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ABSTRACT

The coupling between localized magnetic momente via comdurtion electrom
is calculated taking into account the temperature and the msan free path of
the electrons. For a fully degenerate electyom gis and aw infints electronic
mean free path the oscillatory RKKY interactiom is obtained. Of the limit of
Boltzmarnn population and for infinite electronfic mbietr free pweht the interse~
tion can only be ferromagnetic. Taking into svvount the clevtronic mneaw free
path the possibility of antiferromagnetism is restored. Furtifermore the ramge
of the interaction decreases.

Several intermediate cases and possible applications are diseussed.

* TInstituto de Fisica, Universidade Federal do Rio de Janeirv.




1. INTRODUCTION

It is well known that localized magnetic moments in metals are
coupled via conduction electrons (1). This is known in the 1literature as
the Ruderman-Kittel (1) or Ruderman-Kittel-Kasuya (3) - Yosida (4) interact-
jon, s-f exchange, indirect enchange etc. The localized magnetic moments may
be the moments of nuclei or incomplete 4f electron shells. The effects of
collisions in this interaction have been studied by Kaplan (5) (electron-

-phonon scattering) and de Gennes (6) (electron-impurity scattering).

Baltensperger and de Graaf (7), Janak (8) and Darby (9) studied the
indirect interaction through the medium of non-degenerate electron gas (a
situation which may arise in doped semiconductors). We shall extend their
work by taking into accout explicitly the electronic mean free path of the
conduction electrons which arises in these systems essentially both by virtue

of finite temperature and doping.

2. FORMULATION OF THE PROBLEM
e begin by considering a system of localized magnetic moments, at
->

>
positions Rj, with spins Sj, interacting with the Bloch electrons (at posit-

-+ ->
ion x, spin s)
> > 1 > -,E';
<‘x|k>=———-u":(X)e' (1)

Where v is the crystal volume. The interaction between electrons and moments

is described by

H=-]or (X-Ry & 3, (2)
J
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Here (Y - Eﬁ) is the so-called exchange parameter between the localized

moment §5 and the conduction electrons s.

We define (here Q is the atomic volume)

+> > v

T (ky k') = — <.;'l F(x)l-; > (3)
193

> >
which in general is a function of k and k'. For the Fermi contact inter-

actions between nuclei and electrons we have

T(x) = TI8(X)

so that

> > v

r(k, k') = ry I‘u.’kil (0) vy (0) = Ig (4)

We shall assume that an incomplete 4f shell is also localized and
that P(?,f‘) is a constant independent of K and R'. Although there has
been considerable effort in order to avoid these assumotions (10), (11),they

are usually good approximations at least for rare-earth system (12).

We shall now apply perturbation theory. It is implicit in this
approach that r(?, I') is much smaller than the characteristic energies of
the conduction states. This is, of course, true if one is considering the
indirect interactions of nuclear moments but requires further analysis in
the case of 4f-shells (13). However, in general, this is also a fair ap-

proximation (12) (13).
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In a straightforward way one obtains

P(R-K') . R. R N
TAD - B FOLT - f(k') ] (5)

- e
A‘iJ - - z > ->
vZ K& E(K) - E(k")

-5

-> ->
i3 = Ry - Ry and f(k) 1is the Fermi distribution function.

->
where R

+
As usual eq. (5) is transformed into an integral over k-space by

means of a new set of variables

K.
ki = ! i= 1,2,3 (6)
J/m. .
h]
p; = R_i Vﬁq i=1,2,3 : (7)
LT e .
. kop = K.R (8)

and m. is the effective mass in the i direction. If Aij is then written in

terms of the new variables, an integration over angular parts yields,
Q2 T2m, m m ‘
_ S X Yy 2
21'[“ p2

g sin(ko) sin(k'p)
fdk — f(k) (10)
. |

[
o] e(k) - elk")
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The terms in f(k) f(k') cancel out.

Here the perturbation theory has been applied on eigenstates (1).In
a more realistic situation the total Hamiltontan should include also phonons
(Hp) and electron-phonon (Hep) interactions. Kaplan (5) has shown that the

effect of H_+ He can be approximately evaluated by introducing relaxat-

P p
fon processes which affect the perturbation as follows

k k' sin(ko) sin(k' p')

I = Re c[dk idb,’ (k) (1)

e(k) - e(k') - 82

2
Nt

Where 62 =

Complex corrections to the energies have been used by de Gennes (13)
for a degenerate electron gas, to account for scattering processes due to

impurities. So we shall assume that equation (11) is also valid in this

case.
-hz k-z ‘“2‘22
The integral in k' is analytic for e(k') = and e(k)=s ————
2
i 7 _3 = (arpy2]i/2
L=r — ke th b sin(kp) e~ B0 [1 = (87R)7] 72 g1y (12)
0

which leads finally to
(13)

5 X Y ZRe

I° 12 o de k sin(kp) exp{ ikp [1 - (6/k)2]l/z} Fk)
P

R Q2rimom m 2
10 ° J
o
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For infinite electronic mean free path 62 + 0 it turns out:

limA, . = X Yy 2

§2+0 1Y

0?2 Pg m,m, m ¢
f db k sin(2kp) (k) (14)
o

4% n2 p2

This is the result obtained by W. Baltensperger and de Graaf (7)
which includes only the effect of non-degenracy of the conduction band. For
a null electronic mean free path 62 -~ e => I + 0 and there are no inter-

action.

In order to simplify the comparison with Baltensperger and de Graaf
results let us introduce the variables
—"2 k2
ZkBT

2\/2kBT

o = ——0
L

N2 82

R
Ep

kBT

Note that we are assuming 8 to be independent of k. This hypo-
thesis has been used by Kaplan (5).
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With the new variables one obtains finally

HQ’I‘;mmm KoT

A1J = XY 2 B G(“:Ban)
2 'hz pz hz
where
< o VX
G (asB,n) = 2 de f(x) sin Red
0 2
21
f(x) = [ex'n + 1]
o 1 © a 1 ©
Red = exp {- — [ x% +82] /" sin — } cos { — [x? + 82 ] /%cos —}
2 2 2 2
B
© = arc tg X
F
_ "F
'n - ———
kBT
2\/2kBT
0 = ————
h
The variation of B gives us the effect of the electronic mean-
free-path

Figures (1), (2), (3) and (4) show G(a) as a function of a for
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different n and B; with doping effects in mind, we illustrate the pas-
sage from Boltzmann-like behaviour to Fermi-like behaviour taking for the pa-

rameter n the following values:

n = -2 fig (1) (a and b)
n= 0fig (2) ( " )
n= 2fig 3) ( " )
n= 4fig (4) (" )

for B from 0 to s

3. GENERAL DISCUSSIOM OF THE RESULTS
The interaction between two magnetic moments in a degenerate elec-

tron gas (n ~ ») is oscillatory. For 8 = 0 this corresponds to the

Ruderman-Kittel interaction (2).

PZQZ
s my my m,
Alps®) = - [ sin (Zka) - Zka cos (Zka)ﬂ]

1611 72 o

For the Boltzmann gas (n +-«), and B = 0, the resulting inter-

action, namely (7),(8)
2 1/ 2
Ig e (m m m)"2n 2kgTp

A (p, =®) = - X Y Z exp {-
2TH p h?

}

The density of particles n is related to n through

1/
m,om m) % 2k,T
n = (x y 2 ( B )3/2 F, (n)

(zmz 2 /Q
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Where F‘/z is a function tabulated by Mc Dougall and Stoner (14). In par-

ticular for n + -« (Boltzmann gas)

%1
F1/2 n+>-») 2 —e

n
Figures 1 to 4 show intermediate cases and the effects of the elec-

- 1
tronic mean free path A (a function of 8, roughly » = —). It can be seen
' ' TkeB
3

that for n = 4, B =0, G(a) resembles the RKKY result. Forn = - 2, G(a)

resembles ferromagnetic gaussian function.

In all cases the electronic mean-free-path has basically two ef-
fects: firstly it weakens the interaction and secondly it changes the phases

of the oscillations. This is clearly seen in figures (1) to (4).

G (8) is plotted (Fig. 5,6 and 7) for some values of o and n. It
can be seen that dG/d8 is negative that is, G decreases with increasing B8
(at least for small values of o). This effect is more pronounced for rj=~2

("Boltzmann-1ike") than for n =4 ("Fermi-like").

Furthemore it is seen that at the Boltzmann limit the presence of
an electronic mean free path (8 # 0) allows negative values for G(a),that is
~ the oscillatory character and the possibility of antiferromagnetic counling
are restored. It should be remembered that for B = 0 the interaction is

purely ferromagnetic for all distances (5), (6).

This is an interesting result. Indeed it shows that it is physical-
ly possible to vary the indirect interaction between two localized magnetic
mements in a semiconductor by varying the electronic mean free path (for

instance, by means of impurities chosen so that they do not interfere with
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the population of the conduction band). On the other hand a chanae in the
population of the conduction band, keeping B constant, by optical means for
example (9), may induce a variation in the strenght of the magnetic coupling.
It should be noted that the indirect exchange results from the spin pola-
rization of the conduction band (13). This can be observed in several ways,
for example, through the changes in the maanetic moment and the indirect g-
shifts(15) of the magnetic ions. The polarization also gives rise to a

hyperfine field which can be measured by NMR or Mdssbauer techniques.

4. NUMERICAL EXAMPLE: EPR STUDY OF MAGNETIC IMPURITIES IN A SEMICONDUCTOR
In an insulator or a semiconductor with an empty conduction band
the interaction between localized magnetic moments may occur also by a
virtual excitation of the conduction band due to interband matrix elements,
the so-called Bloembergen-Rowland interaction (16). For a dilute system of
magnetic impurities (magnetic moments ~ 1uB) embedded in a semiconductor,the
numerical values of the various interactions are estimated in table I for a
semiconductor like germanium. Following Baltensperger and de Graaf (7) we
take m, = m = m. = 23

XYz 30
meters are the distance R between two magnetic ions, the temperature T and

m,£ Q =2.24 x10

cm?, Eg = 0.8 eV. The para-

the degeneracy. The exchange integra] is of the order of a tenth of a elec-
tron Volt. Table I compares the various types of interactions for typical
~values of the four parameters involved: distance R, temperature T, degene-
racy and the electronic mean free path effect in terms of the new variable
B. It is seen that for R = 402 all the interactions are of the same order
of magnitude. It can be seen also, as mentioned before, that the electronic

mean free path may change the magnitude and the sign of the  interaction.
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It should be remembered that for a moment of 1 Ug the energy of 6.7 x 10°°

eV coresponds to a width of one Oersted.
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A' is the Bloembergen - Rowland interaction.

A =g / R3 1is the magnetic dipole interaction.

10 40
%) 100 500 100 500
M 0.30 0.67 1.2 2.7
n 2 -1 2 -1 2 -1 2 -1
n 4.3x10'7| 5.0x10'% | 4.8x10'® | 5.6x10!7 4.3x10'7 | 5.0x10'¢ | 4.8x10'® | 5.6x10!7
2
:’Pso 4.3x10"°] 5.1x10° | 4.2x10"" 5.2x10"" 6.4x10"° | 8.8x1072° | 1.2x10™° | 2.0x10"°
2
2/1‘51 4.0x10"°| 4.8x107* | 3.7x10°7 | 4.ax10°° 4.8x107° | 6.4x107° | -7.0x10™° | 4.2x107"}
2
:/rs 3.9x10"°| 4.5x10™° | 3.3x10"7 | 3.9x10"° 3.7x10°° | 4.8x107'° | -9.8x10™° | -6.8x10"2°
=2
2 - - -
2/1'-5 3.6x107°f 4.2x107° | 2.7x1077 | 3.2x107° 2.2x107° | 2.9x107"° |-1.05x107° | -1.0x107* !
(g s 8
IA'l/r; 3.5 x 10 ° 7.1 x 107°
A" 5.4 x 10°° 8.4 x 1071°
TABLE 1
A= AiJ is the indirect interaction.

) 74
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