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ABSTRACT

A static, nomsingular, plane-symmetric scalar field
of long range is considered under the general relativity, and
a one—-parametric class of exact solutions with cosmological time
is obtained, in harmonic coordinates. In the absence of any ma-
terial source, the gravitation originated by the pure scalar
field can be studied in detail. A velocity-dependent accelera-
tion field is found, acting attractively on the component of
the velocity normal to the plane of symmetry, and repulsively
on the component parallel to that plane. Particles at rest are
insensitive to the gravitation, although the time component of
the energy momentum tensor is point dependent and positive de-

finite.
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1. INTRODUCTION

In the fifties, some interest was focussed on the mi
nimum coupling of a long range scalar field with gravitation [ 1 ].
Other couplings and different types of scalar fields were later
studied, like the conformal coupling [2] , the field of Brans
and Dicke [ 3], the complex scalar fields [4] and the short
range fields [ 5] . For its simplicity, however, the field mini
mally coupled to gravitation still deserves special considera-
tion [67] .

In this paper, a one-parametric class of solutions of
Einstein's field equations for a diffused source of the long
range scalar field i1s obtained,with cosmological time. The solu
tion 1is static in harmonic coordinates, with planar symmetry,
so will not be found appropriate in the discussions of observa-
tional cosmology; but its existence may give reasons to hope
that there also exist non-static solutions which might play
important roles to avoid singular epochs found in the cosmolo-
gical models. The solution presented here has further merit that
a velocity-dependent acceleration field is found, acting attrac
tively on a test particle with a velocity normal to the plane
of symmetry and repulsively on the particle moving parallel to
that plane. Particles at rest are found to be insensitive to
the gravitational field, although the time component of the
energy-momentum tensor is non-uniform and positive definite.

In Sec. 2 the solution is obtainedvin harmonic coor-
dinates. The timelike and null geodesics are studied in Sec. 3.
Finally, an analysis of the gravitational field is presented in

Sec. 4, based on these geodesics.



2. FIELD EQUATIONS AND RESULTS

The Einstein-scalar equations are [17]
= - . . 1
Ryj= -2 8;5 358 (1)

where latin indices vary from 0 to 3. For static, plane symmetric

systems with cosmological time we use the line element

ds? = dt? - (@x% + dy?) e®A - az? 2B (2)

where the potentials A, B and S only depend on the coordinate

z = X(S)' We impose the harmonic‘coordinates condition [77]
ai[?-g)l/z gi{ =0 . (3)
and obtain the field equations (a prime means d/dz)

A" = 0 , B' = 2A' , S§'4 = A’ ) (4)

For systems presenting symmetry with respect to the plane z = 0

we find the exact solution

A = kZ , B = 2kzZ , S = ¥ kz

; (5)
Z = |z| , k = const . (6)
The potentials A, B and S are continuouas through z = 0; however,

their normal derivatives are not, due to a source of scalar fic.c

e

E8] uniformly distributed on that plane. When k = 0 the scalar



field vanishes, and the space-time becomes Minkowskian.

Some gravitational invariants of the system are

R = 2 kZ e-4kZ

1 ,ijkl

(3]

R p

ij 73 R

1jk1 ’ (8)

and the nonvanishing components of the energy-momentum tensor
are

™0 =11 =12 =213 =R/(16M) > 0 . (9)

For negative k, all the quantities (7) to (9) diverge when
Z » =, while for positive k tHese quantities are regular in the
finite regions and tend to zero in the regions far from the

sources. We then only consider the case k > 0.

3. GEODESICS FOR k > 0

The geodetic differential equations arising from the

line element (2), (5) are

t=0 , X=-2kxz , y=-2kyI , ' (10)

. . -2k .
K[ G2 3y B it ] (11)
— —

[aSH
i}

where a dot means d/ds. A first integral is

120 24 3%y oFKZ 52 Jdkz oo (12)

corresponding to timelike geodesics.



A seven-parametric solution of (10) and (12) 1s

H
o

t o+ oa, s , X + ag = a, C/k , y * ag = ag C/k ,(13)

2 2

1)'1/2(a4 + 362) C +

o] =

s + a; = (az sinh 261/(2k) , (14)
where the a's are constants of integration, and where the function

C(Z) is given by

ekZ 2 2)1/2

= (a4 tag cosh C . (15)

Considering the symmetries of the system, one finds

from (13) to (15) two essentially different classes of geodesics:

i
|

1) Geodesics not crossing the plane of symmetry. One

typical example 1s

s = (1 -vHVee | (16)

ek(Z—d) kd

x =0 , = cosh(ky e %) s (17)

kd 1 _2kd

2kvt = ky e° + 5 e sinh(2ky ¢ ~kd

) | (18)
where v and d are parameters satisfying 0 < v < 1 , d > 0. This
example represents a motion in the plane x = 0 (see dashed lines
in Fig. 1). For t < 0 the pérticle is approaching the plane of
symmetry, in an oblique direction. When t = 0 the particle is in
the position y = 0, Z = d, and is moving parallel to the y-axis.
With increasing t, the particle travels away from the plane of

symmetry. The whole trajectory is symmetric under reflexion

through the z-axis.



2) Geodesics crossing the plane of symmetry. Consider

the example

s = (1-vHY?ie | (19)
' 2 1

x = 0, cosh(ky seca) = ekZ secza - (eZstec o - 1) /2 tana ,

(20)
= 2kZ . 2

2kvt = ky cosa + (e + sin a)tanh(ky seca) (21)

where a and v are parameters satisfying 0 < a < w/2 , 0 < v < 1.

This example also represents a motion in the plane x = 0 (see

heavy lines in Fig. 1). For t < 0 the particle obliquely appro-
aches the plane of symmetry. When t = 0 the particle crosses the
plane z = 0, with itslvelocity making an angle a with thé y-axis.
With increasing t, the particle moves away from the plane of
symmetry. The whole trajectory is symmetric under reflexion
through the origin.

In both examples the parameter v represents tne modu-
lus of velocity of the test particle, as is seen from (1¢) and
(19). Since v is absent in (17) and (20), one concludes that
the path followed by the particle does not depend on the modulus
of its velocity, in this gravitational field. The equations (16)
to (21) then also represent null geodesics, 1if dne makes v = 1.

Finally, making v = 0 in the solution (16) to (18) one

obtains

., y=0 , z=4d . (22)

This solution represents a test particle at rest, at an arbitra

ry distance d from the plane of symmetry. This is an interesting



result, since the existence of gravitation is ensured by (8).

To understand this result on nonrelativistic grounds, one re-

marks (Tolman [ 9] ) that the relativistic quantity which repre

sents the diffuse source of the velocity-independent, nonrelati
1 2 3

vistic gravitation 1is Tg ~ Tl - T2 - T3 , which vanishes due

to (9).

4, DISCUSSIONS

The expression S = + k z resembles the nonrelativistic
Coulomb potential ¢ associated to a uniform, planar distribution
of electric charge o on z-plane: ¢ = % olz] . We then inter-
prete t 2k as a surface densify of scalar source.

Our system has Tg positive definite, and an aniso-
tropic state of stresses (T% = Tg > 0, Tg < 0). This anisotro
py produces an interesting, velocity-dependent acceleration
field. We found, in (11) with k > 0 , that particles in motion
parallel to the plane of symmetry are pushed away from it,
while particles in motion perpendicular to the plane of symmetry
are accelerated towards it. In spite of this acceleration, par-
ticles receding from the plane of symmetry in th¢ normal direc-
tions always escape to infinity. This is easily seen from the
timelike geodesic

s=(1-vHY? | x=y=0 , e -1 vkt (23)

obtained from (19) to (21) in the limit o - 7©/2, and where one

finds that Z monotonically increases with [t].

Finally, one should remark that both shapecs of orbits



(17) and (20) are analogous to those obtained in nonrelativistic
mechanics for a plane symmetric potential of the form
V(Z) « exp(-2kZ); however, the velocity of motion in these or-

bits is not the same as in the nonrelativistic analogue.
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Fig. 1. Paths followed by test particles on the plane x = 0.
Broken lines represent geodesics which do not cross the plane
z = 0; the paths whose minimum distance d to that plane is gi-
ven by kd = 0, 0.5 and 1 are presented. Heavy lines represent
geodesics which cross the plane of symmetry (z = 0); the paths
corresponding to angles of incidence o¢ = 30° and 669 with the

y-axis are presented.





