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ABSTRACT

In the present note we suggest a stochastization procedure for the spin-2 field using the
Quasi-Maxwellian formulation. Such scheme is completely analogous of the stochastic
quantization of the electromagnetic field. The present approach is free of the gauge
difficulties that appear in the conventional geometric Einstein variables.
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1 Introduction

Quantum systems described by the Schrédinger equation allow a stochastic interpretation.
This remarkable result, due to Nelson [1, 2], provided the grounds for several stochastic
approaches in quantum field theory. Among these, of particular interest is the stochastic
formulation for the electromagnetic field proposed by Guerra and Loffredo[3], who ob-
tained stochastic equations for the classical fields E(z,t) and B(z,t) in the case of an
Euclidean space. The important lesson to be learned from this advance is that one can
now consider the development of alternative methods for quantizing classical fields. In
the present note we will suggest a stochastization procedure for the gravitational field (ex-
pressed in the so-called Quasi-Maxwellian formulation), which is closely related to such
stochastic “quantization” of the electromagnetic field. For the sake of simplicity, we will
consider the free field case, and work within the weak field approximation. In the present
analysis no further care is given to the Riemannian nature of space-time geometry, be-
cause in this approximation one may as well consider an Euclidean 3-space when making
use of the 3-+1 separation.

2 Quasi-Maxwellian Equations in 3 + 1 Dimensions

For the purposes of the present paper it is convenient to employ the so-called Quasi-
Maxwellian (QM) representation of Einstein’s Theory of General Relativity (GR). The
main reason for this choiceis the striking structural similarity between the QM formulation
and Maxwell’s electrodynamics. We will explore here precisely this similarity and take
the stochastic treatment of electrodynamics as a paradigm in order to achieve the formal
stochastization of the gravitational field.

In the QM approach, the basic quantities that describe the gravitational field are the
electric and magnetic parts of the Weyl conformal tensor. They are defined in a standard
way by:

E;u/ = Wauﬁuvavﬁ (1)
and
BMV = ;uﬁuvavﬁ (2)

with respect to a field of arbitrary observers endowed with (unit) 4-velocities V*. This
observer defines an inertial system. The rest space associated to an inertial system defined
by a given observer constitutes a 3-dimensional hypersurface H. As usual, the projection
operation on hypersurface H is accomplished by means of the quantity 4,,, defined as:

ho,ﬁ = Ggap — Van
Indeed, from this definition it follows that
hapgV? = 0.

We will assume here that the QM formulation is the fundamental framework for the
description of gravitation and will also limit ourselves to the weak field approximation.
In this case the QM equations take the form:
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E¥;=0 (3)

B9, =0 (4)
EY = —%B{fm pt mt (5)
BY — lElkm hf emit (6)

Following the standard procedure suggested by Guerra and Loffredo, let us define a
complete real orthonormal basis of 3-dimensional tensor spherical harmonics F}; W(z) (n=

0,1,2,...). By construction, the FZ(Jn)(x) are eigenfunctions of the Laplaman operator
v? = ¢¥ ; V; and obey a tranversality condition (3, 4). They therefore satisfy the
following relations:

/Fij (@ )F(tn')( z) = bnmt (7)
5 HP ) = e - iz ®

F(zi)( ) =0 (9)
M)\ = n)
v’ F{(2) = K F(a) (10)
where

§h(z —y) = (2m)~° / explip.(z — y)[6i; — |p| " pip;]d°p.

Introducing the canonical co-ordinates (pn(t), ¢.(t)) and expanding the electric and
magnetic parts E;j(z,t) and B;;j(z,t) of the Weyl tensor in terms of the basis Fj;(z) we
obtain:

E;j(z,t) ZF(”) (11)

BY(z,1) Z FEL REe™ g, (1) (12)
Substituting the above expansion in the QM equations (5, 6) we find that

gn(t) = pa(?) (13)

and
2

in(0) + Sault) = 0 (14)

As one would expect these equations are nothing but the equations of motion of n
independent harmonic oscilators with co-ordinates g,(t).
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3 Stochastic Quantization

Let us now proceed to establish the stochastic quantization of the gravitational field. In
order to follow the same procedure as in the electrodynamical case we need first to present
some useful definitions.

We start by promoting each of the co-ordinates ¢,(t) to a random Markov process, for
which the following stochastic differential equations are postulated:

dgn(t) = vy (q,1)dt + dwn(t) (15)

where v} = D%[q,(t)]. The quantity (D*) is the so-called forward time derivative and
dwy,(t) are the differentials of Wiener processes for each independent g(t). According
to the definition of a Wiener process, the mean and co-variance of dw, are given in a
standard way by:

Eldw,(t)] =0

and

E[dwn(t)dwn:(t)] =V 5nnldt

The operator FE[] represents the expectation value and v is the so-called diffusion
parameter (which can be associated to Planck’s constant ).
If we define the acceleration §, in Nelson’s way [1], i.e.,

in = 5(D+ D+ D_D.)[an (16)

and use (15), the equation (14) becomes

Difoy] 4 D-[of] + % an(t) = 0 (1)

where, correspondly, v, = D7 [g.(t)]. Operator D~ is defined as the backward time
derivative. These are the stochastic equations for n independent harmonic oscilators, as
it should.

We are now prepared to apply the method of stochastic quantization of eletromagnetic
fields outlined above to the Quasi-Maxwellian linear form of Einstein’s theory of gravity.
In this vein, the application of the method yields the promotion of the magnetic part B;;
to a Markov process, while the eletric part splits into a pair of functions E;‘J:-(Bij;:c,t).
Substituting the equation (15) in the expansions of both E;; and B;; (eqs. 11 and 12) we
obtain:

1
dBij(:E,t) = §El-ci;,m(Bij; :l},t) hz Cj)"d + dVV,’j((E,t) (18)
1
Dy Bij(z,t) = §E,f1,m(B,-j;x,t) h; )™ (19)

D.EY + D_EY = —Bf,, h{{e)™ (20)
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These results give us the stochastic counterpart of the QM equations, in which the
new, stochastized fields are given by:

,]:vt Z
Wii(z,t) = ZF"dwn

E (B,],.’Et _k2ZFlkmhfz ?)n i(qat)

4 Conclusion

In this paper we presented a new approach aimed at the stochastic quantization of the
weak gravitational field by means of the Quasi-Maxwellian formulation. As one should
expect, the result thus obtained is strongly reminiscent of Guerra & Loffredo’s deriva-
tion for the eletromagnetic field case. The reason of this analogy is that the canonical
quantization of spin-2 fields is completely similar to the quantization of spin-1 fields in
this formulation; indeed, such quantization has been carried out both in terms of Fierz’s
variables and in the linear case [5]. However, in canonical quantization one deals with two
spin-2 fields and consequently some additional condition is required to eliminate one of
them, the root of this difficulty being the need of defining a potential in order to accom-
plish the quantization procedure. Here, we have the very definite advantage of quantizing
the fields directly, through the equations of motion; hence, the two field problem is absent.
Of course, there remains the question of determining whether, in the present formalism,
all the information available with the application of the canonic quantization method can
also be obtained.

Other advantage of the stochastic approach, according to Davidson[4], is that the
use of the stochastic formulation to quantize the gravitational field may reinforce the
geometrical interpretation of quantum gravity. Unfortunately, this aspect of the problem
couldn’t be analysed here, due to the option of applying the Quasi-Maxwell formulation.
On the other hand, in the present approach one is completely free of the gauge difficulties
that appear in connection with conventional geometric Einstein variables.
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