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ABSTRACT

Firstly, one discusses the effect of s—d hybridization in disordered
transition metal alloys within the Coherent Potential Approximation (CPA),
electron-electron correlations being described by Hubbard's approximation.
The case of degenerate d bands hybridized with a s band is approximately

solved within the Hartree-Fock scheme.

Secondly, pure transition metals including electron correlations and
s-d hybridization are discussed within the CPA analogy, the consequences
of alternative decouplings of the equations of motion for the propagators

being investigated.
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INTRODUCTION

The coherent-potentia] approximation (CPA) has been largely used to

provide a simple single-site description of disordered alloys 1, 2"3.

In its simple form CPA describes only disordered alloys within the assump-

tion of tight binding models for the conduction states.

A formulation of the CPA for transition metal alloys, within the

4

Hartree<Fock scheme, was suggested by Brouers and Vedyayev where s-d

hybridization was taken into account: In this model, randomness occurs

only within d states, the broad s band being assumed to correspond to

1-4

the pure host. In all these works , a non-degenerate d band was always

considered.

In a recent paper 3 the existence in transition metals of two tzg

and eg d sub-bands was considered in order to describe the asphericity of

5

the magnetic moments. Since in the s band was completely ignored, it

is the purpose of this work to suggest an approximate Hartree-Fock solu-
tion of the CPA problem involving the two d-character sub-bands in preéence
of hybridization with a broad s band, This calculation will be performed

within the spirit of the works of Sadakata 6, Abito and Schweitzer 7,

8

Esterling and Tahir-Kheli “, namely the Green's function approach intro-

duced by Zubarev 9. The same approach is used to extend the results

of Ref. 4 to the case of strong correlations in a non-degenerate d-band.

Another recent application of CPA procedures is the description of -

10

pure metals in presence of electron-electron correlation The central

idea arises from the formulation of the alloy problem as presented by

1

Shiba One describes the motion of the correlated electron by a spin-

and energy- dependent effective self-energy 2% which incorporates the ef-
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fects of electron correlation. This self-energy is se1f-consistent1y
determined by imposing that the scattering T-matrix associated to zero site,
where the atom exhibits the full Coulomb correlation, vanishes, hence includ-
ing Coulomb effects in this self-energy. -The problem-thus defined is so]ved]0
using the Green's function formalism, adopting the classical Hubbard's ap-

h 12 and Roth's variational method ]3.

proac In this paper we intend to
include s-d mixing and to show that the simplest decoupling approximation for
dealing with hybridization yields bad results and one must extend the equa
tions of motion or trial operators in order to include mixing effects in the
self-energy equation.
I. HYBRIDIZATION EFFECTS IN DISORDERED TRANSITION METAL ALLOYS

A) STRONG CORRELATIONS IN A NON-DEGENERATE d BAZVD

We consider the alloy system Ax 81-x described by a model Hamiltonian

as proposed by Kishore and Joshi ]4, including however diagonal disorder in
the d band,
- (d) 4t (d) ( ) ot
= Tei” digdig v I Ty dig dig v T Ty cig Sy
ig ijo ijo

ydh el 3, nld) gt 4.,

( ) o (d) 4 - + -
+1 U i4 1+ ) {Vsd(Ri Rj) Cio djo * Vds(Ri Rj io “jo ic Tio Tio
i ijo - (1)

c.) is the annihilation operator of a d(s) electron with spin o(+ or +)

where d, ( 3

at the i-th Wannier site. The atomic d level e§d) and the atomic Coulomb
correlations Ugd) may assume values sgd) or eéd) and Ugd) and Uéd)
depending on whether the i-th site is occupied by an A or B atom with con-
centrations x and y = 1+x respectively. The other quantities as hopping

integrals T(J)(A, = s,d) and mixing matrix elements V_, or V., are assumed
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to be independent of the kind of atoms which occupy the i-th and j-th Tat-

tice site.

Following the method employed in Refs. 6, 7, 8 we firstly deduce
the coupled equations of motion for the one-electron d-d propagator.

Since Coulomb correlations are present and we intend to-describe strong

correlations, we adopt as our approximation scheme the classical Hubbard 12
decoupling. From equations (1) one easily dérive the following exact .
coupled equations

(d) _ (d) .dd (d) .dd, d _ sd
(“'e )G1Jc( w) = 61j ) Tiz szc(w) U1 G1JG w) +1 vds(Ri RQ)GQJO(N)

. .2 (2a)
and
sd - (s) nsd _ dd
wGijglw) = T Ty’ Gpiglw) + I Vq(Ry-Ry) Gpjplw) (20)
L 2
" where
dd _ + dd.d (d) oot

Gijd(w) = <l djo> w '’ G1J0 (W) = << nj5 digs djo "

In the 1imit of strong correlations (U(d) + o) and adopting

dd d(

Hubbard's procedure one verifies that the propagator G w) satisfies

Vim U(d) G??cd( ) < - 8y <n$ 3> ) <n$ 9, T(d) Gggc( ) - <q O>Gf§0( )-
om 2
i * | |
| - <nfds TV RRy) BT @) (3a)
L

In equation (3a), <n(?zo> is the average d electron number with spin o at
the i-th site, while

<Ry =SSy 2V (3b)

<S;.g> and <V, > being defined as
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+
$Sio> =1 T {<d1 o Ygg” = <o di) s (3c)
%
: + +
Vig” =2 Vg RyRy) <dj > = Vsq(Ri=Ry) <cp o di 5>} -
} .
. As it will be shown in the Appendix , the configuration-averaged quantity

<Q; 5> where the site i 1is occupied by an atom type A or B turns out to
be zero, so in the following we neglect it. We want to emphasize that in

obtaining (3) we have performed the decouplings

+ dd

(d) .

SN G djc> w -0~ Gljc(w) (42)
(d) .o = . ld), gsd

“No S’ djd>>w = Mg GlJo(w> (4b)

Later on (cf. Sec. II) we will see that in the CPA description of the
pure hybridized and correlated metals the approximation (4b)leads to dif-

ficulties.

-Equation (3a) together with (2a) and (2b) provides the following

set of coupled equations

1 .
o) - o5+ DT 6l + T Vg (RRy) G ()
- (w) 2 2 (52)
0 65 (0) 2 ) G5el) + I VegRiRy) Gg(e) (5b)
%
where the locator F?(w) is defined by

w - Ei(d)

P ) = (5¢)
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Now we follow strictly Ref. 6 suitably adapted to deal with mixing. From (5b)

and Fourier transforming one has

Ve 4(k)
N 5
kk'gl®) = — kk'ol@) > (6a)
w - s(s)
k
or transforming back to Wannier representation

G

VoK)
sd -ik+(R,~R,)
Bl =1 <F ——e T Fh el -
L k  w- e(s)
K
- TMX Gggc(w) ,  (6b)
2

where we stress that'T?;x do notvinvo1ve any sort of disorder, and is in

equal footing with the hopping ng). Defining
T(d) _ +(d) -
Tagl = Tig/ + IV R
m

ds Ry

the final equation for the d-d propagator reads

» ] o '
6§, () = 835 + 1 T Gggo(w):} . (7b)
(w) 2

-4

Equation (7b) is formally identical to the starting equation of Ref. 6. The
configuration averaged propagator (translationally invariant) is then defined

by

%(d) _ .dd
) ng) <6
2

1
dd

<Gjjolw)> =

. F7(w)

Gij (8a) -
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which is solved by Fourier transformation to give

ik (R.-R.)
e T
Wl > =L = (3
K P -5
with - z
[V, (k)]
~(d) (), ST (8¢)
k k (s)
U)"€k

The average locator Fc(w) should be self-consistently determined through the

condition
dd dd dd
x <Gl o+ Y <GP = 6w (92)
where <G?§o(w)>i=A B is the averaged propagator for a medium Where all atoms
are described by the average locator Fo(w) except the atom at the site i

which has F? (w) as locator. These propagators satisfy 6

" ; Fo(w) - F{(w) N
<Gy jo(w)> e <Gg§0(w)>+<Ggic(w)> <633q(w)> - (9b)
158 1—[Fc(w) F? ):I<G110

Consequently the self-consistency reads

Fo(w) - Fz( ) Fo(w) - Fg(w)
+y =0 ' (9¢)
1- [FO -F(w <gdd (w)> 1-[Fc(w ] Gno w)>

A 110

If one introduces a self-energy Zc(w) throhgh

Fw) = w- [%(u) (10a)
and rewrites
d) cld)_ <n§§

w "€1-( ]
‘ w- - w - 5 ) (100)
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the results (10) together with (9c) provide the final self-consistency rela-

tion determining the self-energy

z%m>=xzkwn-+y€%u»-[abm>-z%wj+ﬁm,YWM)E%wni°mﬂ
(11a)

where

1 1
a dd >= =
HY (0,7 (@) = <G5S (w)>= ] ) “Teal) (11b)

iio
k w-Eéd)~ZG(w) k w—eéd)-zo(w) T
=k

which is formally identical to Soven's result ]. We note also that s-d mixing
corrections enter in the C.P.A. condition in a quite similar way to Brouers
4

and Vedyayev Finally one should remark the w dependence in the "effect-

ive energies" ¢,

10(w) due to the strong correlation treatment adopted here.

B) APPROXTMATE HARTREE-FOCK SOLUTION FOR A DOUBLY DEGENERATE d BAND
We start defining the adopted model Hamiltonian. The one-electro
degenerate d band given by a and B sub-bands is written in the Wannier

representation as

jza = 7 Ega) a§a) d;g a5, * 5 T(?) of o+ ) EgB) BT> Big + 7 T(B)B+ 8

i i ic “Jjo i io © ij Tio
io ' ijo io ijo
(12a)
where €§a)’ e(f) are the random energies associated to the atoms A and B,

and Tgé) (A = a or B) do not involve disorder.

The doubly degenerate d band superposes to a broad s band

Too = I T ooy (12b)
ijo

n

jo
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where ng) involves no disorder at all. These bands hybridize through the

following term

mzsd =1 {}éz)(Ri"Rj) C:c %jo * ng)(Ri'Rj) a?a Cj;} *

ijo

(8) + 8 _ +
+ 1 {ysd (Ri~Rs) Cig Bjg * Vés)(Ri Rs) Big Ciof - (12c)
ijo

The Coulomb correlations are present through

fug = 0ol ol 1) off) off) 8 {fe)ofPenf2f):
.i »

it iV it i i
i i
+ 1 (U8 - g%y n(@) n(B) (124)
ig

Due to degeneracy now we have, contrary to case (I.A), simultaneous presence

of Coulomb and exchange interactions. The complete Hamiltonian is then

%=%d+‘%s Jr%sd +%dd | (13)
Next we write the equations of motion for the o-o propagator. Using

the Hartree-~Fock scheme and defining Hartree-Fock renormalized energies as

E§g) = gga) + U§u) <n§?3 > + U?B <n§§g>» + (U?B _ J?B) <n§§)>, (14)

(a similar equation holds for E§§) just changing a by B where it appears)

one gets the following coupled equations of motion (in matrix form)

!‘w T-E . 'T\(O‘)] By = T T ) (15a)
[of =T Ew) - 9 - &0 + 38 - ) (15b)

[w? - B L FE)] L Py < TE) - ) S (150
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where we introduced the Hartree-Fock energy matrices E(A?}ij =

= Egé) §i50 (A = a,B), the hopping matrices [?(x{]ij = ng) (A\ =a,B) and

the mixing matrices [?éﬁzki = Véz) (Ri'Rj)' Combining equations (15c) and

(15b) one gets for aBa(@)

A Q -1 A A - ‘A

B ) = [wI - £8) L F( } EuI-T(S):[ b)) (16a)
where the effective hopping matrix ?(B) is defined as

2(8) . 4(8) , P(B). “-“(s) -1 {(8)

T =T + VdS wl-T sd .(16b)

. . . S(a), Asa Ch A
Using the result (16a) in equation (15b) one gets for Vis'* G (w), which is

the quantity one needs to determine to substitute in (15a)

Vc(ig) Gsa( ) vc(js) E;)I-T(s):[ vgﬁ)-ﬁ"‘“m) +

6 [ERE] 208 2O 3O WO LA 0-Fow on)

Equation (17) suggests.the simplest way to deal with this intricate problem.
Since simultaneous disorder cangot.be fully discussed using a simple proce-
dure, we use the fact that the'1ast term which incorporates the simu1tanéous
disorder ~in the o and 8 sub-bands exists qn]y due to a repeated
hybr1d1zat1on with the common ‘s band, i.e., the term which involves the
d1sorder in the B sub- band is proportional,at least, to the fourth order

in mixing. If we neglect this term, one obtains simply
Vel ) = 7. [m? - ’T‘(SJ"I-Vgg)- ) | - (18)

We emphasize that the above result just corresponds to ignore the only pos-
sible process (which is a (at least) fourth order process) by which ana
electron can see the disorder in the 8 sub-band. Adopting (18) as our main

approximation and combining with (15a) one gets



{wf - gla) L) . _Vg? -Eu? - ?(5)} AL L %) =T (192)
or in Wannier representation

(0 - Ef2)) 622 () = 65 + T T 622 () . (19b)

. 2
?gi) being
-1k-(Ri—R )
o . e
e W v i@ s
k w .- eks)

Equation (19b) is formally identical fo the result obtained in Ref. 4 with
an essential difference. The renormalized Harfree-Fock energies include
the effects of disorder within the B sub-band as introduced in Ref. 5.
Consequently the asphericity of the alloy magnetic moments is also present
in this formulation with the extra improvement of considering s-d hybridi-
zation. To summarize: the approximation embodied in (18) consists in
considering the s band as a source of hybridization independently for the
o and B states. Finally the problem defined by (19b) is formally
identical to the previous case discussed in equation (7b) with the new
locator defined as

1 1 , |
= (19d)

F ) - )

s-d mixing effects being incorporated in the new H?a)(w) which now turns

out to be

< G??&( )> = HY )(w) =7 ' - . (19e)
k (@)  © _[v(“)(k)l

w - €k (0.)
w - aﬁs)

Expression (19e) generalizes the result obtained in Ref.5 to include s-d
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hybridization in the simplest possible way.

IT. HYBRIDIZATION EFFECTS IN INTERACTING PURE TRANSITION METALS

The Hamiltonian we adopt to describe pure transition metals is

s) (d) ¢+ 4. (d n{d)
=1 T1J C1o CJG * Tij d1c jo +U ) Niy" *
ijo ij i
)
i3 Sd(R R ) cic jo + Vds(R -R. ) d10 Cio (20)

10

We follow strictly Roth's suggestion of describing correlation effects

through a CPA procedure starting from the following effective Hamiltonian
(d) (d) o
Bopr = L T; e+ LTy di, djo + 0o+

1c jo
130 ijo ig

+ 1 9Vsq (Ry7Ry) C1c jo ¥ Vas(RyR; )d1o J;} rY n o+) ) (d)z ’
ijo 9 (21)
where Zc is the effective self-energy describing correlation effects. We recall

that the main spirit of the method consists to rep1ace a translationally
invariant problem as defined in (20) by an alloy problem where the origin
incorporates the full Cod]omb correlation. The effective Hamiltonian (21) still
includes the difficu]ty of dealing with the Coulomb intra-atomic term at the
origin and we intend to discuss this problem in two approximations, namely

12, 15

Hubbard's approach and‘ briefly repport the results of using Roth's

variational method ]3

A) DISCUSSION OF HUBBARD'S DECOUPLING PROCEDURE

We use thé Green's function method 8 and obtain

w G?‘J’.‘c(m) = 85+ z T(d) egjc( ) + 10 Gm(w) + 5 Vg (R, RQ)GQJG(m) +
9

dd,d
[9 GOJG (w) - 20 OJG '] ] 4 (22a)
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The propagator G?gc(w) satisfies the exact equation of motion

@ UG 2 1(8) g m(w) + TV (RR,) em(w) (22b)
2 .

~dd,d
ojo

at the origin. Before doing the calculation we note that if Hartree-Fock

dsnating is ertorsed (6%5800) = nl8) 635,10

expected result Zc = U é?3> at the end of the calculations. Physically,

this just means that in the Hartree-Fock scheme the electrons move in the ef-
dd d

Let us determine the propagator G (m) generated by the Coulomb correlation

one obtains the

fective field generated by opposite spin electrons. We obtain U G (w) from

. . dd _ (d) .
the equation of motion for the propagator T.. (w) = ‘<<no_o dic’ djc>>w Just

ijo
dd dd d(

ojc(w) = oao w). One gets

taking i = 0; then T

w 1 (w)=< n(d)>6 it ZG dd S(w) + Z T(d

130 (w) +

230

+ ot :
+) T <<[§0 5 2_ ] dl—c do-;}dio’ djc>>w +
2

- (d) .4t _ + L4
+ ] vds(Ri Rz) MNo-g  C3o° djc>>w +¢] vds( R2)<<do-c Cz-cdio’ djc>>w g
2 [}

: + .t 0, ~dd,d
) Vsq(-Re) <<Cyg do-g dig? djc>>é} + 856(U-17) Gojcr (w). (23)
. _

Equation (23) still involves complicated propagators and we may introduce the

simplification of neglecting the "broadening correction" ]5, namely
(d) ( . 47 v
<< do -0 2- 2 -0 do -g dic’ djc>>m -
- (d) o dd '
z Ts <do oo Tog” = <4y d)_s> Gijd(w) (24a)

and %
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. dF - - + R
Z Vys (R )<<do o So-g Yig djc>>m % Vogq(-Rp)<<cy o d o Cigi djo>>w -
= - - + dd ,. .
- z Vds( R ) <do -0 S-0” E Vsd( Rz) “Cp-o do—c>j} Gijc(w) ) (24b)

Since the involved correlation functions will be calculated after imposing the
T-matrix associated to scattering at the origin to vanish, one sees that trans
Tational invariance is restored. So, the right hand side of (24) vanishes

also. Then one is faced with the equation

v ?go(”) % i) 815+ 17 T, (0 + Z T{d) ngg( ) +
+ ] Vye(R=Ry) <en{®) ¢ b dips, + 85 (U-10) ngdd( ). (25)

2

(o

At this point some remarks about (25) are necessary. The first ‘one is that due

(w), which involves only n(d), one is
12

to the specié] form of the propagator T 130

not obliged to perform the usual Hubbard s approximation

15

of (25). This means that the "scattering correction” is already included

10

in the formalism Secondly, the effect of s-d hybridization is to generate

. (d) Lot . . 7
a new function CNo_s Cpol djc>>w' TheJS1mp1est approach, which was adopted
in Sec. I-A of this work (see equation 4) is to decouple this propagator ac-

cording to

(d) — 2 <nld) . gt
< Moo Ceo® Y50 77w Mo-a” <Cpo’ djc>>w : (26)

Hence, one obtains the following first form for the equation of motion deter-
mining rdg (w)

Pdd

w
Lijo

(0) % <> 6. 4 17 1 ad o) + T Ti3) Thoe) +

dd,d

+ <n > 2 Ve (Rs- -R 2) Gch(w) + 85, (U Z°) Gosg () (27)

(d) ,
in the Tiz term

g
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An alternative procedure is to write an equation of motion for the propagator

<<n(d) Cigs d§c>>w which is simple, due to its special form. One gets

(d) . gF _ v (s) (d) oA
w<No_g Cio? djo>>w - X.Tiz <Moo G’ djo ot

(d) _— -
+ % Ts <<d0 o dz_c Cig djc>>w

+ ot
- <<y 5 o0 Sigt djc >>wj} +

+ ; Vsd(Ri-Rz) (m) + Z j~vds( R, )<<d’ *

3 d. > -
0-o 2-0 ¢ io?’ dJO w

+ Lok
vsd(-Rz) <Cpg do-g Cig? djo>>;?? (283)

Again neg]écting "broadening corrections" one obtains similarly to (24)

(d) _— - (s) (d) .
wNo-¢  Cig? djc>>w =1 Tiz << No-g S0’ djc et ) Vsd(R R )PQJO(N)
2 L
(28b)
which Fourier transformed gives
<< n(d)' c, 3 db, o> =—-]-——-- V.. (k) rd (w) (28c)
o-o ko’ k'e"w (s) sd kk o
w-c k
or transformed back to Wannier representation
(d) . m1x 8d
<<ngZe cips d = Z T 2Jc(w) , (28d)
where
: Vsa(k) ik (R.-R,)
TI'!TIX z e
iL
k w-eés)
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dd

Expression (28d) provides the second alternative equation for I (w), namely

d) dd

Jo(w)=< "(dg PN F?§c°“)*§T(1z 2o

o1+ Voo (R -R ) TIXpdd () 4

130 m mj

dd,d

+ 84, (U- z°)e (w) . (29)

Next, we solve explicitly the problem defined by (22a), (22b) and (27) or
(29). We start from the second case defined by equation (29). Fourier trans

forming (22a), (22b) and (29)

(d ‘ 5
(w-e{1-19)600, () = 6. + Vg ()G, )+ U v (u) - 7 dd 'o{0)s (302)
dd |
(- &) ekk,c«») = Vg6 Gigrg ) (300)
and
2
d Vsl Ldd d oy _dd
w - EZ'S ) - ZU - ———-——ES—)- kk 0_(0.)) <ng-r\)7> Skkn + (U'E ) “quo.(w)
w = € ) o
k (30c)
where we denoted
dd dd
dd =1 Gk"k o(®) and. Yioo! ) Femgrg (@) -
kl| kll
Combining (30a) and (30b), one has
X dd dd
-j; - el e — 609, (@) = 8+ U S () - 7 g0 w)
' w " gy ' (30d)

which exhibits the same structure of (30c).

Equations (30c) and (30d) define a scaetering problem which is easily

- solved. Introducing ,

V. (k
k 7 Tk
w ~e{8)

and defining the function F°(w), (wﬁich generalizes Roth's 10 F9 function)
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1
Fo(w) = E ,
2
R L
o e

one gets from (30c) and (30d) summing over k

dd nlf)> dd
Vi glw) = —29 4+ -39 Flw) Vg (w)  (313)
° _z(d) _yo 7
W= g’ =]
and
) 1
000 (w) = + 0w vY ) - 2 ) oM ) . (31b)
w - Eé?) - 30

From equations (31) we easily obtain yg?c(w) and eg?c(w) determining

completely the propagator Ggg.c(w).. The final result is then

1 o

8,11
By 1o (8) = o — 1%, ) , (32a)
w-élgd)— d w-E,ﬁd)- 1 w - E,ﬁ?) - 5°

where the T-matrix is

U <n£fg> - 27 + 391 - 19 FOw)

(w, %) = (32b)
[1 - (U - 2% F(w)] [1 + 1° F"(w)]

c) = 0 determining self-consistently the self-

energy which generalizes Roth's resu1t]0 is

Hence, the condition Td(w, z
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- U<ng§()y> + (U -39 Fc(w, :9) 19 . (33)

Now we consider the first alternative (equation 27) involving the
decoupling of the Green's function generated by the mixing. The coupled system

(using equation (30d) and equation 27) Fourier transformed, is

(- &Y - )6, SR bl @) - 274w (342)

(w-gy () 59 Pdd g@) = <"(d)> Sk * <”é§g> Vs (K) Gii’ (@) + (U - 1) quo(w)
(34b)

and

(0 = o) Bfgl) = Vy(k) 65 (o). (34¢)

From (34c) and (34b) one gets

en{®s v k)2 .

S * ” Scks )+ (U ) vgo(®)
.

(w-elsd) - %) 18, () - an{)>s

(34d)

Equations (34a) and (34d) must now be solved simultaneously for yi?c(w) and
eﬁ?c(w).5ubstitut1ng (34a) in (34d),performing the sum over k and the
corresponding algebra to obtain the yg?o(w) and eg?c(m) unknowns, one ‘

finally has



Spu 1 1
) kk o . :
kk'o(®) = + p (@, 27) A (35a)
w-g{d) _5° w-g{d) 59 w- 5(?) -1
k k k
the T-matrix being now
ven{d)s - 5% 4 2% - 2% )
Tc'lj(w’ zc) = 3
(14 2% Fy) [1- @) © -9 +ual® (#w) - Pw)
(35b)
where Fo(w) has been defined previously and F?(w) is defined by
1
o
Fi(w) = Z ) ) 35¢
1 AT (35¢)
k
Then, the self-consistency condition becomes
o (d) O 9 50 o}
L0 o= Usngl> 4 10 Fiw, 27) (U - 27). (36)

The puzzling result contained in (36) is that the mixing Vsd is completely
absent, so the condition for magnetic instability is the same of Roth's

paperlo, The decoupling (26) thus completely screens the effect of mixingn
the detenmination 56 the self-enengy. We intend now to discuss in more detail
the implications of the decoupling (26). To do that we firstly consider equa-

tion (34b) which is rewritt®n as
d dd
(=& - %) 1l (@) =l s+ -0 v () -

[V 4(k) |
* (s) gg' (w) y <"(d)> Vgs (k) Gkk o(w) (37)
w - € V
k
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where we have summed and subtracted

kk o(m)
w - Eks)

The purpose of this trick is to transform the last term of (37) in a "scattering

15

correction form" in Hubbard's sense In fact, we can use the exact result

(28c), (except for "broadening corrections" neglected here)

[Veq(k)|? ad 4
o ko) = g5 Vas (k) Bgrgli) = Vg (0 <<n”ckc Gorou
- g
- <n((>?g_><<cko‘; d't.0_>>} Vs (k) [<<(n(d) <n(d)>)c1o- JO'>>U]kk- (38)
Then the final result is
g 2) Tigle) = allls sy v 0= 2N M) -
- vds(k) <<(n£93 - <nédz> ) Cigs d§c>>é3kk' (39)

Comparison between (39) and (30c) shows that through the decoupling (26)
it sti1l remains in the equation of motion for rkk' (w) a scattering

correction-1ike.term associated to s-d hybridization, aspurious term in this
formulation, which should include all scattering corrections from the begin-

ning ]00
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B) ROTH'S VARIATIONAL METHOD: SUMMARY OF THE RESULTS

In this paragraph we quote the results of the application of Roth's

]3vto the effective Hamiltonian (21). In the case of a

variational method.
pure d band, as discussed in Ref. 10, the basis set of operators is
{dic’ néfg dic}’ where one must note that,'contrary to the usual case,

i (d)
instead of n._ d,

ig one considers the correlation operator only at the site

where Coulomb interaction exists, namely at the origin. We recall also that
the main result obtained in Ref. 10 is that equation (36) still holds if in

the definition of Ff(w) a band shift is introduced, namely

Flw) = [ (40a)

If one intends to generalize this calculation to the effective Hamiltonian
(21), thus including s-d hybridization, one is tempted to replace the above
trial operators by the following set: {Cic; dio; néfg dic}e Once the
calculation is performed one verifies that again the self-consistency condi-~
tion is (36), with F?(w) defined exactly by expression (40a), without the
effect of mixing, except for a contribution in the band-shift. In order to
1nc1ude properly mixing effects one needs to enlarge the basis set to include

the operator n(d) o generated by s-d hybridization. The result is essen-

0-0 io
tially equal.to (33), but now with a s-d corrected band-shift, and it

reads

Flo) =¥ . (40-b)

- Thus, Roth's approximation provides also an example of the difficulties associated



i
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to hybridization and shows that only in the enlarged basis set s-d renormaliza-
tion effects in (36)are present. The details of this calculation and the application
of the variational method to deal with disordered alloys is the subject of a

forthcoming paper.
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APPENDIX: CALCULATION OF THE CONFIGURATION AVERAGED FUNCTION < Q5

We recall from the text that
<Q,_ _>=] T < <dt d > -<dd > + 5 LV, (R.-R)<d;_ ¢, >~
i=g 1% i=g “L=0 L=c Ti-0 4 L-ds i W Ti~g "0
2

= Vsq(Ri-Ry) 2 -g l-c‘jb (A-1)

In this expression the site i is occupied by an atom type A or B, so the cor
relation functions should be derived from the results obtained for averaged
propagators where the atom at site 1 is a given one, We start with the simpl-

est case, namely the first term of (A-1). The d-d propagator is

dd dd dd Fd(w) ] Ff(w) dd
G jo (@) > = <Gy s (w)> + <Ggy (w)> ST "Gy @)
j ' SN B N
Specializing the sites 2, j one has
o add o
ﬁ/wﬂ Q10 ¥ “CGrig)
<G§$c(w)\a 210 )
i [Fa(w J “,_w>J 1- [Fc w)ch)] Gnc
(A-3a)

dd

[ ] G <G, (w)>
110 Lic

o L 1- Eﬁ #%wﬂ g}gun>J 1-[F7 ()-FS w)] ¢ 110()>

dd

oS (w)> (A-3b)
1

where we have used equation (8b) of the text. Hence, the first term reads



151

Fermi function,

From (A-1) one has then

Q=1 {Vds(Ri“'Rz) R [<Gssa$c(‘”)>1] - Vog(Ri-R) ¥ { ig0 (® ]J (A-5)

In order to calculate these averaged propagators in presénce of an atom type A
in site i, we start from a Dyson—fike equation

G = <G> + <G> VG , ' (A-6)
where <G> is the configuration averaged propagator and V is the localized
potential at site 1, given by |i,d> Vi <i, d|. From (A-6) one has the follow-

ing s-d and d-s matrix elements of (A=6)

sd sd sd

: dd
<szc(w)>i = <sz0( w)> + <Gy (w)> Vi <Gy (w)>1 (A-7a)
and
ds d ds
szc(w)>i - <G2§0(w)> + <G (w)> Vi <6q )5 (A-7b)
JWith Vo = F7(w) - FS (w).
Equation (A-7a) is solved, remembering equation (9b) of the text
F (@) -~ F{ ()
dd _ .pdd dd i dd , .
GQ'JG(wPi = <szc(w)> + <G210(w)> — G1Jc(w)>
1= [ () ()] <655 (0>

which specialized for & =1 gives

- i
F '_Gijc(w)] = ~2-;T— r dw f(w) rGijc(chS)-G].jc(w—uS)} § -0 and f(w) being the
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dd
oo

[ w)—Fc w):I<G”0

dd _
By g (W) =

So the solution .of (A-7a) is -

F(w) - F;
Gsd (w)> = «gSd (@) + <9 (6) - (w) (w) ngo( o)>. (A-8)

L 2 2
* * b 1- [F"(w -F"(w)]<em (@)>

Equation (A-7b)is solved taking first]y % =1i. One has

ds d
{1 - [FO Fo(w)] G”c }<e1.jg(m)>1_ = <635 (0)
Then

F @) - F{ @)

U))> -lJo'( )>

1- [F" (w)- F" ] G110 (A-9)

ds

( ds
Ljo

dd (

<G ()i = <68 (w)p + <6

Now we use the solutions (A-9) and (A-8) to compute the value of (A-5). Taking
j=i in (A-8) one has
sd

6210(w)>
= . (A—]Oa)

- [F" -FS (w] <% (w

Similarly, taking 2 =1 and j =2 1in (A-9) one gets

sd

G21c(w)>i

ds
120

1- [F° (0)-F ()] Gm
sd

It remains to compute the configuration averaged propagators <Gz1d(w)>and

<G;

Gds

S (0 = (A-10b)

<69 ()>. From equation (6b) of the text one has o

12.0
<Gsd (w)>, = Tm1x) ( )> - VSd(k) !
ijo ) k ~ ( ij 1Jc w ’

SO
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sd Ysqlk)
<GI. (w)> = =V (k) L (w) (A-11)
ijo sd k .
(e (F(w )-e§d> )-Vgq(K) |2

Now we calculate explicitly the propagator <G?§G(w)>k°

ds

The equations of motion for the propagator Gijc(w) are

d (d) qds dd,s Ss
(w-ed)ef? ) = ] The) G o) + Uy 6 (w) + ] Vas(RiRy) 65 (0) »(A-T22)
Ss _ (s) pss - ds _19k
w Gijc(m) =85 % E Ti% szc(w) + % Vo q(Ri=Ry) szc(w) , (A-12b)
dd,s ) (d) nds - ds _
U ]lwwud GlJo (w) == <nj &> g Ty szc(w) <85 Gijc(w)
d
- <nl9s TV, (R-R,) 655 (w) (A-12¢)
i-o g ds‘'i "R/ TRjo ’
the usual Hubbard decoupling being used to derive (A-12c).
From (A-12a) and (A-12c) one gets
1
ds _ (d) ds SS _
G1Jc(w) = Z_le 230 (w) + z VdS (Ri=Ry) szc(w) R (A-13)

P LE

1

where F?(w) is defined in equation (5¢). Fourier transforming (A-12b) and

configuration averaging one obtains

<6%_(w)> (A-14a)

<G>S (w)> = +
kowe® 0 sy Nk

ijo

and from (A-13)
E;c - . d)] < G1Jo 4 (K) <G1JG( w)>, (A-14b)

Finally, from (A-14) it follows that
ds VdS(k)
CijglePy == = Vas (k) Lylw) (A=15)
(m-e( ) Fa(u))-ﬁ 'V (k)]
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Now we compute the first term of (A-5). Using (A-11) and (A-10a) one arrives

to
| L [Los Vg (k) |*Lk (@)
gvds(Ri'Rz)?w l}62$0(w)>1.] = ‘fw E , sd " (A-16a)
1-[F°(w)-F§(mi]<Giio(w)>
Similarly, using (A=15) and (A-10b), the second term of (A-5) reads
Vg (k) I® Ly (w)
% de(R'I-RZ)?w ’:(G'ldio'(w)>1] = (XU) z (A-]Gb)

kK 1- [F"(w)-F‘]?(;ﬂ <634 (w)>

iio

Consequently




