analysis [32], {33] for the atoms in the molecule or cluster, after a first set of
iterations is performed. For these preliminary iterations, the basis set is constituted of
atomic functions obtained for the free atoms in their ground-state configuration (or free
ions, in the case of ionic compounds). The result of the Mulliken analysis after this first
self-consistency procedure will give new (fractional) occupation numbers for the atomic
orbitals. These occupations, more representative of the situation in the compound, are
in turn used to generate new basis functions by atomic self-consistent calculations. Frac-
tional occupation of orbitals is a concept compatible with Density Functional theory. The

following schematic representation summarizes this procedure:

Numerical atomic —  hks(p) . {¢:}5°F New atomic configurations from

orbitals {xn¢} Mulliken population analysis
4 ]
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The NAO basis usually contains all the occupied orbitals of the atom, plus some unoccu-
pied level(s) very close in energy. For example, transition metals will include all occupied
levels up to nd, (n-+1)s and also the virtual level (n+1)p. Some additional features make
it possible to further improve the basis. If the atom has a negative charge, or if additional
virtual orbitals of higher energy are to be included as very diffuse functions, the atomic
SCF calculation may be performed in the presence of a “potential well”. This well may
also be employed when it is desirable to contract the valence atomic basis functions, as is

often the case with solids. The well is best described by the following diagram:

V() T

Vi(r) + Vi, r < RL
Rq_ q
age) v B TP X (- )
! (By — Rp)°/2
Vi(r), r > RY

5
I

, R <r <Ry (22)

where V] is the modified atomic potential generating the NAO, V9(r) is the unmodified
atomic potential of atom “q”, VF is the depth of the well and R%, R% are truncation
distances. The parameters V, R% and R% depend on the size of the atom and the degree
of contraction desired, and their values are dictated by the bonding characteristics of the
system.

Sometimes it is inconvenient to use NAOs derived from a specific atomic configuration;
e.g., as defined by Mulliken SCF cluster or molecular populations. A marginally better
set can be obtained directly from the SCF cluster or molecular potential, spherically
averaged about each atom site, with an additional well like that of Eq. (22). This NAO

basis provides perhaps the most compact and efficient expansion set.
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2.3.2 Symmetry Orbitals

For both molecules and clusters, point summetry, if present, is an asset to be ex-
ploited. As is known from group theory, the Hamiltonian matrix in the secular equations
(Eq. 8) will be separated in smaller blocks which may be diagonalized independently, if
the basis used is constituted by functions which transform according to the irreducible
representations of the point group of the molecule or cluster. Accordingly, these are ob-
tained previously, utilizing a very general code that can deal with both single and double
groups, the latter for relativistic calculations [34], [35]. The non-relativistic symmetrized

basis functions are thus of the form:
X'(7) = D Ui Rae(rg) V7 (0ub0) (23)
q,m

where n = (k, A) specify the point group irreducible representation and its matrix column,
for which the linear combination Eq. (23) forms a basis. Therefore, the linear expansion
in Eq. (4) is substituted by:

$1(7) =D xi(Pe; (24)
£

and all matrix elements are calculated with the symmetrized basis.

In general, clusters which represent a solid, with or without impurities or defects, may
present considerable symmetry if the center of coordinates is placed at a conveniently
chosen atom or interstitial site. In the case of one impurity, it is usually advantageous
if possible to place it at the center to obtain a point group of higher order. Inorganic
molecules and transition-metal complexes also usually have symmetry groups of high
order. In the case of large organic molecules, organometallics or biological molecules,
symmetry is usually low or nonexistent; this of course will increase the computational
time and impose limitations on the size of the basis. On the other hand, of course,
organic molecules or organic ligands are usually constituted of small atoms, such as C,
N, O, etc. Thus the maximum size of the system that can be treated will depend on a

balance among several factors such as number and size of the atoms and symmetry group.

2.3.3 Orthogonalization and Frozen Core

The core orbitals of atoms are those which, by definition, are negligibly modified by the
molecular or solid environment. Such orbitals can be excluded from the variational space
with a significant improvement in computational time and space. This is accomplished

by explicitly orthogonalizing the molecular or cluster valence functions against the core
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basis functions in the first iteration. In this respect the DV scheme differs from many
others, which use parametrized Effective Core Potentials [36] to achieve similar results.

The choice of which orbitals may be “frozen”; i.e., placed in the core, and which
should remain in the variational space depends upon properties and precision required.
For example, in first-period transition metals it is important to include the 3s, 3p “shallow
core” in the variational space when sensitive properties such as the Electric Field Gradient
are required. In the process of basis optimization described above, the core orbitals also
evolve to become adapted to their environment.

Once the basis functions are obtained, the points of the radial grid around each nucleus
where the radial functions R,.(r) are defined are interpolated, such that the values of the
basis functions are obtained in the three-dimensional grid where the molecular or cluster

calculation will be performed.

2.4 Magnetic Systems

In the presence of unpaired electrons, the molecule or solid becomes magnetic. Since
the total number of electrons with s, = +1/2 is different from those with s, = —1/2,
the exchange interaction, which exists only among electrons with the same spin, will be
different for the two sets of electrons, and so will be the exchange-correlation potential
Vie. If the density for spin up electrons is allowed to be different from spin down, by

allowing the orbitals in Eq. (4) to be different for each spin o
#7(7) =Y xelP)c, (25)
¢

then the exchange-correlation potential V. in the Kohn-Sham equations (Eq. 2), which
is different for each spin, will indeed generate p1(7) # p|(¥) after self-consistency. This
is the basis for the spin-polarized method, through which a spin-density {p(7) — p)(7)]
is generated in the three-dimensional grid, being related to magnetic properties such as
magnetic moments and hyperfine fields.

In the spin-orbitals of Eq. (25), the spin-dependence appears only in the coefficients
%, the basis being the same for both spins. Attempts to use spin-polarized functions
in the basis are hindered by the resulting linear-dependence problems. A consequence
of this is that the polarization of the localized core orbitals is deficient, due to lack of
flexibility. For properties in which spin-polarization of the core is important, the latter

must be treated in a different manner. We will return to this subject in a later stage.
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2.5 Charges, Configurations and Magnetic Moments
2.5.1 Population Analysis

The expansion in the NAO basis allows the analysis of the charge distribution among
the atoms according to the Mulliken populations concept [32], which is based on the
LCAO coefficients. In the usual Mulliken scheme, the off-diagonal elements of the charge
matrix (overlap populations) are divided equally between the corresponding two diagonal
elements, i.e., ¢; = Z]. Q:; where ¢’s are the atomic occupation numbers and the Q;;’s
are the elements of the charge matrix. In the scheme usually adopted with the DVM
[33] the off-diagonal charges are divided in proportion to the diagonal elements, i.e.,
3 = 32;[2Qii/ (@i + Q;;)]Qi;- This scheme is more satisfactory because it minimizes the
negative populations that frequently occur for atomic orbitals that take part in molecular
orbitals of antibonding character, for example, the 4s and 4p orbitals of first-row transition
elements.

When the system is magnetic and a spin-polarized calculation is performed, the

Mulliken-type populations may be used to define magnetic moments:
pl= PTq i (26)

where p? is the total magnetic moment on atom ¢ (in Bohr magnetons), defined as the
difference between the spin up and spin down populations P?.

Mulliken-type populations are a useful tool when it comes to analysing the charge
and spin distribution in a molecule or solid. However, one must bear in mind that there
is rigorously no such thing as an “atom” in a molecule or in a crystal, and thus such
analysis must be viewed somewhat critically. Especially when atomic orbitals are very
diffuse, their Mulliken-type populations may not be very realistic. On the other hand,
the Mulliken analysis has the advantage that individual atomic orbital occupations may
be obtained.

2.5.2 Volume-resolved Analysis

An alternative manner of analysing charge and spin distributions is to divide space
in volumes pertaining to each atom and integrating the charge or spin density inside
this volume. In the DVM scheme, of course, the integrations are substituted by the
summations:

C'=7~ Y w(it)p(F) (27)

kEWS
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p =Y w(F)ler() — pi(F))

keWS

[[P% ]

where Z is the atomic number, C'? the charge on atom “q”, u, its spin moment and
WS the Wigner-Seitz volume. This last is defined for each atom as the volume enclosed
by the planes intersecting at mid-distance the lines joining the atom to its neighbors.
Alternatively, spheres with radii proportional to the atomic or ionic radii may be used.
The volume charge and spin-density partitioning, in some instances, may be more
realistic than the Mulliken. The simple sampling procedure of Eq. (27) has the disadvan-
tage that only total charges or spin moments are extracted. Also, WS or any particular
volume partitioning (see Sec. 2.2.3) is as arbitrary as Mulliken analysis, so that conve-
nience and internal consistency provide the best rationale for choosing one method over
another. We note that £m-projected components of the densities can be extracted by
defining the weights in Eq. (27) as wf; (F¢) = w(7%)V;*(74) where 7, are angular coordi-
nates of sample point 7%, measured with respect to the center of interest, at fq. To be
more precise, w(7;) should form an integration rule, or the projection polynomials 5"

should be orthogonalized on the sample mesh {7%}.

2.6 The Potential
2.6.1 Coulomb Interaction

In calculating matrix elements of the Kohn-Sham Hamiltonian of Eq. (2), the greatest
problem is posed by the electronic Coulomb repulsion. To render this term tractable, it
is convenient to cast the electron density p(F) in a model form, so as to calculate the
potential by one-dimensional integrations. This is accomplished by approximating p by a

multicenter overlapping multipolar expansion pas {37]:
I
o= d; > 'S COmRN(r) Vi (0,8) = D dip;(7) (28)
J q m J

Here j = (I,£, 8, N) denotes a symmetry-equivalent set of atoms I (or any group of atoms
for which the model density will be the same), a particular partial wave character (£, 8)
and a particular radial degree of freedom N. The ¢ summation runs over symmetry-
equivalent (or selected group) sites, Y are the real spherical harmonics and 7y = 7 — {; is
the local coordinate relative to site LI;. The coeflicients qum are chosen to be those of the
totally symmetrical representation of the point group of the molecule or cluster, to reflect

the known symmetry of the density, and d; are coeflicients to be determined variationally.
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The radial expansion functions are constituted of two groups: in the first group Ry
are the spherical atomic densities obtained from the radial functions R, of the basis,
and in the second group Ry are radial functions localized in the range ry < r; < ry41,
chosen to be piecewise parabolic. In general, only a small number of the latter functions
are necessary for each (¢, §) partner in the fully symmetric representation to converge the
potential.

In many applications, the real density has indeed an approximately spherical distribu-
tion around each atom; this is the case, for example, of metals and alloys with compact
structures. For such systems the first group of Ry functions is already sufficient to rep-

resent p within a reasonable approximation. For these cases we have simply:

pi(P) =Y | Rue(rg) Y8 (0,6,) (29)

since combinations of functions of this kind pertaining to the totally symmetric represen-
tation will have coefficients equal to unity.
The d; coefficients are obtained by a least-squares fit to the charge density in the

three-dimensional grid:
S wilp(7e) = Y dipi (P2 ={(p— Y dip;)?) =6 (30)
k i 7

where § is minimized subject to the constraint that pps integrates to the total number of
electrons N.. This condition is incorporated as a Lagrange multiplier and é is minimized

with respect to the coefficients d;:

{6%,' {((P—Zj:djﬁjy) +/\§j:dj/ﬂjdv} =0} (31)

The integral sign denotes numerical integration in one dimension (r), which is performed

with precision < 1078, Eqgs. (31) give the set of equations:

{Zdﬂpm‘) = 2(ppi) + /\/mdv = 0} (32)
J
which are solved simultaneously with:

Zdj/dev:Ne .
J

Making use of the well-known expansion [38]:

1 o 1
77 = Z %Pg(cosa) (33)

=0 ">
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where P;(cosa) are the Legendre polynomials and cosa = (7.7")/rr’, and of the addition

theorem for spherical harmonics, we arrive at the expression for the Coulomb potential

Ve = Ve + V., (electronic and nuclear):

+4
Ve =YY Y CimVen (i) - 2 (31)

m=-{ q

where:

. An . rq , T;l+2 , oo , rg ,
Vven(72) = g 700 | [ B e+ [ Rar) a9
q Tq q

T 2w+l

In the case where only the first group of (spherical) functions is considered, we have:

Tq ,r.IZ oo Z
Vo) = 3y 3 2 [ [ Rt + [ |an<r;)|2r;dr;} SDIEN ()
J q Tq 7

In the case of a spin-polarized calculation, a similar fit is performed for the spin density

Ps = P1 = Pi-

2.6.2 Exchange and Correlation

The exchange-correlation potential in Eq. (2) is a functional of the electron density and

may be cast in the general form:

Ve = Kp*l1 + f,(p1,p1)] (37)

In spin-polarized calculations for magnetic systems, V.7 will be different for each spin o.
One of the earliest approximations, known as X, included only the first term in Eq. (37)

with an empirical parameter X, [39]:
Ve = —3Xa(3p0/47r)1/3 (38)

The Kohn-Sham-Gaspar potential derived from density-functional theory has a similar
expression for V2 with X, = 2/3, and only took into account exchange [20],[40]. To
include correlation, several forms were proposed for f,, with parameters obtained from
fits to RPA calculations or more accurate Monte Carlo simulations [41] and different spin
interpolations. The current version of the DVM code contains altogether nine choices

of V2

zc?

the preferred form being the Vosko, Wilk and Nusair [42] parametrization of the
Ceperley and Alder Monte Carlo simulations [43].

To give an idea of orders of magnitude, in a typical cluster calculation the Coulomb
energy (pVco) is of the order of > 10° Hartrees, while the exchange-correlation energy
(poV.2) is one order of magnitude smaller. The correlation corrections associated with f,

are one order of magnitude further reduced.
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2.6.3 External Potential (Embedding)

In the case of clusters representing a solid, to the cluster density (and model density)

are added the densities of several shells of neighboring external atoms at the crystal sites:

P = Pcluster T Phost (39)
with
Pcluster = Z "io|¢5w|2
and

Phost = Z 'pq(rq) -

7
This constitutes a critical portion of the embedding scheme, leading to what may be called
Potential Embedding. The prime in the summation denotes exclusion of the cluster atoms.
The external densities are obtained by LDA atomic calculations. To avoid the spurious
migration of the cluster electrons towards the external atoms, the attractive potential
of the latter is truncated at a certain value, to simulate the Pauli exclusion principle.
Typical truncation is at —0.2 hartrees relative to the Fermi energy Er, with a range of
2.2 — 2.5 a.u. from each atomic nucleus.

As is done with the basis, the embedding may be improved by generating external
atomic densities for atoms with the configurations that they have in the cluster, as ob-

tained by the Mulliken population analysis:

External e hrs(p) . {is}°¢F ___, New atomic configurations
atomic densities from Mulliken analysis

For the case of ionic solids, the method of Ewald summations [44] is employed to take

into account the long-range Coulomb potential of the crystal (Madelung potential).

2.7 Total Energy and Structural Properties

Once the self-consistent electron density is obtained for the molecule or cluster, it may

be used to calculate the total energy and derived properties, such as dissociation energies,
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equilibrium interatomic distances, vibration frequencies, etc. Generalizing for a spin-
polarized calculation, the expression given by local density theory for the total energy F;

is [8], 9], [20]:

1 1 Z,7Z
Et = Z €koNk,o + Z /Pa (—5‘/5 - ‘/zc,a + Ea:c) d37" -+ 5 Z =t (40)
a pe

T
k,o pg

where e, are the Kohn-Sham eigenvalues of Eq. (2), V., is the exchange-correlation
potential also known as chemical potential, p, the model charge density for spin o as
defined in Section 2.6 and V. the electronic Coulomb potential. The prime in the summa-
tion is to leave out self-interaction among the nuclei, and £, is the exchange-correlation

energy density: :
Euclp) = [ penclp)er (a1)

It has been demonstrated [45] that when the density employed in Eq. (40) is the
model density par, as described in section 2.6, the total energy is stationary with respect
to variations in pas. In the DV numerical sampling procedure, a scheme is devised to
control numerical error, derived -mainly from the core region of the atoms, where the wave
functions oscillate strongly [45]-[48]. The total energy associated with a volume ! with
nuclei at positions {R,} is defined as the expectation value (sum over integration mesh)
of the energy density &(7, {Rq}) over the volume. In order to cancel numerical errors,
the computation of Eq is made via point-by-point subtraction of a reference system of
noninteracting (NI) atoms located at the atomic nuclei of a molecule, or at the cluster

and embedding atomic nuclei in the case of a solid:
Ba = (e(7, {£,}) — V(7 { By ) + £3” (12)

where ( ) denote summation in the numerical grid.

The energy density may be defined conveniently as:

e ) =Y {pe.am -3 [pm + 322,86~ By) | Vel?) + o (7) [eael) - nc,om]]

’ (43)

where the single-particle energy is:
Peo(F) =Y migeio|$io ()" (44)

and is partitioned into atom-localized contributions in a manner similar to Eq. (28).

This step introduces no error, since the partitioning is constructed so as to leave the total
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(integral) single-particle energy invariant. The sum and é function in Eq. (43) restrict the
nuclear contribution to sites within the integration volume. The prime in the summation
leaves out self-interaction of the nuclei. The least-squares determined model density is
employed, consistent with the SCF procedure.

In practice, the densities of the non-interacting atoms is obtained from the functions
in the NAO basis, to assure maximum error cancellation. When calculating dissociation
energies (in molecules) or cohesive energies (in solids), the energy difference between the
free atoms and the atoms in the basis, E(free atoms)-E(NI), must be taken into account.

As mentioned in the Introduction, non-local corrections to the LDA total energy of
Eq. (40) have been implemented. It has been found that gradient-corrected exchange and
correlation energies make significant improvements in bond energies and bond lengths.
Very little additional improvement is found upon inclusion in the SCF procedure. The

simple formula suggested by Becke [19] for exchange correction,

- _ 4/ 2
'BZ/ 3(1 + Gﬁz,smh 1:1:,,) & (4)

with 2, = |Vp,|/pe/* and B = 0.0042 a.u., has found wide use, and was followed here.

The gradient formula developed by Perdew [13] for correlation correction,

AE, = / ite oo VoL, (46)

4/3

was chosen, with C, ® and d being given functions of p and p,. The sum
AE,. = AE; + AE, (47)

may be added to Egs. (40) and (41) for improved accuracy. Of course, it is the (smaller)
difference between molecule and free atoms AFE;.(molecule) - AE,.(free atoms) which

enters into structural properties.

2.8 Relativistic DVM

In the preceeding sections we have discussed the DV scheme as it has been applied in
nonrelativistic DF theory; here we extend the discussion to solutions of the relativistic
Dirac equation,

(co- p+me? B+ V(F) — ) Wi(7,€) = 0 (48)
Here o« and 3 are 4 x 4 matrix operators composed from the Pauli spin matrices, ¢ =

137.037 is the speed of light in a.u. and V(7) is an approximation to the potential seen
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by an electron with (space, spin) coordinates (7,£). The one-electron wavefunction ¥,
are 4-vectors composed of the so-called large and small components of mixed spin, as de-
scribed in standard texts [49]. The development of suitable potentials V has an extensive
literature both in the context of Dirac-Fock theory [50] and Density Functional theory
[51]. The principal unresolved problem is that the Coulomb potential as normally writ-
ten is not Lorentz invariant, and partial solutions such as the Breit interaction and their
DF counterparts [52] have not been established as leading to significant improvements in
predicted properties. In general it seems that corrections to the commonly used nonrela-
tivistic DF potentials are important essentially for core orbitals, and for the wavefunction
structure close to the nucleus [53]. In the following we will assume that the potential V
is constructed by the same procedure as in the nonrelativistic case, however, making use
of the relativistic density, again defined as in Eq. (3). This methodology has been found
to yield quantitatively useful results, in band structure [54], molecules and clusters [17],
[55]. The primary differences between nonrelativistic (NR) and relativistic (R) potentials

are readily seen in atomic calculations [56]:

1. In the direct effects, the s and p,/; shells contract and gain binding energy, due to

the kinetic energy operator.

2. The spin-orbit interaction partially lifts the degeneracy of the (n,!) shells, leading

to states characterized by (n,!l,j) with total angular momentum j.

3. In the indirect effects, the d and f shells react to the increased nuclear screening and

expand, altering the ground state configuration significantly for the heavy metals.

These features carry over into molecules and solids, but are generally more subtle due to
the mixing between AQOs of different character on different sites.

Since we are interested in magnetic interactions and frequently encounter open-shell
systems, an analog of the convenient nonrelativistic spin-polarized scheme is needed. For-
tunately, the well-known two-fold Kramer’s degeneracy of relativistic wavefunctions, re-
lated to time-reversal symmetry, provides a simple solution. We have thus introduced the
so-called moment-polarized scheme in which functions ¥; and 7Y¥;, where 7 is the time-
reversal operator, are analogous to the up- and down-spin nonrelativistic spin-orbitals
[53, 57]. In atoms, these functions consist of +m;, —m; components of the (n,, j) shells
and in the absence of a magnetic field are easily shown to be degenerate. External mag-
netic fields or internal (exchange) fields lift the degeneracy in exactly the same fashion

as for up- and down-spin states, and in fact the orbitals are identical for £ = 0 (s-states).
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As in the spin-polarized NR case, the convenience of having only two potentials to repre-
sent magnetic interactions is obtained at a price. This price includes some contamination
of the SCF solutions with a mixture of multiplets, which can sometimes be resolved by
projection techniques, including for example, the Slater Sum Rule of atomic theory. The
ease of calculation of an R potential which treats exchange in open-shell heavy atom sys-
tems reasonably well, without introducing artificial (and incorrect) spin-polarization is a
considerable advantage.

Symmetry is also easily exploited in the relativistic case, making use of the double
groups and projection operator techniques [58]. A general numerical procedure has been
incorporated in the DV codes to generate 4-component NAO symmetry orbitals for all rel-
ativistic point groups [34], [35]. The resulting SCF equations and procedures are identical
to those of the nonrelativistic case, except that in general matrix elements and wavefunc-
tions are complex numbers. Standard techniques for finding eigenvalues and eigenvectors
of Hermitean matrices are used to solve Eq. (8) [59]. As a practical matter, we observe
that SCF solutions of the Dirac equation take about twice as much computer time as for

the nonrelativistic problem, in a typical application.

2.9 DVM as a Subroutine for Dynamics

In many materials problems, for example at surfaces or interfaces, the chemical com-
position and nuclear coordinates are not fully known. Indeed, any information which
can be obtained by theory on these basic structural properties will be useful, in conjunc-
tion with experiment. Spatially Resolved Electron Energy Loss Spectroscopy (SREELS),
X-ray near-edge absorption (XANES) and emission, Mossbauer spectra, etc. provide
site-specific probes which can be combined with theory to help resolve structures.

In principle, DF calculations can not only provide total energies versus geometry, but
also atomic forces [60]. The DF equivalent of the Hellman-Feynman theorem, augmented
by contributions due to incomplete basis sets, does indeed provide a viable scheme for
molecules and systems with relatively high symmetry [61]. Various methodologies, includ-
ing gradient-based steepest descent, variable metric, [62] and pseudo-dynamical simulated
annealing [63] provide strategies for locating the equilibrium geometry. However, in com-
plex systems; e.g., a metal particle of tens or hundreds of atoms, a stacked-molecular
polymer or a grain boundary in a ceramic, there are simply too many degrees of freedom
to be attacked in a single quantum calculation. More importantly, there are typically an

enormous number of local minima and even physically important transient and metastable
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states which play a role in the observed spectra and thermodynamic properties.

We have chosen to break the problem into two parts:

1. Use parametrized interatomic potentials to sample the geometry, using classical

Molecular Dynamics (MD) or Monte Carlo/Generalized Simulated Annealing (MC/GSA).

2. Take snapshots of the electronic structure at selected geometries and/or time inter-

vals, with DF methods
3. Use the electronic structures calculated to refine the interatomic potentials

4. Project physical properties from a characteristic set of states, and form thermal

and/or spatial averages for comparison with experiment.

The MD and MC classical methods are well described in the literature [64] for defects,
interfaces and grain boundaries, an embedding scheme is used to focus computational
effort on the region of interest [65], [66]. The MD scheme is most useful to extract ther-
modynamic averages, vibrational data, and to observe evolution of the model system
from a selected initial state. On the other hand, the MC/GSA schemes give the option
to sample the entire parameter space (with sufficient patience) and map out the multiple
basins of the potential surface. Of course the results are totally dependent upon the input
potentials; thus it is critical to be able to verify and improve their parametrization. In
simple molecules and bulk systems this can be done by direct reference to experimental
bond lengths, bond angles, cohesives energies, sublimation energies, etc. For example,
the GROMOS data base [67] provides a very useful parametrization of a large number
of molecular interactions (Hook’s law, van der Waals, bilinear angular terms, Coulomb),
which can be easily updated. For metals, two body potentials of the van der Waals type
and many-body interactions such as the Embedded Atom Method [68] (EAM) and its ex-
tensions have found much use and are readily executed. For ionic solids, particularly the
oxides, a considerable literature exists, ranging from two-body potentials of the Bucking-
ham type to shell-model potentials which include some aspects of electronic polarization
and embedding [69].

In complex systems, particularly with defects and interfaces, experimental data are
almost never availabe in sufficient detail to determine the interatomic potentials. Thus
theory has an indespensible role in verifying and improving the potential data. We have
therefore constructed a hybrid MD/MC-DV procedure which implements classical and

quantum aspects just described into a coupled sequence of steps [70]. Without exagger-
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ation, we may call this a “Theorist’s Scanning Microscope”, as it surveys spatial and

temporal characteristics of a system much as an experimental scanning microscope does.

2.10 Summary of the Computer Code

As described in the earlier sections, the DV method is entirely numerical, and thus
all variables are defined in the three-dimensional grid. The fundamental characteristic
of the architecture of the DVM system of codes is that procedures are executed in the
memory for a block of grid points at a time. The blocks of points are created and stored
in temporary disk space, from where they are recalled. All variables are calculated and
stored in disk for the same blocks. In the current version, blocks of 600 points are used.
For the larger calculations, typically 1.0—1.5Gb of temporary disk space must be reserved
for this purpose.

A short summary of a SCF calculation is as follows:

1. The program reads in data for the atoms in the cluster, such as Z values and nuclear

coordinates, and other parameters.

A symmetry program determines the point group and generates the coefficients of
the symmetry functions for the irreducible representations. This program is entirely

general, and works also with the double groups related to the relativistic calculations.
2. The basis functions are generated by local density atomic calculations.

3. The crystal atoms (in the case of solids) are generated at the exterior sites to produce
the embedding.

4. The three-dimensional points grid is generated by the Diophantine procedure and/or
more accurate schemes. Basis functions, densities, etc., are obtained on the grid

points.

5. An initial model charge density pas is constructed by superposing the atomic den-

sities of the basis atoms.

6. The matrix elements are obtained for the matrices in Eq. (8), which are solved by
diagonalizing [H]. The set of eigenvectors obtained determines a density p according
to Eq. (3).

7. A new pys is obtained by least-squares fitting the p obtained to the expansion in

Eq. (28), carried to the desired degree of accuracy.
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8. A new model Coulomb potential is obtained according to Eq. (36). Steps (6)-(8)

are repeated until the desired degree of self-consistency is reached.

9. When self-consistency is achieved, the related eigenvalues and p are stored in a
permanent disk file, for further use in calculations of total energy and several other

properties.
Finally, it is interesting to emphasize some advantageous features of the DV method:

a) Any operator may be added to the Kohn-Sham hamiltonian, in a simple and straight-
forward manner, as for example Ey.7 where Ey is an external electric field (Stark

effect) and s,Hy (Zeeman effect) where Hy is an external magnetic field.

b) The usual and most convenient basis sets employed are numerical; however, one
may use analytical basis functions such as Slater or Gaussian if desired, simply by

tabulating their values in the grid points.

c) A preliminary evaluation of a given physical or chemical system may be done with
little computational effort, using few points in the numerical integration grid and

less accurate model density.

d) Practically, we observe that the numerical DV scheme scales computationally with
the number of basis functions N as N2, whereas DF methods with Gaussian basis
sets scale as N3, Hartree-Fock as N* and GVB or many-body perturbation at the
MP?2 level as N°® or higher.

e) In the solution of the secular equations, considerable point-by-point cancellation of

numerical errors is achieved.

f) The numerical LDA atomic calculations generate conveniently compact and environment-

adapted basis with a small number of functions.

3 Molecules

3.1 Porphyrinic Molecules and Solids

The porphyrins and their derivatives, such as the tetraazaporphines, continue to exhibit
a rich chemistry due to varied possibilities of metal and ligand substitution. They appear

in an enourmous variety of settings, from industrially important dyes, to biological and
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water-soluble catalysts, to molecular metals, to model one-dimensional magnetic systems.
Gross features of the electronic structure are dominated by the “core”, consisting of a
divalent metal like Mg or Cu (or Hj) in square planar coordination to C or N ligands.
Properties are “tuned” by choice of core elements, and by substitution of peripheral
ligands at the outer carbon “fence”, see Fig. 3.

From the point of view of transport and low-lying optical excitations, a principal
point of interest is the competition between ring-based p, orbitals and metal-centered
orbitals, particularly transition metal 3d orbitals. The balance between, and admixture
of, these two components can be modified and thus leads to a varied electrical conductivity
and magnetic coupling among elements in the stacked metal conductors based on the
monomer porphyrinic building blocks. The partially oxidized metal phthalocyanines,
like Cu(Pc)I and Cu;—,Niz(Pc)I provide a fascinating class of materials with a complex
temperature dependence of conductivity and magnetic susceptibility. As more highly
purified materials have become available, their intrinsic properties are becoming apparent,
and permit systematic properties design based upon doping and substitution strategies
[71].

These molecules show strong characteristic electronic absorption in the visible region
(Q-band, ca. 680 nm) and UV (Soret or B-band, a broad band with peak ~ 330 nm), with
band-splitting and shifts linked to overall symmetry and composition of the macrocycles.
Synthesis of molecules with peripherally fused-benzo rings (PC) and dithiolene groups
(PZ) permits a detailed analysis of the role of peripheral ligands. A single Q-band peak is
observed for 4PZ and 4PC high symmetry (D4s) macrocycles. Ligand substitution leads
to the splitting of the Q-band into two peaks in the lower symmetry 2PC/2 PZ cis, 3
PC/1 PZ, 1 PC/3 PZ (C;,) and 2 PC/2 PZ trans (Dqs) configurations. Intensities and
band splittings and shifts calculated in the DV framework have been compared in detail
with qualitative molecular orbital models and experiment in the visible and UV [72].

The partial density of states (PDOS) provides a convenient analysis of wavefunction
composition versus energy, making use of the Mulliken population analysis of individual

orbitals. Here PDOS is defined as

sze(E) = Z Pgl,pL(E — €p, 6) (49)

where P}, is the population of atomic orbital (nf) on site ¢ in energy level p, and L(E —
€p,9) is a line-shape function with width §. We typically use a Lorentzian, with § ~ 0.1 eV
for this purpose. A typical PDOS, for the high symmetry 4PZ Ni tetraazaporphyrazine
(TAP) case, is shown in Fig. 4.
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Here are shown the total DOS and important Ni, C, N and S ligand contributions; an
extensive mixing of orbital character in the valence bands is evident. The pinning of the
Ni 3d band around the Fermi energy Er is characteristic of an open shell atom. Unlike the
magnetic (S=1/2) copper analogs, the Ni-based compounds are experimentally diamag-
netic, as confirmed by the calculations. The mixed Cu;—,Ni, stacked compounds provide
an interesting example of magnetically diluted one-dimensional interactions, whose prop-
erties are still being investigated.

Dipole-allowed optical transitions are described in the one-electron DF model in the

usual way, with absorption intensity given by

I(e) =Y L(e — eig,6)ni(1 — ng) f(eis) (50)

if

with e;; = ef — €;, and oscillator strengths f,

2m
f(ei,€) = 7 Cif (6417 €] 6:)|? (51)

Theoretical and experimental absorption bands of 4PZ Ni (TAP) are given in Fig. 5.
The theoretical bands were calculated using the ground state wavefunctions; the low-
lying Q-band is seen to be in excellent agreement with experiment. The B-band region
which marks the onset of strong UV absorption, typically associated with charge-transfer
transitions, is fairly well represented. The W-band, centered at ~ 2.5 eV in experiment
and attributed to S-based transitions, is considerably blue shifted in the calculations.
This may be due in part to substitution by hydrogens in the calculations for terminal
groups far away from the porphyrazine ring (-(CH2CH;0)3H in star-porphyrazine and -
(CH;)7CHj; in the phthalocyanine macrocycle) which are attached to the outer oxygen
atoms. In order to test effects of H termination, calculations were also performed using
methyl groups as terminators in several cases. No significant differences in occupied region
electronic structure were found; however, perturbation of the excited state region could
occur. Some aspects of electronic relaxation effects on optical transitions were explored,
by use of the Transition State (T'S) scheme [39]. This approach gives a reasonably good
account of excitation energies, when the nuclear framework does not shift significantly
between ground and excited states. TS calculations on the Q-band showed shifts of a few
tenths eV from one compound to the other, but made no significant overall improvement
in the comparison of experiment and theory. TS studies were not made on the higher
energy W- and B-band regions; here the effects of electronic rearrangement in the excited

state are expected to be greater, and merit further study.
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Finally, we touch upon recent work on intermolecular interactions in stacked chain
systems, concentrating on Cu(Pc¢)l. In undoped Cu(Pc), the monomers stack in a slipped
herringbone pattern; in the partially oxidized Cu(Pc)I the stacking is vertical. In the latter
case, the interplanar spacing is observed as AZ = 3.19A with a staggered configuration:
each molecule is rotated Af = 42° about the stacking axis with respect to its neighbor
below. These values are typical for a wide range of compounds.

MD/MC simulations on dimers and tetramers, using only van der Waals interactions
from a standard molecular data base reproduce these features surprisingly well, with
predicted values of AZ = 3.20A4 and A# = 45°. DF calculations made on the dimer
produce very similar results, with the advantage that the angle and distance dependent
energy Eiind(z,0) provides a basis for refinement of the semiempirical potential parameters
[70]. An interesting interpretation of the mechanisms of electronic repulsion which favor
the staggered ground state configuration was given by Rosa and Baerends [73]. The
antiferromagnetic (AF) alignment of Cu moments in the dimer was found to be the
ground state, in agreement with the observed AF properties of the solid. This represents
a short-range order of the one-dimensional chains; the observed bulk ordering at 4K is

believed to be due to three-dimensional interactions among the chains.

3.2 [Cp (CO); Fe (n'-T)]*

A subject of technological interest is the bond between thiophene and a transition
metal M. This is due to the hydrodesulfurization of petroleum, which is performed in the

presence of a transition metal catalyst [74]
CzH,S + nH, i hydrocarbons + H,S

Thiophene is the compound present in petroleum from which it is most difficult to remove
the sulphur, due to this atom begin part of an aromatic ring.

One of the modes of coordination of thiophene to catalyst surfaces most frequently
suggested is the S or #1, in which the bond is formed directly between the sulphur and
a transition metal atom. In examples of the S-bonding mode which have been well-
characterized by X-ray diffraction, a pyramidal geometry has been found [75], which is
also present in the absorption of thiophene on metallic surfaces such as copper [76].

To investigate the bond between thiophene and M in the S (or ') mode, DV calcula-
tions were performed for the complex ion {Cp (CO);Fe (' -T)]* (Cp=cyclopentadienyl,
T=thiophene) [77]. Due to the strong covalency between the Fe and the ligands, the

electron configuration is a low-spin closed-shell, so that no spin-polarization is present.
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Total energy calculations were performed for several values of the angle  between the
plane of the thiophene and the Fe-S bond (see Fig. 6), to determine the equilibrium value.
Two minima were revealed, one at 120° (deeper) and the other at ~ 210° (see Fig. 7).
An analysis of the changes in the orbitals brought about by the angular variation reveals
that the mechanism leading to # < 180° is the reduction of the antibonding interaction
between the occupied Fe d, orbitals and the S 7 canonical lone pair in free thiophene.
This mechanism is consistent with the idea of sp? — sp® rehybridization of the S atom in

thiophene, which explains the pyramidal geometry.

3.3 The Molecular “Ferric Wheel”

Systems of nanoscale or mesoscopic dimensions containing a finite number of magnetic
transition-metal atoms display a number of interesting or unusual properties and have
been the subject of many recent investigations [78], [79]. Properties observed include su-
perparamagnetism [80] and quantum tunnelling [81]. Important technological applications
may also be envisaged, such as magnetic refrigeration and data storage [82].

Large polynuclear organometallic molecules are among such systems, that are in the
borderline of isolated and collective magnetic behavior [83], [84]. These are usually formed
by a core of transition metal atoms bridged by O or S, encapsulated within a crown of
organic ligands. Thus magnetic collective effects are due entirely to interactions within
the molecule.

One example of such systems is the circular molecule [Fe(OMe)y(0;CCH,Cl)]1o de-
nominated “ferric wheel” [84], of which the ground state is antiferromagnetic (S=0). A
transition-metal molecule of this size constitutes a challenge for DF calculations.

Electronic structure SCF spin-polarized calculations were performed with the DV
method for the cluster [Fe(OC)2(02CC)}yo formed by stripping the “ferric wheel” molecule
of its peripheral H and Cl atoms (see Fig. 8) [85]. Mssbauer spectroscopy measurements
have been reported [84]; calculations of the hyperfine parameters were performed and
compared to experiment. The magnetic moment obtained on the Fe was 4.3up and the
charge +2.3 [85].

The isomer shift is defined as [86]:

6§ =2/3¢*rZ5"(Z)A < 1* > [pa(0) — ps(0)] = aAp(0) (52)

where A < r? > is the variation of the mean square radius of the nucleus between excited

and ground states of the Mossbauer transition, S'(Z) is a correction for relativistic effects,
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and the term is brackets is the difference between the electron density at the nucleus in
the absorber A and source S (in other words, between a given compound and a standard
system). As defined, 6 is linear against p(0) for a series of compounds or ionic states of
Fe. In a non-relativistic approximation, only orbitals containing s-states of Fe contribute
to p(0).

The quadrupole splitting AEQ of the excited state of the 14.4 KeV transition of *"Fe

is given by [86]:
2\ 1/2
AEQ =1/2 V,,Q (1 + %) (53)
where Q is the quadrupole moment of the nucleus in the excited state (I=3/2), V., the
electric field gradient and 7 the asymmetry parameter.

The electric field gradient is produced by the non-spherical charge distribution of the
nuclei and electrons around the probe nucleus. It is a traceless tensor whose components
are defined as v

Vij = B2:03, (zi;2 = 2,9, 2) (54)
where V is the eletrostatic potential. Each one of the six independent components of the

symmetric tensor was calculated with the expression (in atomic units) [87]-[90]:
Vi; = —/p(F)(Bwix]’ — &) [ridv + Z Z{(3zqizg; — bijrs) /7 (35)
7

The first term in Eq. (55) is the electronic contribution, obtained with the molecular
p(7), and the second term the contribution of the surrounding nuclei shielded by the core
electrons, with effective charge Z;. After diagonalization, the electric field gradient is
defined by the convention:

[Vae| > [Viy| 2 [Vas| (56)

with the asymmetry parameter 5 given by:

Voo = Vi

7 o (57)

The Contact (or Fermi) component H, of the magnetic hyperfine field at the Fe nucleus
may be expected to be by far the largest in the present compound. H. is proportional to

the spin density at the Fe nucleus

H. = (87/3)gepslp1(0) — p,(0)] (58)

1
x =
2
In Table I are given calculated and experimental values of 6 and AEQ. The sign of the

latter was not determined experimentally. The magnetic hyperfine field was not measured,
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since at 4.2K no magnetic splitting of the Méssbauer lines was observed [84]. In calculating
the spin-density at the Fe nucleus, only the valence contribution is obtained from the
molecular calculation. The core contribution is obtained from a separate calculation for
a free Fe ion with the configuration as found for the molecule. This is due to the lack of

flexibility of the core basis, which inhibits spin-polarization.

3.4 Molecular Fragments

In this section we wish to show how analysis of molecular fragments, using the em-
bedding scheme described previously, relates to properties of the complete system. In
particular we focus on the convergence of the electronic charge distribution around the
active center of a penta-coordinate Ru complex, whose catalytic activity is of great inter-
est. Selective catalysts for oxidation of organic compounds generally involve the formation
and stabilization of metal-oxo intermediates. Chelating ligands containing amide donors
have received considerable attention [92], notably including porphyrins and macrocyclic
amides which impose a rigid planar array of four donor atoms [93]. The recent discovery
of a RuY oxidation catalyst, and analysis of the related RuYl-oxo complex has shown
the possibility of utilizing a more flexible coordination geometry and properties of the d*
metal configuration [94]. These novel electron-rich systems with flexible ligands have im-
portant implications for oxidation catalyst design and may give insight into performance
of the hypothetical d® perferryl species.

Semiempirical molecular orbital (MO) analyses have been made to rationalize and pre-
dict the relative stability of penta-coordinate transition metal complexes [95]. Symmetry
arguments and Hickel-type MO calculations on model compounds were used to discuss o-
and 7-bonding interactions of D3y, trigonal bipyramidal (TBP) and Cs, square pyramidal
(SP) geometries for d™ metal configurations. Discussions specific to d? oxo complexes
have focussed upon the interrelation between planar and distorted ligand structures and
amido-N o- and w-donor capacity [96]. Properties of the newly discovered paramag-
netic mono-oxo ruthenium complex PryN[RuY(O)PHAB] and the diamagnetic complex
[RuV}(O)PHAB], where H,PHAB is bis 1,2-(2,2-diphenyl-2- hydroxyethanamido) ben-
zene, have been similarly interpreted in terms of MO calculations on [RuOHj] complexes
of TBP and SP symmetry [94]. Both complexes facilitate C-H bond activation and oxygen
atom transfer reactions, and in addition the RuV complex catalyzes the air oxidation of
triphenylphosphine.

In order to obtain a more quantitative understanding of metal-ligand interactions
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and the relationships between electronic structure, coordination geometry, and reactivity
of the Ru penta-coordinate environment, DV calculations were undertaken on several
related complexes [97], including [RuOH4}9, [RuOCly]® and [Ru(O)PHAB]Y with q=0, -1.
Anyone who has done quantum chemical molecular calculations will recognize that the
terms “RuY, Ru¥!"” with nominal configurations 4d35s°5p° and 4d?5s°5p° represent an
oversimplification of the electronic structure, which may be nevertheless very useful for
qualitative discussions. The enormous Coulomb forces implied by ionic charges of +5 and
+6 would immediately be screened by electron density from the ligands; it is this effect
which we wish to discuss here. We choose the most extreme case, of [RuY!(O)PHAB]?
for analysis, with atomic coordinates of the first coordination shell given in Table II, and
analyze 6,20, and 36 atom fragments centered on Ru, along with the entire molecule. The
Ru Mulliken populations and net charges on Ru and the three oxygen and two nitrogen
ligands are presented in Table III. The present data are derived from neutral fragments,
which represent an unbiased starting point; clearly the atomic charges found on the larger
clusters provide information which can be used to refine the model for smaller clusters.
The fragment results, along with the entire molecule, give a consistent picture; the
charge state of “RuV!” is actually something like Rut? d*7s%1p%2 In addition to the
two d-electrons invoked in bonding interactions in semiempirical models, with low-lying
empty d-states supposedly responsible for catalytic activity, we find an additional ~ 3.7
d-electrons involved in metal-ligand bonding. It is important to note that the screening
mechanism which we expected is found to be short range; i.e., it derives from additional
localized d-occupancy through covalent charge sharing with the ligands, and not with
diffuse metal s, p charge. A typical MO near the top of the valence band is found to be a
strong covalent mixture of Ru-d and ligand-p character. Analysis of corresponding “Ru¥”
fragments and complexes leads to the identical conclusion, with an additional twist: the
net d-populations hardly change in the two chemically distinct RuY and Ru"! environ-
ments. This implies that understanding of the strong differences in stability and catalytic
activity observed in the two species will rest more upon interpretation of modifications of
the ligand p-electron structure, which is so intimately mixed with the rather stable metal

d configuration.
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3.5 Relativistic Effects in Molecules with 5d-metals
3.5.1 [Ir(CN)sJ*-

The ligand CN forms bonds with transition-metal atoms that are very covalent in
nature, resulting in strong electronic delocalization. Added to this, the presence of
a relativistic atom induces complex and interesting effects. The low-spin complex ion
(Ir(CN)s]°, in which Ir is in the unusual formal oxidation state +2, has been obtained by
irradiation of the hexacoordinated diamagnetic Ir(+3) complex with electrons or X-rays
in solid alkali halide matrices [98]. [Ir(CN)5]>~ has a square-pyramidal structure (see Fig.
9) and one unpaired electron in the HOMO.

The electronic structure of [Ir(CN)s]*~ has been obtained with the DV method in
both the non-relativistic and relativistic frameworks, to assess the relativistic effects in
the chemical bonds [99]. The basis functions used for Ir were 59, 4772, 381/2, 5P1/2,
9p3/2, 5dayg, 5ds/z, 6312, 6p1/2 and 6pas2. All other orbitals were kept in the core. For C
and N all orbitals were included in the variational space.

In Table IV are given the populations and atomic charges derived from the calcula-
tions. It is seen that the main difference in the Ir populations is in the 6s orbital, which
acquires 0.14 electrons in the relativistic calculation (from 0.09 to 0.23). This is due to
the stabilization of the MO’s containing 6s, an effect discussed in Section 2.8, and which
is also seen in the energy levels. On the other hand, 5d-containing MQ’s are destabilized
by relativistic effects and thus the 5d population slightly decreased. The overall charge
on Ir is slightly less positive in the relativistic calculation. The charges on C and N, as
expected, hardly change at all.

In Table IV are also compared the bond orders for the nonrelativistic and relativistic
calculations. There is a significant increase of the Ir-C bond order due to relativistic
effects: therefore the latter contribute to stabilize the molecule. On the other hand, as
expected, the C-N bond order is not affected.

3.5.2 Metal-cluster Halogen Complexes

As discussed in section 2.8, relativistic effects on the valence electronic structure of
atoms are dominated by spin-orbit splitting of (nl) states into (nlj) subshells, and sta-
bilization of s- and p-states relative to d- and f-states. Here we examine consequences of
relativistic interactions for cubo-octahedral metal-cluster complexes of the type [MgXsXs]
where M=Mo, Nb, W and X=halogen, which have a well defined solution chemistry, and

are building blocks for many interesting crystal structures.
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Relativistic effects will be largest in the tungsten complexes, and it is useful to be-
gin with the Wg fragment, where the nominal W°5d*6s%6p® configuration is expected to
produce a typical metallic s-d band straddling the Fermi energy. As shown in Fig. 10,
this is the result for both nonrelativistic (NR) and relativistic (R) calculations, using in-
teratomic distances [100] taken from the chloride complex [W4ClsCls}]?~. Note that the
nominal valence of tungsten is +2 in this complex; i.e., with configuration d*sC.

As we see from the figure and the populations of Table V, our expectations are fulfilled;
the bare cluster reveals a normal s-d band with populations shifted from d—> s,p in the
R case.

An extensive study has recently been made of [WXXg]>~ clusters, comparing DF
theory, Hiickel MO results, an experimental luminescence and absorption bands [101].
Here we focus mainly on the NR vs R consequences. The Mulliken populations and net
atomic charges of the [WeX§Xg]?~ clusters obtained from NR and R DV calculations are
presented in Table VI. The symmetry type of the frontier orbitals and the gap between
the HOMO and LUMO are summarized in Table VII; experimental absorption edge and
emission maxima are also included. The atomic orbital compositions of the HOMO and
LUMO from the two calculations differ primarily in their W 5d content, in the order NR>
R as expected.

The presence of a bonding-antibonding (B-AB) gap or valence band-conduction band
gap (VB-CB) of ~ 2.7eV is a dominant feature of the NR results. The NR and R
levels correlate to each other as follows: a; — s, a2 — 77, e— 8, t1 — Y6 + 77,
ts — 47 +7s (for both gerade (g) and ungerade (u) representations), where s, v7 and s
are the (2-,2-, and 4-fold) irreducible representations of the double-group Oj. Correlations
between the NR and R energy levels of the chloride are shown in Fig. 11; we see that R
splitting and energy level shifts act to considerably reduce the band gap.

While the formal charges on the metal and halide atoms are +2 and —1, respectively,
one would expect smaller values if covalent bonding is present within the clusters. The
NR calculations produce charges which suggest a high degree of covalent bonding within
the cluster, especially within the W¢Xg core, and are similar to those calculated for
the analogous molybdenum clusters [102]. It can be seen that as one goes through the
halide series, the charges on the metal become significantly smaller, 1.07>0.50>0.75 for
Cl, Br, and I respectively, indicating increasing covalent bonding. Absolute values of
Mulliken charges of course depend upon the basis set; however, trends and shifts have
great interpretative value. The net charges are consistent with experimental chemical

data; i.e., the stronger covalent bonds within the cluster core (as compared with the W-
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X? bonds) predicted by the DV calculations is seen in the substitution chemistry of the
cluster. The outer ligands are fairly labile and can be replaced under mild conditions,
but the inner halides are much more tightly bound and only can be replaced under harsh
conditions. The NR results (Table VI) give Mulliken populations for the three clusters
showing a smooth trend of increasing W 5d, 6s, 6p occupancy in the halide series; there
are significant contributions from the tungsten 6s and 6p orbitals. There is a small but
significant halide d-orbital contribution, 0.07-0.09¢ in the NR case; the largest values are
found on the inner Cl, indicating there a direct Cl-d participation in bonding. Table
VI also reveals the considerable effects of relativity on the charge distribution; while the
general trends of the NR case are preserved, the magnitude of ionic charge transfer is
accentuated. The R populations show the expected shifts in orbital occupation compared
with the NR results; some electron density has moved from the W 5d, X and X% p
orbitals into the W 6s and 6p and (to a lesser extent) X d orbitals. The net W 5d(3/2,5/2)
occupancy of 3.40< 3.80 < 3.94 for X=Cl, Br, and I respectively is thus considerably less
than in the NR model, and also less than the formal W2t d* value. An increase in the
W 6s1/2 6p(1/2,3/2) occupancy across the series is noted. Both X and X* d orbitals have
gained significant electron density; apparently the more diffuse R orbitals are useful for
bonding to the cluster core. The net R halide d-occupancy decreases from 0.51 to 0.11
for X' and from 0.20 to 0.11 for X across the series. The greater contribution of the X* d
orbitals for the smaller halides apparently offers greater stabilization through directional
covalent bonding.

The emission spectra of the [WsX;X2]?~ clusters are dominated by bands in the red
and infrared [103]. It has been suggested that the emission maximum corresponds to the
transition from the LUMO to the HOMO; Hiickel MO calculations support this interpre-
tation [102]. However, the extremely long emissive lifetimes (2.2, 16 and 26 us for Cl, Br
and I, respectively), similar to those displayed by the related molybdenum clusters, may
be assumed to be the result of a spin- and symmetry-forbidden transition. The trend in
emission energies seen in the series from chloride to iodide, with band maxima at 1.83
(Cl), 1.85 (Br) and 2.05 (I) eV, suggests that there is some halide character in the HOMO
and/or LUMO, consistent with our calculations. This blue shift with increasing ligand
size is, however, contrary to that expected (and calculated by DF) for the unoccupied
MOs; thus the emissive state may represent a triplet, with energy significantly shifted
with respect to the LUMO. Experiments with ligand substitution show that the shift in
emissive energy varies more with the inner halides than the outer ligands, indicating that

the inner halides give the primary ligand contribution to the frontier orbitals. Since the
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absorption bands are strongly blue-shifted with respect to experimental emission bands,
we suppose (along with other authors) that excitations into the AB peak rapidly decay by
a nonradiative process into a long-lived low lying triplet. Our previous study on the Mog-
based analogs suggests that geometric distortion accompanies this process [102]. The
present results indicate, and the observed temperature dependence of the emission bands
suggests, that most likely geometric relaxation and excited-state multiplet structures must
be taken into account in order to predict emission quantitatively.

First-principles DF one-electron ground state energy levels are not expected to show
quantitative agreement with either experimental absorption or emission data. Often semi-
quantitative comparisons can be made and trends can be discerned. In the present case,
the NR HOMO-LUMO gap is too large in the cloride and bromide, while the iodide value
coresponds quite well with the emission peak, probably by accident. The trend in gap en-
ergy is a red shift, expected due to the ligand-p atomic level systematics, 2.70>2.05>1.95
eV, the opposite of that observed in the emission data. The NR LUMO-HOMO transition
is symmetry-forbidden in the chloride and bromide cases, but is symmetry-allowed in the
iodide case. It can be seen from Table VII that the chloride an bromide clusters share the
same HOMO, while the LUMO is the same for the bromide and iodide clusters. The HO-
MOs are fully occupied for all three clusters, giving as ground state a totally symmetric
LA, singlet.

Since there are many closely-spaced energy levels in the vicinity of Ep, it is clear that
electronic absorption and emission bands involve more than a single discrete molecular
orbital pair. A typical NR PDOS diagram of the chloride cluster, given in Fig. 12, shows
the B-AB band gap centered around the Fermi energy Er (set to zero), while in the R
model (Fig. 12) Er falls in the midst of a densely spaced set of levels near the top of
the occupied valence band. The metal contribution is similar in all three clusters, with a
partially-filled d-band consistent with the net 5d population close to 4.7-4.8. Interactions
between the metals and the inner halides to produce the cluster core have resulted in
a lowering of the X’ s and p orbitals relative to those of the outer ligands, reflecting
the higher stability of the core. The W-X¢ overlap can be seen at ca. -5 eV, while the
W-X* overlap is at higher energy (-1 to -2 eV). It is seen that the HOMO region is
dominated by the X* p orbitals, and the LUMO region contains primarily W 5d and X*
p character. The DV results thus support the interpretation that the absorption maxima
for the [MgX5X2]?~ clusters are due to ligand-to-metal charge transfer transitions.

The DV results are therefore in qualitative agreement with experimental assignments.

The most prominent feature in the region E>Ep is the antibonding metallic peak, located
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at 3.5, 3.0 and 3.1 eV above the corresponding bonding peak for X=Cl, Br, and I respec-
tively. The agreement with experimental absorption is semiquantitative; e.g., the VB-CB
gap of 2.70 eV for the chloride can be compared with the band onset at 490 nm (2.53
eV) in polymethyl methacrylate (PMMC) films, which exhibit well defined absorption
features at 400, 350, 310 and 280 nm (3.10, 3.54, 4.00, and 4.42 eV) at low temperature.

The broadening of both valence and conduction band due to spin-orbit splitting of
levels, and the net upward shift and broadening of the W 5d component of the VB are
largely responsible for the differences seen in comparing NR and R DOS in Fig. 12.

In looking at the frontier orbitals, the first observation to be made is the dramatic
closing of the VB-CB gap in the R model. It can be seen from Fig. 11 that a number of
VB levels in the NR case are raised in energy, and a number of CB levels are lowered when
relativistic effects are considered. This is expected, in view of the atomic/ionic spin-orbit
splittings of 0.73 and 1.31 eV for W 5d and 6p levels, respectively, and 0.51 eV for the Br
4p level. In addition, detailed level counting shows some mixing among the original NR
VB and CB orbitals. Lifting of j-degeneracy has the striking effect here of pushing the
HOMO down into the midst of the valence band, closing the HOMO-LUMO gap. In that
sense the DOS diagram for the R case resembles that of a metal.

The implications of this result for spectroscopic predictions are considerable. The
composition and symmetry of the HOMOs and LUMOs have changed considerably from
the NR case, and we see that the HOMO-LUMO transition is now essentially irrelevant
with respect to the IR emission spectra. In the simplified one-electron picture, we predict
absorption in the extreme IR up to 0.7 €V for Cl-, 1.0 eV for Br-, and 0.2 eV for the
[-ligand clusters. Dipole allowed one-electron transitions in the IR emission region are
predicted to have a threshold at ~ 2.8 eV for Cl-, ~2.7 eV for Br-, and ~ 1.1. eV for
I-ligand clusters. From the DOS diagrams, we can predict intense absorption into the
antibonding peak located 4.1, 3.7 and 3.0 eV above Eg for X=Cl, Br and I respectively.

4 Solids

4.1 Magnetism and Superconductivity in Borocarbides

The recently synthesized rare-earth quaternary borocarbides such as RM3;B,C (R=rare
earth, M=transition metal) have stimulated much interest because of interactions between
their magnetic and superconducting (SC) properties. For example, superconductivity

coexists with magnestism over a limited temperature range in the Dy, Ho, Er, and Tm
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nickel compounds [104]. The layered crystal structure can be described schematically as
(RC)-(MB),-(RC)- with square four-fold coordinated R-C sheets alternating with metal
boride slabs with prominent MBy interlinked tetrahedral units. The M atoms form a plane
with interatomic distances characteristic of a metal; e.g., R(Ni-Ni)=2.45 A in YNi;B,C
is slightly shorter than in the pure metal (2.504). The nature of chemical bonding in
this structure and its consequences on transport properties is not immediately apparent:
despite its great structural anisotropy, band structure calculations suggest [105] rather
isotropic electronic densities of states. Torque magnetometry measurements of YNi;B,C
show high isotropy [106], while superconducting critical fields of the rare earth compounds
show some angular dependence [107].

Magnetic moments on the nominally trivalent R ions provide the driving force for
polarization of the conduction electrons and resulting effects on superconductivity. R-
moments within a given plane are found by neutron diffraction to align ferromagnetically,
with the net moment lying in, or close to, the (a-b) RC plane. Below the antiferromag-
netic (AF) ordering temperature, ranging from 1.5K (Tm) to 20K (Gd) in RNi,B,C the
net moments in alternating RC planes align opposed to each other. Over a limited tem-
perature interval, more complex incommensurate spiral c-axis AF structures are observed
[108]. The existence of regions of coexistence between AF and SC states, and the de-
tailed mechanisms by which the magnetic coupling lowers the superconducting transition
temperature T, suppressing SC entirely for the light rare-earth compounds, pose severe
challenges for theory.

We have utilized the embedded cluster DV scheme to study the electronic structure
of the Y(Nij_;M;)B,C superconductors (M=Fe, Co, and Ru), with 71 atom variational
clusters centered on the substitutional site [L09] as shown in Fig. 13. Bonding within the
RC plane is found to be highly ionic, while B-C and Ni-B bonding structures are analyzed
as typically covalent. In addition, the strong overlap between atoms in the transition
metal plane has typical metallic character. Thus the entire spectrum of chemical bonding
including ionic, covalent, and metallic structures is found within this peculiar crystal
structure. The Ni-B slab is found to be electron-rich, as the result of charge transfer from
the RC planes.

DOS analysis shows that both Ni and B character dominate the region around Ep,
as also predicted by band structures. Doping by Co, Fe, or Ru causes a broadening
(lattice disorder) and weakening (dilution effect) of the Ni-dominated peak which cor-
relates reasonably well with the experimentally observed depression of T.. A simple

rigid-band+dilution model works adequately for low doping levels, but is inadequate for
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> 20% impurities. The integrated transition metal PDOS or net metal d-population was
found to correlate strongly with T, as an alternative to the frequently used D(Ef) peak
height. A small, but significant Y 4d, 5sp DOS component reveals hybridizaton of R
valence states with C, and through the B-C bonds, interaction with the M-conduction
electrons which turns out to be crucial for understanding the magnetic interactions.
Variation of electronic structure with rare earth, in the series R(Nig ggFeq 01)2B2C with
R=Y, Gd, Tb, Dy, Ho, and Er was studied both by theory and by Mdssbauer spectroscopy
[110]. Quadrupole Splittings AEQ and Isomer Shifts § were obtained for substitutional
5TFe; the experimental § measuring the local electron density showed very little variation
with R, while the AEQ displayed a systematic shift. Low temperature measurements on
the Tb compound revealed a combined quadrupole and magnetic interaction on the Fe
nucleus, from which the sign, V., < 0, was additionally determined. The calculations are
in excellent agreement with |AEQ)| of experiment, see Fig. 14, and predict V,, < 0 in all
cases. The trend of AEQ vs R is traced to a lattice “pressure” effect; namely, compression
within the (a-b) metal plane driven by reduction of R-ionic radii with increasing atomic
number. Both the positive valence (mostly d-electron) and negative core/nuclear contri-
butions to AEQ increase in magnitude with (a-b) compression; the more rapid variation
of the valence term leads to the observed overall decrease in the magnitude of AEQ.
Self-consistent spin densities and their related magnetization and exchange fields were
studied in the RNi;B,C compounds with R=Pr, Nd, Sm, Gd, Ho, and Tm [111]. One
of the main puzzles, the coexistence of SC and AF order for the heavy rare earth com-
pounds, and the total absence of SC in the light-R compounds, can now be more or less
quantitatively explained. Most simply, we can think of the interaction between the R
4f-moment and the (mostly Ni) conduction electrons which participate in SC pairs as a

multi-link process:
1. The R 4f polarizes and is hybridized with the R 5d.
2. The 5d mixes strongly with the C 2p, polarizing it.
3. Strong C-B covalency passes the polarization wave into the Ni-B slab.

4. Paramagnetic Ni (or transition metal substituent) picks up and amplifies the polar-

1zation.

5. Induced polarization weakens the SC pairs, mostly by exchange interaction.
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The most important physical parameter across the rare earth series which affects this
process is the strength of the 4f-5d interaction, which depends strongly on the mean
distance between shells in the ion: <rsg >-<rsy >. Across the R series, both radii
decrease; however, the difference increases almost linearly with Z, rapidly weakening the
f-d interaction. Guo and Temerman have previously suggested strong f-d hybridization as
the main factor in suppressing SC in PrBa;Cu3O7_,, in contrast to all other isostructural
RBa,Cu307_, compounds [112]. We find, as they did, that the f-d interaction is not
simply dipolar; i.e., polarization at a distance, but strongly involves f-d hybridization as
permitted by the crystalline and ligand fields. As an example, Fig. 15 shows spin-density
contours on the (011) plane containing Nd, Ni, B, and C in two models: with the Nd
4f in the variational space, and in the frozen core with hybridization suppressed. Large
qualitative changes and quantitative reduction in the spin density p, are evident when
hybridization is suppressed.

The multi-link spin transfer and polarization process is best seen in a bond-line dia-
gram (Fig. 16). Here a zig-zag path is followed, starting at one rare earth, and following
the chain R-C-B-Ni-B-C-R to the oppositely polarized R ion on an adjacent RC plane.
As can be easily seen, the lighter ions Pr and Nd with smaller <rsy >-<rq; > strongly
polarize the lattice, including the distant Ni. On the other hand the heavy, weakly cou-
pled, Ho and Tm induce much less polarization even though Ho has a considerably larger

spin magnetic moment than Pr.

4.2 ~-Fe and 7-Fe/Al Particles in Copper

Pure bulk iron in the fcc crystal structure (y-Fe) only exists at very high temperatures
(between 1183 and 1667K). However, v-Fe may be stabilized at low temperatures as small
coherent precipitates in copper or copper-alloy matrices or as thin epitaxial films on a Cu
or Cu-based alloy substrate [113], [114]. Recently the interest in ¥-Fe has been revived
due to the existence of multiple magnetic states revealed by band-structure calculations
[115], which is believed to be related to INVAR phenomena in v-Fe-based alloys [116].

A 62-atoms embedded cluster in cubic geometry was considered to represent y-Fe (see
Fig. 17), and spin-polarized SCF calculations were performed for both the ferromagnetic
(FM) and antiferromagnetic (AFM) states, at several lattice constants. For the AFM, a
layered arrangement of up and down spins (illustrated in Fig. 17) was considered.

Measurements of the magnitude of the magnetic Hyperfine Field by Mossbauer spec-

troscopy revealed small values at small interatomic distances and much larger values at



-42 - CBPF-NF-008/97

larger distances (Fig. 18) [114]. This was ascribed to a large difference in the magnetic
moment between AFM ~v-Fe, more stable at small lattice constants, and FM ~-Fe, more
stable at large lattice constants [115]. It is the spin-polarization induced by the Fe spin
magnetic moment (mainly 3d) in the s shells that originates the hyperfine field. However,
the calculations of the magnetic moments for the two states AFM and FM (Fig. 19) [117]
did not show such a large difference that would justify the large experimental gap in Fig.
18. The results of calculations of the hyperfine field according to Eq. (58) of section (3.3),
displayed in Fig. 20, reveal that the large difference observed experimentally in the mag-
nitude of the hyperfine fields of AFM and FM +-Fe originates mainly from different signs
of the valence electron contribution, which is positive for AFM and negative for FM, and
not from large differences in the Fe magnetic moment in the the two states. This result
shows clearly that the common practice of considering the hyperfine field as proportional
to the magnetic moment may be very misleading.

Since many experimental studies of y-Fe were performed for v-Fe particles in a Cu
matrix (or Cu alloy, including Cu-Al) [113], [114], it is important to probe the electronic
structure of the particle-matrix systems. Embedded-cluster methods are ideally taylored
to treat small particles of a metal in a host matrix, a system that would require a very large
supercell in band-structure calculations. DV calculations were performed for the 14-atom
Fe particle in copper shown in Fig. 21 [118]. Spin-density contour maps were obtained to
assess the polarization of the Cu matrix by the coherent magnetic y-Fe particle. Examples
are given in Figs. 22 and 23 for a Fe particle in Cu and ~-Fe in Cu with two substitutional
Al. If the matrix is a Cu-Al alloy, this element is known to penetrate the Fe particle [114].

It is seen from the figures that the Cu 3d electrons present a small polarization parallel
to the Fe 3d, and the (4s,4p) electrons polarize antiparallel. This is also veryfied by
analyzing the Mulliken populations. The polarization of the (3s,3p) electrons of Al is
always antiparallel to that of the neighbors. The presence of Al substituting for Fe was
found to disrupt the AFM spin arrangement: for the AFM v-Fe particle in copper, the
presence of two Al atoms resulted in non-convergence of the SCF potential, indicative of
the instability of that state. In pure AFM «v-Fe the two Al impurities caused a tendency
to local ferromagnetic arrangement of the host atoms. Al substitution in FM ~-Fe causes
a reduction in the 3d moment of the Fe neighbors; this same result has been reported for
bce Fe with Al impurities [119].
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4.3 Annite, A Silicate Mineral

Silicates make up a large part of the earth’s crust, and their physico-chemical properties
have obvious importance in geochemistry and minerology. Typically structurally complex,
they have been mostly studied by very approximate theories with limited predictive power,
including small clusters [120]. More recently, band structure studies have begun to reveal
some of the secrets of the simpler silicates [121]. In this section we briefly discuss some
recent DV cluster studies on annite, a layered iron-bearing silicate which belongs to a
class of both natural minerals and synthetic materials of interest as absorbers, carriers,
and catalysts [122].

Annite has a mica-like layer structure with the monoclinic space group C2/m and two
molecules per unit cell. It has the so-called 2:1 structure with a symmetric arrangement of
two tetrahedral layers attached to opposite faces of a single octahedral sheet (T-O-T-K-
T-O-T) [123]. The molecular formula for ideal annite may be written as KFez (AlSis) O1o
(OH), where three-fourths of the tetrahedral sites are occupied by tetravalent silicon and
one-quarter by trivalent aluminum ions. Fe-atoms, nominally in the bivalent state, are
octahedrally surrounded by six fourfold coordinated oxygens of two types, termed Oro
and Opy. Each anion is shared by three octahedra; however, each Or¢ is also the apex
of a tetrahedron whereas Oy, which is bonded to one H atom forming the OH™ group,
is unshared. The hydroxyls are arranged around Fe in different positions, giving rise to
cis and trans Fe?* sites respectively in the ratio 2:1 along the octahedral layer. There
are two other types of O, which are twofold coordinated to tetrahedral cations (Al or
Si). In the present calculations they are considered to be equivalent and defined as type
Orr. Finally, the mobile K cations occupy the interlayer sites and ensure the electrical
neutrality of the structure.

The existence of extensive Mossbauer studies of "Fe in this material provides a moti-
vation for detailed study, since theory and experiment can be closely compared [124]. One
important result of the Mossbauer work is the observation of some Fe3t on the octahedral
sites, presumably to relieve stress due to misfit between ionic radius of Fe?* and packing
requirements of the structure. Since the hyperfine fields are known to be sensitive probes
of the local environment, a comparison of results with different cluster sizes and boundary
conditions will give a clear indication of convergence and reliability of the model, which
can be applied more generally to silicates.

Several different sites and cluster sizes were used to generate a self-consistent model

of the crystal. All clusters were embedded in the potential field of the infinite ideal
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layered structure, with Coulomb interactions fully summed by the Ewald procedure.
Two iron-centered clusters were considered to describe the O-sites: FeO,(OH); and
Fe(Si14014)(0OH);, the smaller cluster includes the first coordination shell of Fe in the
variational space, and the second includes the next “shell”, of silicate tetrahedra. The
T-site environment was represented by variational clusters AlQy4, SiO4 and Al(SiFe);04
and Si(SiFe)304 centered on Al and Si respectively. General features of the self-consistent
atomic configurations and net charges can be seen in Table VIII; for a detailed analysis
the reader is referred to Ref. [122]. The charge distributions show that the ionic character
of the bonding is ordered as Al-O>Fe-O>85i-O, with self-consistent cation charge equal
to +2.91, +1.90 and +3.33 for Al, Fe and Si-centered large clusters respectively. This
result is consistent with the nominal electronegativities of the cation and anion. The
inequivalence of three types of oxygens (O, Oto, Orr) is well described by the largest
clusters, where the bonding capacity is fulfilled for Oro and Ogr. In this case, it is ob-
served that the charge on O tends to converge when the cluster size increases; we find the
charge on Orp=-1.39, -1.48 when Orr is respectively bonded to Al and Si. Such a result
is compatible with experiment, in which Orr of two types are determined according to
the occupation of the cation tetahedral site: either Al or Si. The charge on the fourfold
coordinated Oro converges to -1.63; it interesting to observe that this charge does not
depend on the cations in Al(SiFe);04 and Si(SiFe)304 clusters. The oxygen type Op is
twofold coordinated in both Fe-centered clusters. It is reasonable to assume the config-
uration 2s!952p584 due to the largest cluster as the most probable; however, it is worth
mentioning that Oy can occupy trans and cis positions in the octahedral layer and in the
present calculations the cis position is completely neglected.

With the Coulomb potentials of the crystal now determined, we may consider its mag-
netic properties, starting with a description of the spin-polarized valence band region. The
higher-energy valence bands straddling the Fermi level are primarily of Fe 3d character,
with a large exchange splitting of ~2.7 eV between spin up and spin down components.
The majority spin band is fully occupied, as expected. The twofold substructure is com-
parable to the splitting of electronic energy levels of a high-spin d® ion embedded in a
distorted octahedral crystal-field. Distortion of the octahedron lifts degeneracy of e, and
tay orbitals; in the relevant Cs), group there are no degenerate orbitals. However, the 3d
states are clearly split into two distributions which are remnants of the cubic character
with an energy separation between them, corresponding to the 10D, parameter of ligand
field theory, of ~0.6 V. The five spin up (1) electrons in the filled subband are ordered
in energy values as 3d,2 <3d,2_,» <3d;, <3d,, <3d,,. This result is compatible with
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the neighboring anions geometry; for example the lobes of the 3d., function point toward
the Op ligands. The minority spin distribution encloses the last occupied 20a, | orbital
with 95% Fe 3d.2 character. The nearby conduction-band unoccupied levels are predom-
inantly Fe 3d| and Si 3s3p, with Al excited states falling to higher energy. This picture
is consistent with general features of magnetic transition metal oxides; details of level
composition will be revealed upon consideration of the hyperfine fields, and in particular,
the Méssbauer quadrupolar splitting and the magnetic dipolar field.

The calculated spin magnetic moment on Fe is +3.96up, almost entirely due to the
3d-moment; this value is very close to the maximal spin of +4p45 and compatible with
the Fe?* configuration. This value is in good agreement with that adopted to model the
natural single-crystal annite in order to explain the experimental saturation magnetiza-
tion derived from high-spin SQUID magnetometry [125]. The oxygen atoms gain a spin
polarization moment; it is larger for the six oxygen nearest neighbors as expected: +0.014
and +0.008p for Oy and Oro respectively. Details of the contact spin density, electric
field gradient (EFG), asymmetry parameter (defined in Section 3.3), and magnetic dipolar
field (MDF) are given in Table IX. The components of the magnetic dipolar field tensor
are given by:

M;; = pp /Ps(f")(3zﬂj = &;jr?) [ridv (59)

where pp is the Bohr magneton and p, is the spin density [p1(7) — p(¥)]. We find
that the anisotropic EFG and MDF, which depend very sensitively upon the angular
character and weight of occupied Fe 3d orbitals, differ greatly from the minimal cluster
model, to the cluster with two coordination shells of neighbors. This is consistent with
experience with other supposedly ionic systems, and gives some measure of the influence
of covalent interactions in silicates along with other simpler oxides. The data from the
larger cluster can be fit very well to the experimental Méssbauer spectra, and indicate that
the EFG principal axis and the internal magnetic field Hp are parallel. This prediction
can be checked in principal by making measurements at low temperature in an external
magnetic field. On the strength of these results, we believe we have obtained an adequate
model for the annite system and have established a good basis for further studies on these

fascinating materials.

4.4 An Electroceramic Grain Boundary

Electroceramics include a wide variety of technically important materials with nonlin-

ear electrical properties, including devices such as varistors, thermistors, boundary layer
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capacitors, and ferroelectric memories. Their behavior is largely governed by electrically
active grain boudaries (GB), whose dielectric permittivity, capacitance, and resistive be-
havior are closely linked with microscopic geometry, chemical environment, and electronic
structure. Tailoring of GB to specific needs by controlling processing conditions and in-
corporation of impurities forms a large part of the art of producing useful materials.

SrTiO; is one such functional electroceramic, much studied because of its relatively
simple perovskite structure and its GB capacitative behavior, obtained upon aliovalent
doping. Studies of GB structure by high resolution spatially resolved electron microscopy
and energy loss spectroscopy have revealed enough of the local geometry, on a 3-54 length
scale, to make detailed modelling feasible [126]. Atomistic modelling has been done, using
a lattice statics approach to find low energy configurations compatible with experimental
data. Not only are the resulting structures complex, with different stoichiometry than
the ideal bulk, but they are numerous. For example, for the well characterized 36.8°
symmetric tilt > = 5 GB a total of fourteen low energy structures were found compatible
with experiment [127]. One of these, shown in Fig. 24, was selected for detailed electronic
structure studies on the basis of chemical intuition and “feel”; details are given in the
literature [128], here we touch briefly on differences in Ti environment in the GB versus
the bulk, and on the effects of transition metal substituents at the Ti site.

In the ideal cubic perovskite structure, Ti%* is surrounded by six O?~ in the first
coordination shell, followed by eight Sr?*. DV calculations on clusters with up to ~ 50

atoms reveal a self-consistent atomic configuration of Tit2®8 3409940024008

showing
the considerable effects of Ti 3d — O 2p covalency. Examination of geometry around
titanium in the GB core shows that most often, the local oxygen coordination is reduced
from six to five; in addition, the average Ti-O bond length is significantly reduced. Self-
consistent calculations show that the response of Ti at the GB core is partial reduction,
with a typical configuration of Tit2683d!17450934p012 representing an accumulation of
electronic charge at the GB core, relative to bulk. The strontium coordination is also
reduced (from 12 to ~9) in the GB, and its response is similar. In bulk, its configuration

is found to be highly ionic: Srt!-234d00455%015p003

, while in a typical GB environment
we find Srt!1-66440-31550935p9-03 reflecting accumulation of some covalent character due to
reduced Sr-O bond lengths. Again, the net result is accumulation of electronic charge at
the GB core, helping to build up the Schottky barrier responsible for capacitive behavior.

Deliberate doping of strontium titanate by transition metal acceptors, including Mn,
Fe, and Ni which concentrate at the grain boudaries, is known to enhance the GB ca-

pacitative effect and is an essential component for commercial materials. Calculations



- 47 - CBPF-NF-008/97

on transition metal-doped SrTiO3 were made, substituting for Ti both in bulk crystal
and at the GB. A typical result for Mn shows an ideal crystal ionic configuration of
Mn+208304844500240-94; thys Mn is indeed divalent, but accepts only ~0.80e instead of
the nominal 2e expected from formal valency, due to the lesser charge initially on Ti. At-
tempts to stabilize Mn®*, which is experimentally observed at lower concentration, always
led to the divalent self-consistent state. This suggests that the trivalent ion is associated
with oxygen vacancies, known to exist in significant numbers, and to contribute to space
charge and conduction processes. Similar calculations of Mn substitution at the GB core
yield a typical configuration Mn+1843d*9645%074p0-11 showing again partial reduction with
respect to the bulk state. The most significant feature here is that Mn accepts ~ 0.84¢ at
the GB core, slightly greater than in bulk, again contributing to formation of the Schot-
tky barrier. Doping by electron donors which may concentrate in the bulk, is expected to
compensate the bulk acceptors, leaving the desired space charge region around the GB.
Further studies are underway, using the MD/MC methodology described in section
2.9, to refine the local geometry in view of first-principles determination of ionic charges
different from nominal values, and taking into account differing ionic radii of substituents.
We see that very simple ideas arising from calculated electronic charge distribution are
already useful in helping to construct viable models of electroceramic grain boundaries.
More detailed theoretical analyses, relating to the X-ray near-edge abosorption and high
resolution electron energy loss data, can be expected to contribute further to understand-

ing local geometry and atomic configuration of substituents.
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Figure Captions
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1 — (Insert where placed in text).
2 — (Insert where placed in text).

3 - Some typical porphyrinic molecules: a) Ni star-porphyrazine, with four fused
thiolene groups (4PZ), b) basic porphyrazine structure with peripherally fused-benzo
rings (PC) and c) dithiolene groups (PZ).

4 - PDOS of 4PZ nickel porphyrazine, after Ref. [72].
5 — Theoretical and experimental absorption bands of 4PZ Ni(TAP).
6 — Views of [Cp(CO);Fe(n'-T)|*. a) § = 120°, b) § = 180°.

7 — Variation of the calculated total energy of [Cp(CO),Fe(n'-T)]* as a function of
. a) Without 3d orbitals in the S basis, b) with 3d orbitals on the S. The reference
energy is for the coplanar geometry (6 = 180°).

8 — Views of the cluster [Fe(OC)2(02CC)]10, representing the molecule “ferric wheel”.
a) Top view (z=0 plane), b) Side view.

9 - The square-pyramidal complex [Ir(CN);]*~. Ir is at the center; neighbour atoms

are C.
10 — Partial and total densities of states of neutral Wq clusters.
11 - Nonrelativistic and relativistic energy levels of [WsCI5C12]?~.

12 - Partial and total densities of states of [WeCI;Cl&]?~ in the nonrelativistic (top)

and relativistic (bottom) models.

13 — Ri3M;5B32Cq, transition-metal centered cluster representing RM,B,C com-

pounds.

14 — Experimental and calculated absolute values of *’Fe quadrupolar splitting in

R(Nig ggFep.01)2B2C versus ratio of lattice parameters c/a. From Ref. [110].

15 - Spin-density [p1(7) — p; ()] contours on the (011) plane of NdNi,B,C. a) Nd 4f
in variational space, b) Nd 4f placed in frozen core. Contour levels are from -0.002
to 4+0.002 e/au® with intervals of 0.0001. Full lines are positive values. After Ref.
[111].



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

-49 - CBPF-NF-008/97

16 — Bond-line plots of the polarization field H for antiferromagnetic RNi,B2C, beg-
ginning at one rare-earth and passing from atom to atom along bond lines, termi-

nating at a R in the next plane (distance ¢/2) above or below. H=(87/3)ug[p1(7)
p1(7)]. From ref. [111].

17 - 62-atoms cluster representing fcc Fe. Light and dark spheres represent alter-

nating layers of spins in the AFM configuration.

18 - Experimental values of the magnitude of the hyperfine field of fcc Fe at several

lattice constants (from ref. [114]).

19 - Calculated spin magnetic moments p plotted against the Wigner-Seitz radius
15 of ¥-Fe (from ref. [117]).

20 — Total hyperfine field Hr and components plotted against the Wigner-Seitz

radius r, of y-Fe (from ref. [117]). Valence electrons contribution, «------ ; core
electrons contribution, — — — — total,
21 — Cluster representing a cubic particle of Fe with 14 atoms in the fcc structure,

surrounded by Cu atoms. Darker spheres represent Fe.

22 - Spin density contours for FM «-Fe particle surrounded by copper, in the (x,z)
plane. From -0.01 to +0.01 e/a.u.® with intervals of 0.001 e/a.u.®. Full lines are

positive values. From ref. [118].

23 - Spin density contours for FM 4-Fe particle surrounded by Cu in the (x,z) plane
with two Al on the z axis substituting for Fe. Contour specifications as in Fig. 22.
From ref. [118].

24 - Schematic of 36.8° symmetric tilt }_ = 5 grain boundary in SrTiO3, showing a
Ti-centered variational cluster at the GB core. Small spheres: Ti, medium spheres:

Sr, and large spheres: O.
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Fig. 6a
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Fig. 6b
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Fig. 9
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Fig. 21
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Fig. 22
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Fig. 24
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Table I - 5"Fe hyperfine parameters of [Fe(OMe)s(O2CCH2Cl )]1o. Values of the isomer shift §

relative to Fe metal. Value of & from ref. [87].

Isomer Shift

P(0)(a;? 5(mm}s) 5(mm/s)
(3s+valence) (calculated) (experimental )®
145.43 0.48 0.52

Electric field gradient

Ve Vyy Voo n AEQ(mm/s) |AEQ|(mm/s)
(@7 (7%  (a5¥) (calculated)?  (experiment)®
0.439 -0.311 -0.128 0.416 +0.73 0.62

Magnetic hyperfine field

Ap(0) H,
(a3%) (kG)
1s-3s -0.906 -474
valence 40.077 +40
Total -0.829 -434

a) From reference [84].

b) Q (®’Fe) = 0.16b (from ref. [91]).
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Table II - Cartesian coordinates (4) of nearest neighbor ligands to RuV1in [Ru(O)PHAB]

atom X y Z
01 —-1.296 -1.018 0.426
02 0.565 1.276 1.285
03 —-0.953 1393 —-1.086
N1 0.768 —0.496 —1.672
N2 1579 —0.981 0.676
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Table III - Net Mulliken populations for Ru and ligand atomic charges in [Ru(O)PHAB] for 6
(embedded), 20 and 36 (naked) atom fragments, and the entire (66 atom) complex. Net charge = 0 for

each fragment.

6 atoms 20 atoms 36 atoms entire
Ru 4d 5.63 5.78 5.74 5.74
5s 0.06 0.11 0.10 0.06
5p 0.13 0.23 0.25 0.15
net 2.19 1.87 1.90 2.04
01
net -0.44 -0.44 -0.43 -0.53
02
net -0.52 -0.44 -0.45 -0.63
03
net -0.46 -0.52 -0.56 -0.42
N1
net -0.38 -0.39 -0.44 -0.63
N2
net -0.40 -0.39 -0.53 -0.44
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Table IV — Mulliken populations , charges and bond orders from non-relativistic and relativistic

calculations for [Ir(CN)s]3~. Ax and eq stand for axial and equatorial ligands, respectively.

Populations and Charges

Nonrelativistic Relativistic
Ir bs 1.94 Ir 881/2 1.96
Populations 5p 5.91 Populations 5p1/2 1.98
5d 7.43 5pa/2 3.94 5p 5.92
6s 0.09 5d3/2 3.17
6p 0.45 5ds/9 4.21 5d 7.38
6s1/2 0.23
Charges Ir +1.18 6p1/2 0.19
Caz +0.07 6pa/2 0.32 6p 0.51
Naz -0.85
Ceq +0.02
N4 -0.87 Charges Ir +1.01
Cax +0.08
Nao -0.84
Ceq +0.05
Neg -0.86
Bond orders
Nonrelativistic Relativistic
Ir-Cgz 0.30 0.48
Ir -Ceq
(each) 0.31 0.48
Caz—Nag 1.36 1.36
Ceq=Neq
(each) 1.31 1.31




- 80 - CBPF-NF-008/97

Table V — Self-consistent Mulliken populations in NR and R models of a Wy cluster.

Orbital  Nonrelativistic Relativistic

5d  3/2 4.94 2.07

5/2 2.22
6s 0.54 0.72
6p 1/2 0.55 0.30

3/2 0.73
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Table VI - Mulliken atomic orbital populations and net charges for [WsX5Xg]?~ complexes from
DV calculations. NR is nonrelativistic model; R is relativistic. Angular momentum subshells j=1/2, 3/2,

5/2 and an extended ligand basis set of valence ns, np, nd and (n+1)s optimized functions are indicated.

Orbital Chloride Bromide Todide
NR R NR R NR R

W 54 3/2 466 165 477 187 4.82 1.94
5/2 1.76 1.93 2.00

6s 1/2 0.02 062 0.08 087 014 087

6p 1/2 0.28 017 025 024 033 0.26
3/2 -0.06 0.02 0.09

charge 1.07 2.10 094 121 0.75 096

Xt s 1/2 1.97 203 197 203 196 2.02
p 1/2 548 181 542 182 532 185

3/2 3.60 3.52 3.42
d 3/2 0.08 022 0.07 0.05 0.09 0.04
5/2 0.29 0.08 0.07
s* 1/2 0.22 0.21 0.15

charge -0.55 -1.16 -0.48 -0.70 -0.38 -0.55

X* s 1/2 1.98 2.03 199 201 197 200
p 1/2 568 1.88 564 1.87 5.59 1.92

3/2 3.68 3.56 3.48
d 3/2 0.02 0.08 0.01 0.04 0.02 0.05
5/2 0.12 0.06 0.06
s* 1/2 001 0.09 0.01 0.08 0.06

charge -0.68 -0.87 -0.70 -0.61 -0.55 -0.56
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Table VII - Comparison of symmetry type and gap (eV) between valence and conduction bands for

[WeX5X8)%~ clusters, together with experimental emission and absorption bands.

Species Method HOMO LUMO VB-CB Gap

Chloride
NR® tou €y 2.7
R? Y8u V8u,Yéu 2.8
absorption® 2.5
emission? 1.83
Bromide
NR tou toy 2.1
R 789 V7u 2.7
emission 1.85
lodide
NR tig toy 2.0
R 8¢ Yru 1.1
emission 2.05

a) Gap=HOMO-LUMO energy.

b) HOMO and LUMO lie within VB, gap=VB peak to CB peak, see text.
¢) Absorption edge of (BusN)>MogCli4 in PMMC.

d) Emission band maximum.

e) Degenerate levels.
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Table VIII - Mulliken populations and net atomic charges in cluster models of annite. Si, and Fe,

indicate atoms in groups at periphery of cluster.

[RO4(OH)2] [R(S14014)(OH)3]

[RO4] [R(SiFe)304]

R=Fe R=Al R=Si
Cluster
charge -8.0 -12.0 -5.0 +13.0 -4.0 +14.0
3d 6.00 5.98 3s 0.04 0.01 0.21 0.22
R 4s 0.13 0.06 3p 0.12 0.08 0.43 0.45
4p 0.10 0.06 +2.84 +2.01 +3.36 +3.33
+1.77 +1.90
On 2s 1.94 1.95
2p 5.70 5.84
-1.64 -1.79
Oro 2s 2.00 1.98 1.95 1.96 1.90
2p 5.93 5.81 5.88 .69 5.87 5.72
-1.93 -1.76 -1.86 -1.64 -1.83 -1.62
OTT 2s 1.97 1.94
2p 5.83 5.98 5.42 5.87 5.54
-1.79 -1.98 -1.39 - -1.48
H 1s 0.38 0.22
+0.62 +0.78
Sip 3s 0.20 .61 0.48
3p 0.50 0.18 0.13
+3.30 +3.31 +3.39
Fe, 3d 5.44 5.49
4s 0.49 0.26
4p 0.08 0.05
+1.99 +2.20
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Table IX — Charge density p.(0) at the nucleus and Isomer Shift §, Electric Field Gradient tensor,

contact spin density p,(0), Magnetic Dipolar Field tensor, and net magnetic field Hp at iron site in

annite. Results are given for clusters containing only first, and first plus second coordination shells

about iron. Principal values and directions of principal axes (in parentheses) are given for EFG and

dipolar field. The 37Fe nuclear quadrupole moment is taken as 0.16 barn [91].

FeO,4(OH), Fe(Si4014)(OH),
PC(O)G
3s shallow core 140.53 140.02
valence 1.66 1.90
142.19 141.92
4s valence 0.50 0.41
TOTAL 142.69 142.33
§(mm/s)® +1.15 +1.23
EFG tensor(ag?)
Ve +1.10 -0.01
(1.0,0.0,0.0) (0.0,1.0,0.0)
Vi  +174 -2.35
(0.0,1.0,0.0) (0.0,0.0,1.0)
V.. -2.84 +2.36
(0.0,0.0,1.0) (1.0,0.0,0.0)
n 0.23 0.99
AEQ(mm/s) -4.59 +3.81
Ps(o)a
core -1.59 -1.60
shallow core +0.77 +0.77
valence +0.04 40.14
TOTAL -0.78 -0.69
Hp tensor (a;3) M. +1.15 -0.13
(1.0,0.0,0.0) (0.0,1.0,0.0)
My, +1.75 -2.37
(0.0,1.0,0.0) (0.0,0.0,1.0)
M., -2.89 +2.48
(0.0,0.0,1.0) (1.0,0.0,0.0)
H,.(kOe) -411 -362
Hp (kOe) -181 +151
Hp(kOe) -592 211

%In units of aga. YRelated to « iron.
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