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Molecular orbitals calculations were performed for clusters rep
resenting the CaF,, Ser and Ban ionic prystals. The discrete
variational methbd was‘employed, with the Xo approximation for the
" exchange interaction; a detailed investigation of different models
for embedding the clusters in the sclids led to a realistic de-
scription of the effect 6f the neighbour ions in the infinite crys-
tal. The results obtained were used to interpret optical and photo

electron data reported in the literature. In the case of Can,cog

parisons were made with existing band structure calculations.



I. INTRODUCTION

The alkaline earth fluorides CaF,, SrF, and BaF, are ionic crys-
tals presenting the fluorite structure, and are insulators charac-
terized by a large energf gap between the valence states and the
empty conduction band.‘Optical propertieé were measured in the UV

region!—%; ultraviolet and X-ray photoelectron spectroscopy studies

were also reporteds’ﬁ as well as characteristic electron energy
losses®™!?, The electronic spectra of these crystals are complex,
presenting structure due to interband and excitonic transitions.

Other motivations for the increasing interest in these compounds
in recent years are their utilization as window materials in. optical
experiments’! and the construction of crystal laser systems of rare
earth ions in alkaline earth fluoride hosts'?. Finally, these com-
pounds find extensive use as host materials for investigating optical
and magnetic properties of impurity ions {in particular, rare earth
ions!®), vacancies and other defects'‘.

We were interested in a theoretical investigation of the funda-
mental electronic properties of CaF,, SrF, and BaF, which is needed
for a better understanding of the experimental data. For this purpose,
we employed a cluster model to calculate the electronic structure
of these compounds; in this model, translation symmetry is not con
sidered and only a limited number of atoms is included. Cluster
models have been employed in investigating electronic properties of
different periodic systems!®718;:  they are obviously more
limited than complete band structure caléulations, but they also
'provide a great deal of gqualitative and guantitative information,

having the advantage of a much smaller computational effort. In

the pres~nt case, band calculations are rather complicated .due to



the presence of three atoms per unit cell, and were repofted only
for CaF,'%~?'. Our purpose was then to make cluster calculations for this
ocompound, and compare - with both the experimental data and band cal-
culations; in addition, we also obtained the electronic structure
of SrF, and BaF,, for which the experimental data is also rich but
no band calculations are available. The present papexr is organized
in the following manner: in section II is describgd the self-con~
sistent Hartree- -~ Fock ~ Slater (HFS) method that was employed in
calculating the one-~electron energies and eigenfunctions for the
cluster; special attention will be givea to the external environ-
ment of the cluster, since this has to be adequately described far
a meaningful simulatioﬁ of the infinite cristal. In section III
we present our results and discuss them together with the experi-
mental data. For CaF,, we also make comparisons with the band

structure calculations reported. In section IV we draw our con~

clusions.

IY.THEORETICAL MODEL

The one-electron description of a crystalline solid may be a-
chieved in two manners. The first preserves the translational sym
metry of the crystal, associating Bloch functions to the electrons.
An alternative to this procedure which is by far less ~ laborious
computationally is to consider a cluster of atoms taken from the
crystal and perform Molecular Orbital(Mb) calculations - tbchﬂﬁ
the one—electron energies and eigenfunctions. The environment of

the cluster in the solid is taken into account in an approximate



manner by the inclusion of an appropriate field in which‘thecﬂxﬁter
is embedded. One must have in mind the limitations of this second
model, which does not take into account the periodicity of the crys
tal; however, it may be used to understand many properties and, at
the present stage, is in most cases the qnly model applicable to
impurities, localized excitations, vacancies and amorfous solids.
In this section the description of the calculations will be de~
vided in three parts. First we give the details of the  Molecular
Orbitals variational calculation for the cluster. Then we describe
the basis sets employed in the expansion of the MOs. Finally, we
describe the several approximations that were considered in the

construction of the potential field due to the external atoms in

the solid.

IT. 1 - The discrete variational method and HFS Halmitonian

The discrete variational wmethod (DVM)?? has been employed guite
satisfactorily to describe electronic and magnetic properties of
solids in the cluster approximation!®~!7. We give here only a  brief
summary of its main features and refer to the original papers for

further details.

. ’ ->
To obtain the cluster one-electron wave functions wi(r), an error

functional is defined:
- -+ '

and a linear combination of atcmic orbitals (ICA0) is used to  describe




each MO ¢, (¥):

-> - -> .
by () —E;Xj(r)cji (2)
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where Xj are numerical Hartree-Fock-~-Slater?® atomic orbitals cen-

tered at the atomic sites. One may take advantage of the symmetry
properties of the cluster and use a basis of symmetry-adapted atomic
orbitals.

If a weighted average of fi(?) is minimized on a grid of sample
points, the chaice of weights equal to the volume :per point is

shown to result in secular equations formally identical to those

given by the Rayleigh-Ritz variational method:

(3)

em

However, the total energy does not represent a minimum since ac-
tﬁally the matrix elements are not integrals but sums over sample

points. As the number of points increases, the sums approach the

integral values and we tend towards the standard variational method., |
The Halmitonian employed is a model Halmitonian, in which  both

Coulomb and exchange interactions are given by approximations in-

tended to reduce the computational effort.
We have then:

H:--;.
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(4)
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where
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v u(;) is the local Slater exchange potential?®

g, - '
v, (B = - 30 {(3/8w}p(r)} (6)

The molecular charge density is given by:
"9"____ * ,r - '
o (¥) E}iwi(r)¢i(r) (7

where ny is the occupation of MO wi(f). The Coulomb potential

melig)isapproximated by expanding p\r) in terms of radial atomic

orbital densities centered on each nucleus?‘:

o(F) = q§£ I iRt 12 | o (8)

where ?gg is the population of the nf .shell of atom g. We have

used a variation of the standard Mulliken populations, by dividing

the overlap charge in such a way that the atom with the largest

eigenvector gets the largex contribution!’. Within ﬂﬁaaggxmﬁmnﬁgn

given by Eq. 8, the populations sz define the charge destribution,

and so they are iterated untill a self-consistent  potential is

obtained.

This model Coulomb potential was tested in severai small molecules

and cave satisfuctory results of ionization energies, compared to

Hartree-Fock or experimental values?*



For the present calculations, all electrons of the cluster atoms
were considered. In the evaluation of the integrals in Egqg. 3, the
statistical Diophantine method was employed??. For the variational
calculation of CaF, and SrF,, a number of points equal to 1,200was
found to be satisfactory; for BaF,, 2,400 points were employed. All
the electrons of the cluster atoms were included in the calculations.

Energy eigenvalue convergence was pursued to the 3rd decimal in

atomic units.

II. 2 - Choice of basis sets

LCAOC - MO cluster methods use a limited, incomplete, basis set
constituted of AO-like functions, centered on nuclear sites, in
order to formm cluster eigenfunctions. The results of an actual calcu-
lation will then depend on the choice of the set and the accuracy
of the description will be related to how well the AO-like func-
tions are able to simulate the real electronic charge density a-
round each nucleus of the physical system.

For the present study a detailed analysis of different choices of
basis sets was performed. All basis sets were obtained from atomic
self-consistent HFS numerical calculations?® for the ions F-, Ca+2,

+ 2
Sr*? and Ba'’.

A spherical potential well of depth V and radius R was added to

the atomic potential Vat' We have then, for the potential of atom

qs:

Vgt(r) =V, (x) +V, for r< R




or ‘ (9)

9 =
Vat(r) Vat(r), for r > R

This potential well, besides producing localized continuum states,
can be used to reduce the radial extensionof more diffuse atomic functions,
decreasing the overlap between atomic orbitals centered in difer -
ente nuclei; this may result in a variational basis more adeduate
for the description of the chemical bonds. In the present case,
the basis set was defined using the following criteria: R was chosen
to be the ionic radii of the ions25, and V for F~ was made equal to
the Madelung potential for an electron at the F site. For the cat
ions, the Madelung energy is positive; however, a negative V was
used to simulate the Pauli repulsion between electrons in neighbour
sites, in order to get reasonable values of the energy gaps between the
various bands for CaF,. Por Sr+2 and Ba*z, this same value was
used. This data is summarized in table I.

The following basis functions were obtained in the Amanner just
described: F (ls?,2s2,2p®); Ca+2(182,252,2p5,352,3p6,3d°,4s°,4p°);-
sr'’([kr]ad’,5s°,5p%) ; Ba'?([xe]5d,6s°,6p%) . The use of the wells
with the parameters in table I produces atomic charge densities
that are contracted, in the mamner which is shown by X-Ray diffraction
to exist around the ion sites in ionic crystals..The'vaxnm.d,s;and

p orbitals of the cations describe realistic conduction bands, as

shall be seen later.



II. 3 - Boundary Conditions

In this section we will describe four different ways of including
the field due to exterior atoms inside the finite-size cluster re~
gion, to simulate the effect of the infinite crystal.

All these boundary conditions will have as a common feature the
effect of neutralizing the electrostatic charge of the ionic cluster,

as it is necessary if the neutrality of the whole crystal is to be

preserved in the model calculation.

a. Watson charged sphere boundary condition

Based on Watson's original idea?®, this is tmésimplest way of em-
bedding in a crystal an ionic cluster of charge Q. It consists of
adding to the cluster potential the potential of a uniformly
changed (-Q) spherical surface which defines the so-called "Watson
Sphere" and limits the cluster region. The added one-electron

potential is then (in a.u.):

2 = 2 |
Ywlt) =g TSRy
(10)

I)Rw

V. (%)

R jo

where R, is the "Watson Sphere" radius. R, is defined as the small
est radius such that the Watson Sphere surface is tangent to spheres

associated to the most éxternal ions of the cluster, the radii of



which are the ionic radii.

This boundary condition, widely used in Multiple Scattering Xo (MSXp) calcula
tions??727 similates very poorly the infinite crystal outside the cluster. The
one-electron energy receives a constant omtribution in the cluster region

which is thus unable to reproduce real anisotropies in this region.

b. Muffin-tin boundary condition

This boundary condition, used in MSXo calculations of perfect and
defective alkali-halide crystals by Yu?® and of perfect alkaline-earth

fluoride crystals by Bielschowsky and Maffeo?’, intends to incorporate
some anisotropic features of the field inside the cluster, due to
the external infinite crystal.

One considers the crystal space divided in three regions: region Lor
"atomic region", constituted of non-overlapping spheres centered on
cluster nuclei with radii proportional to the corresponding lonic
radii; region II, or "interatomic region", defined by the space be-
tween the spheres of region I, inside the cluster region; region III,
or "outer region" , exterior to the cluster. The cluster is limited
by a sphere, tangent to the most external spheres of the atomic region.

Considering now that. the region of the crystal external to the clus
ter is simulated by an infinite set of non-overlapping spheres, centered at the e~
quilibrium ion sites, each one enclosing a total charge equal to the charge of the
ion, the boundary condition is defined by an ensemble {ei; ey’ ecut} of parameters
such that: ' '

(1) e; represents the one-electron potemtial energy of the interéction between an
electron inside the % sphere (of volume v,) of the atomic region, and  the
crystal outside the cluster; e, is calculated, gsj._ng the Madelung energies, to

be the spherical average of the potential energy of the interaction between



(i1}

(iii)
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such electron and the infinite set of non-overlapping spheres
in region III.

erN represents the one-electron potential energy of the inter
action between the electron, when it is placed inside the
interatomic region (of volume VIN),.and the region of the crys-

tal outside the cluster; e is calculated from the volume

IN
average of the potential energy inside de cluster, giving:

ey = 3 | (11)

where E:includes all spheres of the atomic region, v, is :the
i

volume of the “cluster sphere" and'eo is the value of the
potential energy of the interaction between an electron at the
center of the cluster and the infinite get of non-overlapping
spheres in Region III.

vl
Cout = Tp 7 representing the one~electron potential energy
in the outer region, is obtained by requiring continuity  of

the crystal potential on the surface of the cluster sphere

(of radius Rc).

When the whole cluster is considered this boundary condition in-

corporates some of the anisotropy of the onewelectron interaction

with the external crystal field. Nevertheless, inside each sphere

of the atomic region, and inside the interatomic region, constant

values for this interaction are used, and in the outer region the

interaction is made spherically symmetric.
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c. Point - Charges Boundary Condition

In order to achieve a better description of anisotropic effects
inside the cluster, related to the interaction between an electron
and the ions outside the cluster, one replaces a finite number N
of these outer ions by point charges and évaluates the resulting

one-electron potential energy by

95

(12)

M=

VP(r) = -

> >
i=1 [r-ril

where T is the position-vector of an electron and q; is the point
charge at the site ;i' equal to the charge of the ion at that site.
To obtain a sufficiently realistic description for a reasonable
value of N, the finite set of point-charges must possess the fol-
lowing properties:
(i) its symmetry group should contain all the elements of the
symmetry group of the cluster;
(ii) to include. all the:sions nearest-neighbours of the cluster,
(iii) to provide a neutral system when considered together with the
cluster ions;
(iv) to provide good‘approximate values for the Madelung energies
at the ions sites inside the cluster.
The system constitued by the cluster and the set of point-charges .
defines a large symmetric cell which allows the reproduction of the
whole crystal structure through appropriate translation operations.

The value a; of a point-charge at the surface of the cell c¢an be

¢valuated according to

9 = q/n _ . (13)



where qi is the charge of the ion and n is the number of cells
sharing this charge. It is clear that for all "intermal" point-charges
the choice should be q; = qi. This garantees the electrostatic neu
trality of the system but not always property (iv). To achieve simul
taneously properties (iii) and (iv) one may adjust the values a9

of subsets of symmetry-equivalent point-charges at the surface of

the cell.

d. Ion - Size Boundary Condition

It is perfectly conceivable that the preceeding boundary condition
provides a very good description for the effect inside the cluster
due to ions outside the cluster which do not belong to the first
shell near the cluster boundary. For these closest ions, ion-size
effects may be relevant and the point-charges approximation may be
unreasonable. In order to account for this feature it is possible
to oconsider an electronic chargedistribution around each nucleus of this
shell of first neighbours, and evaluate the one-electron potential
energy of the interaction (Coulomb and exchange) between a .cluster
electron and each finite-size ion. The proper electronic distributions
may be obtained from separate self-consitent atomic calculations for
the external neighbour ions!®. The actual procedure is to sum the charge
density due to these external ions to the charge density of the cluster,
at each point of the integration grid described in Section II.l; this
total charge density will provide the self—cbnsistent cluster potentiai.

R Some care must be excercised when this boundary condition is
employed. In fact, previous studies of allbys and impurities in

alloys'®’3° showed that is does not represent any improvement




on the point-charge boundary condition unless the Pauli Exclusion
Principle is taken into account. The reason follows from the fact
that the finite-size fixed charge distributions which simulate the
neighbour ions define regions around the ions nuclei characterized
by a very electron-attractive potential. This potential tends to "pull" cluster
electrons into these regions and the Pauii Exclusion Principle 1is
then seriously violated. If we wish to conserve the simplicity of
the description of these ions it is impossible to use orbital ortho
gonization procedures to improve the situation. An alternative procedure.1 5
which preserves such simplicity, would then consist of establishing

an energy penalty for the cluster electron which approaches the external

neighbour ions beyond a certain distance. In the actual calculations,
this is achieved as follows: if a cluster electron finds itself at
position ¥ within a radiﬁs RF measured from the nucleus of the
external ion considered, and if the one-electron total potential
energy at A is less than a value VF' then the total one~electron

potential energy is made equal to VF'

III. RESULTS AND DISCUSSION

In this section we will present and discuss the results of the

present study. For CaF, all boundary conditions described in Section II.3

were applied, whereas for SrF, and Ban the Watson conditionwas not

considered.

For all crystals the cluster considered is represented in Fig. 1;it

is constituted of a central F; ion, the first catio'nic shell of four

+2 . +2 +2 +2 .
X ions (Ca ,Sr or Ba ) and the second shell of six external

-

FeX ions, having Td local symmetry. The cluster eigenfunctions are
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thus classified according to the irreducible representations of this
group.

For calcium fluoride the Watson Sphere boundary condition was tested, with
charge Qw = - 1 to neutralize the cluster, and Rw = 7,.3%a.u.

Table II shows the parameters used with the muffin-tin condition
RF, 3X+Z and Rc are the fluorine, cation and cluster muffin-tin
spheres radii, respectively, chosen as described in Section II.3.

Table II also displays the values of e -, e _ ¢ e 43, and e
Fq F X IN

ex out

defined in Section II.3.

The point-charge boundary condition was applied considering a fi
nite set of 440 point charges surronding the cluster and defining
a cube containing seven anionic planes. The boundaries of this cube
have only negative charges: eight charges q, at the vertices, 60
charges 9e on the edges and 150 charges de On the faces. If év =
- 1/8, 9, = = 1/4 and e = - 1/2 (qx+2 = + 2 and Qp- = = 1 in the
interior of the cube), one assures the eletrostatic neutrality of
the system, but not good approximations for the values of the
Madelung energies at the ciuster ionic sites. We have then adjusted
the values of 9 and q¢ in order to obtain exact eletrostatic neu-
trality, as well as the exact value of the Madelung energy at the
central FE site. From the data in table III one may assess the qual
ity of this boundary condition, by examining the percentage devi-
ation between the exact values of the Madelung energies at the
cationic and external F;x sites and those obtained with the above
approximation kﬁfg). It is worthwhile mentioning that when these
;wo criteria are used (eletrostatic neutrality and exact Madelung

energy at the F; site), the results of the calculations are very

nearly independent of the finite set size; this pleasant feature



is not achieved otherwise.

The "ion-size" boundary condition was applied as described in
Section II.3; 9 shells of neighbours around the cluster were oconsidered,
with spherical charge densities around each ion. This extended set was
embedded in a set of point-~charges, such. that the total number of
ions considered (cluster, exterior ions and point-charges) formed
a cube of the same size as described for the point-charge boundary
condition, such that the neutrality of the system is preserved and
the Madelung energy of the central ion F; is exact. Since the Pauli
exclusion principle will be most seriously violated when a cluster
electron penetrates the region around an external néighbour atom
inside a sphere of radius approximatly egual to its ionic radius,
R, was made equal to the ionic radius of F .

The value used for VF was 0.8Ry in all cases; for values of RF
equal to the ionic radii, we could verify that the results are
quite insensitive to small variations of VF‘ When VF = 0.8Ry, good
agreement with experimental values is obtained for the valence-con
duction band gap. | o

In table IV are given the atomic values of the exchange parameter
o in Eq. 6, as derived by Schwarz®!. For the cluster calculations,
a weighted mean of the atomic values was employed, and these are

also given in table IV.
III. 1 - Energy levels
The one-electron energy levels of the CaF, cluster are shown in

Fig. II for the occupied orbitals and Fig. III for the orbitals

corresponding to the empty conduction band. For boundary cohdition



II. 3-a (Watson charged sphere), the occupied levels cecrresponding
to Ca+2(3p) and F (2s) are scrambled; moreover, the energy order

Ca+2(3p) > F (2s) is inverted , since the orbitals 4e, 9t , and 9al

have mainly F (2s) character, by aMulliken-type population analysis.
Another unpleasant feature of this calculation is the large gap

between the energies of the F (2p) orbital 10t,, mainly localized

on the central F~ ion (92%), and the rest of the F (2p) levels

which form the valence band. The employment of boundary condition

ITI. 3-b (muffin-tin) in calculation (k) causes the interchange

of F (2s) and Ca+2(3p) orbital energies, resulting in separate sets
of levels in the order F (2s) < Ca *(3p). As for central ion
F (2p) energy level (lOtz), its energy difference  from the
corresponding levels located mainly at the reripherical
F dons decreased considerably; also significant is ’the
change in population of 10t,, which is now only 70% located on the
central F , as compared to 92% for calculation {(a). The Watson Sphere

model thus proves itself ‘inadeguate to the proper desCription' of

ionic crystals such as CaF,.

Boundary conditions II. 3-c¢ {point-charges) and II. 3~d {"don=
size"”) used in calculations (c¢) and (d) do not represent great modi-
fications compared to the muffin-tin exterior condition: however
the energy gap between the valence and conduction bands compare bet
ter with the experimental value (as shall be seen later) for these
last two calculations. The 10t, F (2p) level presents even less
central ion character in calculations (c) (62%) and (d) (64%). It should
pe borne in mind, however, that a finite cluster calculation will

always produce such inequivalences between orbitals centered mainly

at central or at peripherical atoms of the cluster, since this is
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an artifact of the model.

For calculation (d), which represents the most realistic model
for embedding the cluster, we have, as shown in Fig. II, the
upper occupie& levels forming narrow bands in the order Ca+2{33) <
F (2s) < ca” (39; < F (2p), and thus retaining much of the free-ion
character. As for the empty levels (Fig. 111}, they are all cen-
tered mainly on the cations. The first group of levels (St - létg
have mainly 3d character; the higher level 12a, has 4s character,
17t, and the group of near-lying levels 13a,, 18t, and 8e nmainly
dp. Flnally, the uppermost levels 7t, and 19t, are mainly constituted
of ca’ (&ﬂ The energy order 3d < 4g < 4p is the same as found for

2
the Ca+ free ion?

The energy levels schemes for SrF, (Pigs. IV and V) and Ba¥F, (Figs.
VI and VII) present similar features to those of CaF,. For these two
cases the Watson Sphere model was abandoned. The same order of oc-
cupied "bands" is obtained. For calculation (c¢), in both cases, the
main difference from CaF, for the empty levels which form the con-
duction band is the appéarence of a level with mainly "s" character
at the bottom of this band. For SrF,, this is the l4a, level (48%

(Ss), 15% srt (Sp), 14% srt (4d)‘ and for BaF, the l7a level
{37% Ba 2(6s), 24% Ba” (sp), 18% Ba” ’5&))‘ The "@"-~like levels
come next in energy, being closely spaced: finally, the group of
three levels of $-p character (lle, 24t2, lGal of Sr¥,, and 30t,,
1l4e, 19a1 of BaF,) and the very antibonding levels of p character.

The charges obﬁained on the central anion (? ), peripherical an-
ion (F ) and cation (X ) for Car,, Ser and BaF, are given in
‘table V. For the Watson Sphere embedding model, the ionicity of

CaF, is lowest. For the more realistic boundary models, all three

compounds shown a very high ionicity, which is the same for CaF,



and SrF,, and slightly lower for BaF,. This is probably due the fact

2 a1
that the larger ion Ba' favors slightly more covalent bonds.

III. 2 - Binding energies and photoelectron spectroscopy

UPS and XPS photoelectron spectra were obtained for CaF,, SrF,
and BaF,®+77%3, The resulting binding energies may be compared to
the theoretical cluster energy levels. In table VI are given the ex-
perimental results (relative to the F (2p) peak), and the calculated
values for comparison. The calculated values are defined from the
center of gravity of the corresponding set of one-electron levels
in the ground state calculation.

The accuracy of this estimation could be improved, within the
context of the HFS model, by taking arithmetic means of several
transition-state calculation®® eigenvalues corresponding to the
ionization of the levels associated to the bands. Nevertheless,
this would require a great amount of computational effort without
a sigrnificant improvement of the quantitative results since the
inaccuracies involved in the evaluation of ionization énergies
through ground-state calculation eigenvalues must be largely cancel
led when energy differences are taken. Moreover, as the association
between the levels obtained from cluster calculationz and band
levels has not a precise theoretical formulation, the increased com~
putational effort would lack theoretical consistency.

From table VIit is seen that the accord betﬁ&een experiment and theo-
ry is fairly good, and that the three embedding models, muffin~tin
(MT), poinﬁ-charges (PC) and ion-size {18}, give similar <results

regarding these interband energy differences. For BaF,, the- ex-



perimental Ba+2(5p) peak is split by spin-orbit coupling. This
splitting® is as large as 2 eV, but evidently cannot be obtained theo-
retically at this level of approximation. The corresponding spin-

orbit splitting for SrF2 and CaF_ 1s negligible.

III. 3 - Optical properties

Rubloff® performed a detailed study of the optical properties of
CaF,, SxF, and Ban crystals, using synchrotron radiation as a light
source to obtain reflectance spectra. The main features of these
spectra are reproduced in tables VII, VIII and IX for Can, Serand
BaF, respectively. Folowing Rubloff's interpretation, the section
of the spectra which is reproduced in the tables represents the
valence electronic transitions, which end with the onset of the core
transitions (from the cation p band), preceded by the first core
exciton.

The interpretation of the optical data in our clustef model is
made by associating the experimental peaks and shoulders to tran
sitions between occupied levels from the valence band (F—(Zp)) to
the empty levels of the conduction band. The energies of these tran-
sitions were taken as the energy differences between the corresponding
elgenvalues 1in the ground state calculations. Improved transition
energies may be obtained in the HFS model with self-consistent tran
sition~-state calculations in which one half electron is promoted from
the lower energy orbital to the excited orbital involved??3. This
was done for the three cozppounds only to obtain the energy gap between
valence and conduction bands (identified as the T =+ Flband edge

15

in the spectra); for the other transitions, only one-electron
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ca™?(3p) (27.0eV) > sr¥?(4p) (22.9ev) > Ba' (5p) (17.5eV).

Our interpretation of the valence optical spectra of CaF, may be
compared to other assignments obtained from band structure calcu-
lations; for SrF2 and BaF,, no such calculations are available in
the literature. The recent band structure calculation?® of Heaton
and Lin for CaF, employes the tight-binding method with & basis
set extended with single~-Gaussian Bloch sums to represent Ca+2(3d),
(4s) and (4p) states. In their Joint Density of States analysis of
the valence portion of the reflectance spectrum of Rubloff, they
also assign the peaks around l4evV to F~(2p) * Ca+2(3d)—type tran-
sitions; however, they do not account for the higher energy peaks
(>15.5eV) in this region, which in our interpretation are due to
transitions to Ca+2(4s) and (4p)-type levels.

It should be mentioned that the available band structure calcu-

1%2..21

lations predict for the lowest energy transition (I > T ) g

15 1

Ca+2(4s)—type excited state, which is not in accord with the pre-
diction of our cluster model. In addition, certain features  of
band structure calculations are beyond the reach of our molecular
orbitals calculations; forexample, the structure in the optical spectrum

that might be derived from the existence of two spatially different

types of F  ions in the CaF, unit cell®!’°® cannot be described by

our method.
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IV. CONCLUSIONS

We have performed molecular orbitals calculations for clusters
representing the CaFZ, Ser and BaF, crystals., Several different
“manners of taking into account the field of the external ions in the
crystal have been tested. The results show that this model, when
used with a reasonable scheme for embedding the cluster in the
solid, gives a coherent ' interpretation of both ' photoelectron and
optical data. This is particulary —seful in the case of Ser and

BaFZ, for which band structure calculations are still lacking.
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FIGURE CAPTIONS

Figure I

Cluster for the variational calculations of CaF,, SrF, and BaF,.
Figure IT

Self-consistent energy levels scheme for the occupied orbitals
of the CaF, cluster. (a) corresponds to the Watson sphere boundary
condition (IX.3-a); (b) to the muffin~tin boundary condition (II.3-b); (c) to
the point~charges boundary condition (II.3-c); (d) to the "ion-size"
boundary condition (II.3-d).

Scale on the left corresponds to calculation (a); scale on the

right to calculations (b), (¢) and (d4). All calculations were done
with the same basis set, asdecribed in II.2.

Figure III

Conduction levels for the CaF, cluster.Captions as for Fig. II.
Figure IV

Energy level scheme for the occupied orbitals of the SrF, cluster.
(a) corresponds to the muffin-tin boundary condition (II.3-b); (b)

to the point-charge boundary condition (II.3-c); {(c) to the "ion-

size" boundary condition (II.3-d). All calculations were done with
the same basis set, as described in II.2.
Figure V

Conduction levels for the SrF, cluster. Captions as for Fig. IV.
Figure VI

Energy levels for the occupied orbitals of the Ban cluster. (a) corresponds
to the muffin-tin boundary condition (II.3-b); (b) to the point-charge condi-

tion (II.3-¢}; (c¢) to the "ion-size" boundary condition (II.3-d). All calcula
- tions were done with the same basis set, as described in II.2.

Figure VII

Conduction levels for the BaF,cluster. Captions as for Fig. VI.
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TABLE CAPTIONS
Table I

Values of the depth V (in Ry) and radius R {(in a.u) of the wells
used in atomic calculations of F, Ca'?, sr'? and Bat?.
Table IT

Parameters for muffin-~tin boundary condition, in a, and Rydberg

units.

Table IIIX

Percentage deviations between exact Madelung energies at the sites
F;X and X+H of the cluster, and values calculated with a finite set
of exterior ions, when aihstai(qg?%)and non-adjusted values of g
and g, are used for the central ion F;.

Table IV

Values of the parameter a for F(EmF), Ca, Sr and Ba(Eax), as ob-~
tained by Schwarz®'. Also given are the values for the cluster cal
culations (Eac) (see text).

Table V

Charges on the cation (X+?), central anion (F;) and peripherical
anion (F;x) of CaF , SrF? and BaF . (WS) is Watson sphere charge condition
(II.3-a); (MT) is muffin-tin boundary condition (II.3-b); (PC) is

point-charges condition (II.3-c¢) and (IS) is ion-size boundary con

dition (II.3-d).
Table VI

Experimental and theoretical binding energies for CaF,, SxF, and
BaF,, referred to the center of gravity of the F (2p) band. (MT)
refers to the muffin-tin embedding model (II.S-b); (PC) to the point~
charges model (II.3-c); (IS) to the ion-size model (II.3-d).
a} From reference (6).'b) From reference (33). ¢) From reference (7),

measured beiween band thresholds. d) This value was measured from
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TABLE CAPTIONS (cont...)

the middle of the two spin-orbit split 5p (Ba+2) peaks.

Table VII
Optical properties of CaF,. a) From reference (5) (reflactance
spectrum) . b) Transition-state calculation (see reference (23)).

é) The Ca+2(3p) exciton energy determines the onset of transitions
from this band. Theoretical results are for the ion-size boundary con-
dition.
Table VIII

Optical properties of SrFZ. a) From reference (5) (reflectance
spectrum) . b) Transition-~state calculation (see reference 23})). ¢} The
Sr+2(4p) exciton energy determines the onset of transitions from
this band. Theoretical results are for the ion-size boundary con-
dition.
Table IX

Optical properties of BaF,. a) From reference (5) (reflectance
spectrum)}. b} Transition-state calculation (see reference (23)).c) The
Ba+2(5p) exciton energy determines the onset of transitions from

this band. Theoretical results are for the ion-size boundary con-

dition.
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TABLE I
CaF, SrF¥, BaF,
Rp- 2.25 2.25 2.25
R, +2 2.15 2,46 2.84
V- ~-0.80 ~0.74 -0.70
Vet2 ~1.40 -1.40 -1.40
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TABLE II
CaF, SIF, BaF,
Ry 2.25 2.25 2.25
X
R, 7.39 7.71 8.09
ep- 0.46 0.44 0.41
C
ep- 0.26 0.24 0.23
ex
e 4y 0.62 0.58 0.55
X
1N 0.49 0.45 0,42
e 3.62 3.47 3.40
out 7 = =
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TABLE III
.:,. _;."_... e I’_,. .- e ‘.1
X" site |F__ site
‘ |ex
Cr) Ly
1 _ .1 _ 1
CaF
1 adj _ adj _ % | |
qv 8 e =+ 0,117 qf = - 0.654 % 4 0
1 1 1 |
%y § 9% "7 9% =-53 78
SrF | e _ o |
" s
§
z 1 ) ' |
Ay § TP -+0128 &Y =-o0.658 o | o
3
1 .1 _ .1
qV 8 qe - E qf - '2‘ 41 74
BaF
1 dj 4
9y 8 q: 3=+ 0.122 q?dJ = - 0.655 2 0




TABLE IV
L,
uF DLX OLC
CaF, 0.737 0.720 0.730
SIF, 0.737 0.705 0.726
BaF, 0.737 0.690 0.720




TABLE V

CaF, StF, BaF,

(WS) (MI) (PC) (1S) (M1) (PC) (IS) (MT) (BC) (Is)

F -0.88 -0.91 ~0.91 -0.91 -0.91 -0.91 ~0.91 -0.89 ~0.89 -0.88
F_, ~0.88 -0.94 ~0.95 -0.95 ~0.94 -0.95 ~0.95 -0.93 -0.93 -0.93
X' +1.79 +1.88 +1.90 +1.90 +1.89 +1.90 +1.90 +1.86 +1.87 +1.87




TABLE VI

Electronic Experimental Calculated binding energies (eV)
bands binding energies (in eV) (MT) (PC) (13)
CaF, | F (2p) 0 0 0 0
1
L cat?(3p) 17.6 ') 16.2 15.9 15.9
| F (28 22 18.2 18.1 18,2
2
ca™3s) 4 6@ 34.8 34.5 34.7
SrF, F (2p) 0 0 0 0
{ +2
sc™ (4p) ) 12,33 11.6 11.3 11.3
P (28) 21,2 18.1 18.0 18.0
Ban F—(Zp) 0 e e - 0 Q 0
Ba"? (5p) g.p(a),(d), 4 5(c) 7.6 7.2 7.3
- F7(26) B 21.5 0} 18.1 18.0 18.0




i _Bxperimental'®
energy (eV)| Cha;acterist;9§mwmwf
11.18 I »T exciton
15 1 |
12.1 Fxs -+ Fl band edge
i 13.04 X , exciton
13.93 peak
14.57 peak, very temp. dep.
{ 15,53 peak
é 16.4 shouldex
16.98 weak peak
19,12 peak
20,35 peak
23.3 shoulder
25.1 F (2s) core excitation?
27.7 [ba+2(3p) -+ Fl core
exciton](C)

TABLE

VII

Cluster Calculatiop

| energy (eV)

-

11.0

11.6P)

11.0 -13.0

~
11.9+-13.4

13.5-15.0
\15.2-17.2

(18.1+19.6

Lgo.l"‘zlaa

-

27.0

__.assignment

13t -+ 5t
2 1

-~

-

(13t _~10t ) -
2 2

(l3t2v10t2)

(l3t2w10t2)
(l3t2*10t2)

(13t2v10t2)

(13t,-10t,)

9a, - 14t
2

1

>

(5t ,~16t,)

12a
1

l7t2
(8e*13a1)

7t

19t

main characteristic

of

. transitions..

-

2p(F") » 3d(ca’?)

-~

+2

2p(F ) » 3d(ca" ")

2p(F) + 4s(ca’’)

4s,4p(Ca+2)

43,4p(Ca+2)

2p(F )
2p(F ) ~

+2

2p(F ) + 4p(ca’ ")

2p(F7) + 4p(Ca™®)

-y

3p(ca®?) » 3a(ca’?)

- e ~




TABLE VIII

Experimental(a)

Cluster Calculation

main characteristics

16.80

19,40

I

peak, very
C?‘\f;'zp R

[L)i_{!ak

reak

peak

Z:Sr.*-a (4p)

exciton]‘c

+ [ core
1

)

 —

Y 14.5-16,0

(196,-18t.}) = {lle~loa,)!
2 Z v

(19t -16t ) > 10t

(19t,-16t ) » 25t

20(F ) =+

fnergy(evﬂ characteristics energy (ev)l assignment Of transitions
T . e -+ ~ _ L 1
' 10.60 . 7 [ exciton - E - _
11.25 T - 7 band edgs jll 2 : 19t~ lda | 2p(F7) » 5s(Sc )
| l11.g(P) ? |
I | |
12,02 § X, exciton ! - ; - j _
13.71 g peak 12.3-14.3 E (19t,-16t,) = (8t ~23t ) i 2p(F7) - dd(sct)
14,35 % shoulder i :
|

1]
Do)
—
i
1
¥




TABLE IX
| : (a) .
Experimental B C}qstg;mwpa}ggiatlon
enerxgy (ev) Characteristics energy (gy) assignment malnoghiigggiiigﬁécs
10,00 Fls -+ Fl exciton - - -
10.57 higher exciton - - -
- +2
11.0 I+ I band edge {9.9 25t, + 17a, 2p(F7) + 6s(Ba’ ")
15 1
10.5 ™)
11.7 X, exciton - - -
- +2
12.66 peak 10.6-12.8 (25,-22t ) > (26t,-29t)] 2p(F ) - 5d(Ba’ )
13.50 peak, very temp. dep.
- 42
' 12.8-13.9 (25t,-22t ) » (30t,-1%9a )| 2p(F ) »> 6s,6p(Ba )
2 1
14.34 peak
15.5 shoulder - +2
15.8-16.7 (25¢t, —22t2) + 13t, 2p(F ) » 6p(Ba )
16.35 weak peak
+ 2
17.10 [Ba**(5p,3=3) - || 17.5 21t > 17a, Sp(Ba’?) » 6s(Ba’’)
core exciton](c)

- 9¢ =



