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ABSTRACT

It is demonstrated that Einstein equations corresponding to stationary
axially symmetric vacuum fields allow a spécial class of solutions admitting
a simple interpretation - an observer describes the static Curzon field in
the canonical space using a reference system which rotates with constant angular
speed. The structure of the solutions remains similar if the interaction of

massless scalar fields is considered.
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I. INTRODUCTION |

Ih general relativity there are some interesting static solutions
of vacuum Einstein field equatfons, but stationary solutions are quite few.
A special class of solutions was first given by Lewis‘ representing the
field due to an infinite rotating cylinder in can&nical space; one of the
interesting features of the solﬁtiong is that these are linear combinations
of static potentials due to an infinite cylinder, later obtained by Marderz.
The most interesting exact solutions of the vacuum field equations
corresponding to the exterior gravitationaT field due to a finite rotating
body is that of Kerr3. | |

The object of the present paper is to demonstrate that axially
symmetric vacuum field equations allow a special class of soldtions which
are linear combinations of the static Cutjzon4 potentials. A further
generalisation is considered by including the interaction of the long range
scalar field following the method of.Janiss.
II. BASIC EQUATIONS

Einstein field equations in empty space are

=0 3 (2.}}
we consider a stationary axially symmetric line element

2

ds? = fax® - &2 (dr2 + dz%) - ede? - 2mdxde (2.5

where f, %, m and ¢ are functions of (r, z) only. We shall number the
coordinates (x°, r, z, 8) as (0, 1, 2, 3) respectively. Since each component

of Ricci tensor vanishes, one can use a Weyl - like canonical coordinate
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system, that is (van Stockum®)

£ 4 M = tfz : . | (2.3)

in this coordinate system the field equations are

RS I .
[(Faq + mmg)/r], =0 and S r o (2.5)

where i, j =1, 2 and A =3%/ ar® + 3%/ 22° . The repetition of indices

denotes summation, fi means 81"/'c)xi etc.

III. SPECIAL SOLUTIONS
From the relation (2.3) one can witte

£=l (cosh a- sinha cosh 2u)
r.
6

% = rr (cosha+ sinha cosh 2u) and

———
£4)
A\

-

‘m = r sinha sinh 2u

where o and u are functions of (r, z) only, and r  is a constant of
dimension length; after some algebraic calculations the field equations can

be reexpressed as
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r A¢61j -{ :j.} - %; (6},6; - rz a; dj + 4r2 sinhzdiui uj)=0. (3.2)
(roj) + 2r sinh 2au; u =0  and | (3.3)
.(rﬂﬂ#dq)iso; | o (3.4)
¥e shall condtder here now two special cases:

Case 1)  u(r, 2) = constant.

In this case (3.4) is dentieally satisfied and (333) reduces to

(ro)y =0 3 3

one class of solutions of this equatfon s

o = Iog'r/ro + 2a/p_ A | (3.6)
2. 212 | -
where p = (r" + Z7) and r_ and a are constants. And one can easily
verify that i
b= 50 -areod) (3.7)

is a solution of (3.2). If we define the constants
w=tahu and §=(1-o7) 12 (3.8)
~we get from (3.1).
L G2pac2afp 2 .2 28/p,2 y
fag (@™ ey re /r° )

"ghs Yz(rz.e2l/p - ¢2 fﬁk e~2a/p) | and | (3.9)
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m =y mr.(rezalp /ry = Tq e"2a/p /r) .

The ef-cct of rotation is represented by the terms with w, Since with
w =0 equations (3.7) and (3.9) represent the Curzon metric elements, the
consiaat a can be 1nterpbeted as the mass of the purzon particle.

If one makes the purely'Tota1 transformation of coordinate
differentials (Lewis)

|} . .
dx° = dx°. coshu - r, do' sinhu  and

rod8 = r do' coshu - dx° sinh u ", (3.10)

the metric (2.2) reduces to the quadratic canonical form
62 = &20/0 402 . AU /28) 0 arRaa?)- 2P 40’2y (3.0

so when u = constant equations (3.7: ) and (3.11) suggest a very simple
interpretation of the solution:an ob:erver in the canonical space (r,z,8)
describes the static fie1d§ in the canonical space (r,z,é‘) using a reference
system which rotates with constant angular speec whose measure is given by

lw] <1. In this particular case, the static fizld corresponds to Curzon
field.

Case 2) u = uEz(r;z)]

In this case one obtains from (3.3) and (3.4)

& u/de® +2 cotha du/da - 2 sinh 2a(du/da)® = 0 ; (3.12)

the general solution of this equation is
usu, +y I.og[cotha 3 (cshfa + k) 2]_ (3.13)

F;
/
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with uo' and K constants of integration.

We now define the function ¢(u) by

dp/dy = + 2K sinh?q ., | (3.14)
- then we have from (3.13)
¢ = log [K cosha + (1 + K sinh? &)1/2] (3.15)

apart from an additive constantlof-int,egrjatim.
Equatfons (3.75) and (3.13) reduce (3.1) to

- r/r ‘
. O rpl ot _ 22 B
f ."-'-:w-z-.(B].e ) '52 e)

., .
] -(B,z'e"_ - of 522 e?) and

. 1w

me (s, et -8y ey L (3.16)

T~w

where the constants w , By and By, are related to u, and K by
82 = (1-k)% [(14k)e - eVof[(1-K)e + O], (3.17)

e
82 = (1-K)2[(1-K)e% - e VqreK)ete + €M)  and  (3.18)

-1
W2 = [(1-18) P - &2 - 2] [(1-K) e2Uo - P04+ 2K]

(3.19)
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with (3.16), equation (2.4) reads now

2

q, ' . i T et ‘
r &Sy = (87 8) = & &)y - (6] F + o2 a}w, + (8 8] - rPo; 9;)=0.
_ 2
2r(1-w")
(3.20)
From (3.4) and (3.74) we get
(r )y =05 | (3.2
a special class of solutions of this equation is
- . /
o = T o23/p | 2.22}
' To
and then (3.20). give
o1 +e® 2 arf
Y= 3( ——) (3.23)
1 - m2 ‘ 2p3

apart from an additive constant. Solutions (3.7) to (3.9) and (3.16) to
(3.23) are similar in structure.
One can transform the metric (2.2) with elements (3.16) and (3.23)

into the fundamental quadratic form

- -b . oi2 |

dsg = e™? dx?f'-- ezw(dr2'+ dzz) -r,r e? de'2 (3.24)

r. ‘ - :
.0

with
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x° = YB]‘1 X0 - wﬁél ro 8" . and

: - )
r,98= Y8, o e' ~ wyB, xv L e (3.25)

where as before y = (1 - mz)'”2 .

Iv. GRAVITATIONAL FIELD COUPLED WITH MASSLESS SCALAR FIELD _
The interaction of massless scalar field with gravitational field
can be easily obtained following the method prescribed by [JNNGNENE Janis

et al. for the static case. In prjesénce of massless scalar field V Einstein

equations take the form

RS == VWV (4.1)

where k = 8 1rG/c4 . Since the only surviving components of Vu(r,z) are

Vi where i =1,2, we hav'e in addition to equations (3.3) and (3.4)

s g Vol 12 2 a2 Ve - el-a)" V2 yiy..
3 (4.2)
Now we define
$=2aA/ (4.3)
where A% =1+ «8%/2 and B is a constant such that
V= -Ba/p (4.4

since (r “’i)f =0,  1s also a solution of (3.5) when u = const, so

that we have now
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a = ¥+ log r/r, (4.5)

and 2 , ,
' Ca ar : o :
= 2(A-—) ; : ~ (a.6)
. S .2p3- ,

the remaining metric elements then take the form .
f a2 Z(QeZaA/p - m2,2 eZaAb,ri ) .
g = .,{2('72 .EZa’A/p. “’2'}2, e-ZaA/?) and

For w = 0 the expressions (4.7) reduce to the metric elements
obtained by Gautr_~eau7 for axiaﬁy symmetric static Curzon field coupled

with massless scanrj field.
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