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INTRODUCTION

Inapreviousworkl

(referred as I) the case of normal metal alloys was
discussed within a pseudo-potential approach, paying special attention to node
effects. In that case, the electronic strucutre of the host was characterized
by a broad conduction band, and a set of atamic-like sharp bands defining
inner shell states (fig. 1). The node effects discussed there involved essen-
tially orthogonalization effects introduced by the extra atamic states

associated to the impurity (cf. fig. 1).

The main difference between noble, transition and normal metals lies in
the existence of a d-band (filled in the case of noble metals and partially
filled for the transition metals) in the neighbourhood of the Fermi level (cf.

fig. 2 and 3).

These d-states introduce further difficulties in the discussion of the
alloy electronic structure even in the absence of node effects, so in this
work we restrict ourselves to the simplest case of dominant charge effect. The
pseudo-potential theory for noble and transition metal hosts has been recently
discussed by Harrison 2, and the main point of the approach is to realize that
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pseudo~wave function remaining free electraon like as in normal metals.

A quite different approach shculd be used for transition metals: one starts
with the pure d-d scattering pradblem defined in terms of tight binding sums
as the zeroth order terms 3; s~d mixing is then allowed to introduce correc-
tions exactly in the same way as in its pure metal counterpart 2 m this way
in the limit of zero impurity perturbation ane recovers Harrison's pseudo po-

tential description of the transition host metal.

FORMUIATI(N OF THE IMPURITY PROBLEM FOR THE NOBLE METAL CASE

We start defining the alloy wave function, assuming from the begining that
node effects may be disregarded. The case of impurity and host belonging to
different lines of the periodic table may be handled in similar lines to those
developped previously (I); the only difference respect to normal metals is that
d-states must be included in considering the node effects. Ve start defining

the "true" scattered wave function |1pk+> , solution of
+ +
(T+V+0) |y, > = E | ¥ > (1)
which must satisfy the following requirements:

i) The scattered wave function must be orthogonal to all inner shell
states: (assumed here to be identical to those of the pure metal)

<a|w;> = 0 for all states |o> (2)

ii) It reduces in the limit of zero'perturbaticn to the host metal value:

+
lim |y > = [y > (3)
U —-»0 k k

iii) It shows an outgoing behaviour typical of the scattering prdblem.

A very convenient : way of writting W’; > is provided 2 by an expansion
in terms of an overcamplete set of plane waves and tight-binding d-states. In

doing so, one autamatically fulfills condition (i) since for
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where in the absence of node effects we used:
(T+V) o > = Eala > )]

Now equation (6) must be multiplied by a particular d-state in order to obtain
an equation determining {aé"')} . In doing so we use the following relations

derived by Harrison 1:
<d|T+v[¢; > = Ed<d{¢l‘: > - <d|Al¢; > (8-a)
which follows fram:
(T+V) [d > = E |d > - Ald > (8-b)
where
Ey = <d|T+V][d > : (8-c)

the mixing potential A being defined by equation (5). It follows also fram
(8-b) that:

<d|T+v|d' > = Eq Sqq' ~ <d|Ala’ > (8-4)

and

z < d|ald' > =0 (8-e)

d’ Qg
for any c-numbers {cxd.}, using the tight—bindjng approximations.

Performing the calculation through these steps one gets:

<d|T+V|¢; >+ Iy, aéf)< d|T+v]d'> + <dIU(1—Za|a><a|)|¢; >
+ + +
+ I aé,)< d|ula'> = E < dl¢, >+ E_ ac(l ) ©®)

where use was made of <a|d > =0 for any |o> and |d> . Using equations (8-a),
(8-d) and (8-e) one rewrites (9) as:

+ + +
E, <d|¢k > - <d|A|¢k >+E, 2"

+
4 %4 +-< d|U(l—z:m]cx><o‘|¢)k >

+ _ + +
g,)<d|U|d‘> = E_ <d|¢k >+ £ alt) . (10)

* Iy a k 3
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were solutions of the exact crystal hamiltonian. The second term of (12) is then
the mixing term responsible fbr the occurrence of a d-like character inkthe con-
duction states. It must be emphsized that if V=V_ (atamic d-states exact solu-
tions of the crystal problem) then by (5)' it follows that A = 0 and the wave
function (14) is reduced to anormal. metal type wave function.

Now we are in position to discuss the meaning of the reamining terms of
equation (12). The third term of (12) describes impurity induced s-d mixing,
which campares formally to the second term just by replacing the mixing poten—
tial A by the "reduced" impurity potentialy (1-Z_|o><a

). Finally the last
term describes pure d-d-sacttering, which is the wesponsible for pilling-up
d-states at the top of the band or for the existence of a d-bound statr:es}outside
the d-band. To solve equation (12) for the coefficents {a\} is then equi-
valent to solve the pure d-d impurity problem defined by matrix elements
<d|yld'> . At this point we introduce for simplicity the approximation of
localized impurity potentials for which <d|u|d'> =T , where U is independent
of 4, 4'. Withinv this approximation it is possible to obtéin,a quite simple
e:q:zessiom‘for the aé+) coefficients without disturbing significantly the
physics of the problem. It follows then form (12) that:

<d'lA|¢‘1':> S <d'|U(1-Z§|a><aI)’|¢;>

2., a® =z ,<da'l¢H> + 1, T +
a' % d k ' T g d E - E
d' k k da'
. |
+ I, g, i) (15)
E - Ey

Introducing the function F(E) defined by: F(E) = I 4 I/E-Ed it follows from (15)

e el oz |w<able?
1 <a'l|ale, > <d'|u(1-z_|o><a e, >
a' a‘gt) B e _Zdv<d‘ |¢i:> + zdv k + zd' 2 k

1-0F (Ek) EyiE, | E - E ar

z

(16)
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{T+V+Za(Ek—Ea)§|a><al}1¢1':> +I, aé*') EM|d> -1, E a§+) 4>

(

+) +
i uld>=Ee > (19)

) +
+ U(1—2a|a><a|)|¢k> +Lja

Expression (19) is written in such a way that the first three terms
contain non-vanishing contributions in the limit U —0 and the last two terms
are pure impurity effects. Now we calculate the terms I aé"') (E;~A) |a > and
Zdka aé"') |@> using expression (18); according to this expression in Zq aé"') |a>
there are terms independent of U, which describe pure metal effects and the
impurity dependent terms which we call Ty al) (u) |d>. In the calculation of
the above terms we insert explicitly for I al’ | enly the impurity
independent terms, keeping the remaining terms as aé'") (). In this way one

- ja><al
: (E ~A) |d><d|A
+) . ) d + +).
Zq aé )(Ed—A)|d> ={-5 E D) |d><d]| + £ [$> +2 3§ )(U)(Ed'A)ld>
, E - E d
d 'k
(20a)
Ek|d><d|A
+ + +
g E, ag )ld>> ={- 3 Ek|d><d| + Zd — |¢k> + Ed aé )(U) Ek[d > (20b)
Eq 7 By
Substituting (20a) and (20b) into (19) one cbtains:
. - J. (Ed—Ek-A)ld><dlA
{T+v+ (B -E ) |o><a] } ¢, >+ <~ £, (E,~A) |d><d|+ I E |d><d|+ I —= lo. >
o k a+'d 4k i - E -E k
: : d "k

(+

* d

) _ +
uld> = E |6, >

P w a0l - : a$? WE, &> + vz Jo><al) [o7> + a

z

d
(21)

The first two terms of (21) can be rearranged to reproduce the pure noble metal

pseudo-hamiltonian derived by Harrison 2; one cbtains for these terms:

"T+v+za(Ek—Ea)|a><a|+zd(Ek-Ed)|d><d]+sz[d><d|+zd|d><d|A +

Ald><d|A

P
hX +
d I¢k> =Z

+
'nobl ¢k> (22)

+

B, - Ey
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Uld><d|A (E~E, ~0+7) [d><d lua-za |a><al)

tf-'u(l-zala><a,l-2d|d><d|)+>:d .—E_T + 3 g
d 'k k d
(Ek—Ed—A+U)|d><d|Uf ~ldT><d'|a [a'><d' | u(1-Z_|o><al])
+I, - % |d'><a'|+ Z + 3 ' 2 (27)
- =11 ' ' - ' -
(4B, ) (1-T F(Ek))[_ d d' ;- B, d E - Egy

Using the UP defined in such a way, the scattering equation for the pseudo wave
function becomes

+ P .+
(Elsn"“il-iob)N’k> = Ule> (28)
or incorporating the out-going behaviour and the condition 1lim ¢; = [¢k> one
: V-0 -
cbtains the equivalent Lippman-Schwinger equation:
lor> =|¢, > + . UP|+>> (29)
1 e aanaalb L
k ®nob” *

Whence equation (29) is solved in terms of the impurity potential U, using equa-
tions (4) and (12) one obtains the "true" scattering wave furrction. The self

consistent solution is then cbtained using the same methods as in I.

INTERPRETATION OF THE EFFECTIVE POTENTIAL

The eguivalent problem defined by equations (29) and (27) provides a
clear picture of the scattering mechanism involving d-electrons in the noble
metal case. These mechanisms are all contained in the effective potential,
since the effective scattering equation is free electron like.  Fram eqm:aﬁim
(27) one sees that the matrix elements of U° between plane waves, <k'|tf k>
involve several cmtributions (cf. Appendix 1).

To put in pictorial temms let's introduce the following elementary

scattering processes:
‘a) The direct scattering fromk to k', in presence of a reductioh
factor (1—Za|a><a|— &‘-Id><d|) as in the case of normal metals without node effects
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where 8 = @ times and the occurrence of the factor (1-U F(Ek)) cha-

1-0 F(E)
racterizes the usual &-d ~ scattering problem. Fram this factor one knows if
there exists impurity extracted d-bound states which appear in Anderson's model 4

of impurity problems.

Using this notation the effective potential matrix elements can be
analyzed in the following processes

L A —'4; _*{);/'\“' (‘\ /‘9\

FORMULATION OF THE IMPURITY PROBIEM FOR THE TRANSITICN METAL CASE

A) Pure Metal Results

At this point it is worthwile to summarize Harrison's main results
for the pure transition host. If we call |d> the tight-binding sum correspond-
ing to d-states, the "true" wave function for energies in the d-like region
read:

|pd> = |a> + (1-za|a><a|)|¢ > (30)

where the pseudo wave function |¢ > is defined as:

[¢> = Ekak|k> (31)
Substituting (30) in the Shrédinger equation and using (5), (7), (8b) and (8c)
one gets for |¢>

(T+V) | ¢> + L, (E-E ) |a><a[¢> + (E4E-D) |a> = E[¢> (32)
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(+)
d

W’; > = Zd' as, Id'> + (1—Za|a><a|)|¢+> (34}

In equation (34) the coefficients a(T) are the solution of the pure tight

binding scattering problem 3 (cf. below), and the scattering conditions read:

*) _ +)

aj + Gad,

4’ (35)

where éad.(+) describes scattering and reduces to zero in the limit of zero per-
turbation. Quite similarly the scattered pseudo wave function is defined as:

+

67> = 2, alt [k'> (36)

the coefficients a]f',') being defined as

f

) = o, + sty @

the a being the solutions of (30) and (33), and correspond to the pure metal

limit., In these conditions equation (34) can be written as:

|W§+)> = {|a> +(1—Za|a><a|)|¢>} + Z'Gaét)ld'> + {(1—Z|a><a|)2'6aét)|k'>} . (38)
d o k

Equation (38) shows the characteristic features of the problem; the first term

is the pure metal d wave function, the second and the third being respectively

the scattered d-like states and the impurity admixed s-like states.

Finally, it should be emphasized that up to here only scattering
states are considered. If the impurity perturbation is strong enocugh to
extract d-bound states fraom the d-band, one should modify the proposed wave
function (38).

C) Definition of Tight Binding Impurity Prablem

First of all we introduce the tight binding hamiltonian defined by
j{,TB =T+ V,, V, being an atamic like potential, fram which the tight binding

of states is derived. Now we introduce the self-consistent impurity potential
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(T+V+I (E-E ) |a><a]) |¢+> + (B ~E-A) |d> - E|¢+> + U(1—Za|a><a|)|¢+>

+ g' 6a§T)(U)(Ed.—E-A)|d'> +3I

4 adT uld'> =0 (44)

The first three terms of equation (44), being the limit for zero impurity pertur-

bation of the scattering equation for the pseudo wave function, coincide with the

host metal equation (32). The fourth term describes s-s scattering induced by the

"reduced" impurity potential U(1-2a|a><oc ). Finally the last two terms are s-d
mixing terms involving respectively host metal s-d mixing to scattered d-states

and impurity induced s-d mixing.

E) Solution of the Scattering Equation by a Perturbation Approach

We firstly substitute equation (36) into equation (44), define W, =

=V+%EﬂJMXM,wga:

Zk' 818) (T+W0—Ek)|k'> + (Ed_Ek_A)|d> + Zk' al?") U(1‘2a|0‘><ot|‘)|k'>

+ i'aaéf)(U)(Ed,—Ek-A)ld'> + Ua> + : sa{ ula'> = 0 (45)

where we which to emphasize that the coefficients cSa(".') (U) are known fram a
previous solution of the prablem defined by (39). Since the zeroth order solu-
tion of (45) must correspond to Harrison's determination of the s-d admixing

coefficients 3y v of equation (37), we find from (45):
v @ (THW -, ) k"> + (E ~E, -0) ld > =0 (46)

the solution being given by Harrison (first arder solution is exemplified in

(30). Now it remains to determine the 8a\') coefficients in (37) in powers of the
scattering potential. In order to do that one should realize that the first two
terms of (45) just describe host metal contributions, all scattering properties
being cntained in the remaing terms. Once one recognizes this, the frist two

terms may bereplaced by:
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Expression (50) shows the essential features of the impurity states. The first
two terms are the well known host metal incident wave and the pure tight binding
scattering terms. The third term describes how already admixed s-like states
(through the coefficients ak..) are scattered by the "reduced" impurity potential
to other s-like states labelled by k'. Hence third terms is typically a s-s
scattering term. The fourth term describes how host metal s-d mixing couples
scattered d-states to s-like states, introducing then corrections to the pure d-d
tight binding scattering states. Finally the last term gives the direct impurity

induced s-d mixing of s-like states to the d-states.

DISCUSSIN

In both cases (transition and noble), the essential features of the
gpproach are the tight binding sums, plane wave expansions and the orthogonality
requirements. The host metal s-d mixing effects areise from the self-consistency
calculation in arder to dbtain the actual pure crystal potential V, and this will
be supposed to be done in a previous calculation. A very important consequence
of the orthogonality requirements in the impurity prablem is connected to the
fact that plane waves are not orthogonal to core states and the orthogonaliza—

tion procedure introduce a "reduction factor" in the "bare" impurity potential U,

in the form U(l—Ea]a><a ). In the text, sometimes the "bare" potential appears
as inducing s~d mixing and d-d scattering . However, the above reduced potential

may be thought as acting in these processes also because:

<d|v(-Z|a><al)|d'> = <d|u|a'> - I <d|U|a><ald'> = <d|Uu]d’>
o o
<k|v@-z|o><a|)|d > = <k|U|d > - T <k|U]a><a|d > =

<k|Uld >
o a .

this should be campared to
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waves Zt|t><t| =1, in equation (29) in order to cbtain a tractable equation for
the scattering T matrix as discussed in detail in |I
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INTRODUCTION
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(referred as I) the case of normal metal alloys was
discussed within a pseudo-potential approach, paying special attention to node
effects. In that case, the electronic strucutre of the host was characterized
by a broad conduction band, and a set of atamic-like sharp bands defining
inner shell states (fig. 1). The node effects discussed there involved essen-
tially orthogonalization effects introduced by the extra atamic states

associated to the impurity (cf. fig. 1).

The main difference between noble, transition and normal metals lies in
the existence of a d-band (filled in the case of noble metals and partially
filled for the transition metals) in the neighbourhood of the Fermi level (cf.

fig. 2 and 3).

These d-states introduce further difficulties in the discussion of the
alloy electronic structure even in the absence of node effects, so in this
work we restrict ourselves to the simplest case of dominant charge effect. The
pseudo-potential theory for noble and transition metal hosts has been recently
discussed by Harrison 2, and the main point of the approach is to realize that
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tight-binding sums constructed fraom atamic d-states are not exact solutions of
the camplete crystal problem. Fram Harrison's devellopments it follows that: for
noble metals for instance, s-d mixing effects appear to play an i.nportarrt ~role
for etates near the top of the tight-binding d-band. It is expected then, that,
impurity induced rearrangements of the d-density of states near the top ' of the
d-band may have important consequences in discussing isamer shift, It is then
the purpose of this work to generalize the methods discussed :I.n I to the case
of noble and transition metals. At this point it is important to well separate
the approaches to describe noble and transition metals. In fact, in ndble
metal cases one has for the states in the neighbourhood of the Fermi level (and
these are the important states for alloying purposes) a dminant*'sj—ijke
character, d&band contributions appearing only through s-d nﬂ.:d.ng effects. On
the contrary, for the transition metal case, the dominant ccntributicn cares
fram d-like states dbtained fram tight binding sums as far host and alloy cases

are concerned 3.

It seams natural then in the case of ndble metals to use an vequivalent
prablem approach where the d-d scattering and s~d mixing effects appear as an
effective non-local potential, introducing scattering on the plane wave: states.
On the contrary, for transition metal alloys, one expects that s-d mixing ef— -
fects appear as a perturbation to the pure d-alloy scattering prcblkn as
defined previously 3, so cne dbtains for the alloy problem a close paralelism

between this case and Harrison's transition host prablem.

To summarize: for ndble alloys again one starts defining the "true" scat-
tering problem, the corresponding pseudo-wave function and the’ effective
impurity potential. The main difference respect to normal netals :I.s ~provided
by this effective potential since now the effects of d-d scattering and s-d mix

ing are all incorporated into the potentlal, the scattering equaticm for the
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pseudo~wave function remaining free electraon like as in normal metals.

A quite different approach shculd be used for transition metals: one starts
with the pure d-d scattering pradblem defined in terms of tight binding sums
as the zeroth order terms 3; s~d mixing is then allowed to introduce correc-
tions exactly in the same way as in its pure metal counterpart 2 m this way
in the limit of zero impurity perturbation ane recovers Harrison's pseudo po-

tential description of the transition host metal.

FORMUIATI(N OF THE IMPURITY PROBLEM FOR THE NOBLE METAL CASE

We start defining the alloy wave function, assuming from the begining that
node effects may be disregarded. The case of impurity and host belonging to
different lines of the periodic table may be handled in similar lines to those
developped previously (I); the only difference respect to normal metals is that
d-states must be included in considering the node effects. Ve start defining

the "true" scattered wave function |1pk+> , solution of
+ +
(T+V+0) |y, > = E | ¥ > (1)
which must satisfy the following requirements:

i) The scattered wave function must be orthogonal to all inner shell
states: (assumed here to be identical to those of the pure metal)

<a|w;> = 0 for all states |o> (2)

ii) It reduces in the limit of zero'perturbaticn to the host metal value:

+
lim |y > = [y > (3)
U —-»0 k k

iii) It shows an outgoing behaviour typical of the scattering prdblem.

A very convenient : way of writting W’; > is provided 2 by an expansion
in terms of an overcamplete set of plane waves and tight-binding d-states. In

doing so, one autamatically fulfills condition (i) since for
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(+)

g - (4)

> = (-Ija><ap|e>+1I;, a

‘one has <0M'J;> = 0 for ail states ]a> since tight-binding states ld;‘> are ortho
gonal to the inner shell states |a> (<a|d'> = 0 for all |a>, |d'>). Expression
(4) is formally similar to Harrison's wave function for the pﬁi‘é noble metal, but
here the determination of thé ’{ég}  coefficients envolve the soiutionv of a pure
d impurity problem as it will be discussed belou.‘ The existénoe of admixed d-
states in the pure metal case is cannected 2, to the fact that tight-binding sums
ocmstructed from atomic d-orbitals are not exact solutions of crystal's Schrodin-
ger equation, and the mixing manifest through a potential A defined by Harrison
as: |

Ald >= 8V|d > - <d[sv]|d>|d > (3)

the potential &V being the difference between the actual self-consistent crystal
potential V and an "atamic" potential Va, frem which the d-states are derived_.‘

The role of d-gtates in the impurity prohlem for ncble metals may be under-—
stood physically in the following way. Suppose a repulsive potential for ins-
tance; when acting on d-states this potential, depending on its strength pile up
states at the top of the d-band or extracts a d&bound state above it. In both
cases, due to s—d mixing (impurity indiced or through the A mixing potential
(5) one has an enhancement of the d-character at the Fermi level or the ap-
pearance (in the case of d-bound states) of a virtual bound state. These ideas
will become clearer with the calculation of the {a\") } coefficients and the
definition of the equivalent equation. Now we prooeed with the details of the

Wy

calculation of {ad Substituting (4) in (1) one gets:

(+)

+ + +
(T+V)l¢k> - za Eala >< a}q)k >+ 7 (T+V)|d'> + U(1—2a|a><a|)[¢k > +

4’ ad'
(+) . + + +)
+ I, a5, vjd"> = Ek|¢k> - i Ek|oc > < o:H:k >+ L0 E aé, [d'> (6)
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where in the absence of node effects we used:
(T+V) o > = Eala > )]

Now equation (6) must be multiplied by a particular d-state in order to obtain
an equation determining {aé"')} . In doing so we use the following relations

derived by Harrison 1:
<d|T+v[¢; > = Ed<d{¢l‘: > - <d|Al¢; > (8-a)
which follows fram:
(T+V) [d > = E |d > - Ald > (8-b)
where
Ey = <d|T+V][d > : (8-c)

the mixing potential A being defined by equation (5). It follows also fram
(8-b) that:

<d|T+v|d' > = Eq Sqq' ~ <d|Ala’ > (8-4)

and

z < d|ald' > =0 (8-e)

d’ Qg
for any c-numbers {cxd.}, using the tight—bindjng approximations.

Performing the calculation through these steps one gets:

<d|T+V|¢; >+ Iy, aéf)< d|T+v]d'> + <dIU(1—Za|a><a|)|¢; >
+ + +
+ I aé,)< d|ula'> = E < dl¢, >+ E_ ac(l ) ©®)

where use was made of <a|d > =0 for any |o> and |d> . Using equations (8-a),
(8-d) and (8-e) one rewrites (9) as:

+ + +
E, <d|¢k > - <d|A|¢k >+E, 2"

+
4 %4 +-< d|U(l—z:m]cx><o‘|¢)k >

+ _ + +
g,)<d|U|d‘> = E_ <d|¢k >+ £ alt) . (10)

* Iy a k 3



100

Rearranging terms one gets:

+ + + ) + + .
(Ek'Ed)aé )- (Ed-Ek)<d|¢k> - <d'A|¢k> * <d|U(1—Za|a><a|)|¢k>+2d,a§.)<d|uld'>
(11)
or finally: ] + | | N + ,
<d|Aj$, > <d|U(1-IZ_|o><a])|¢, > 1
¢ y By~ By B " Ea B -Eg O °
(12)

Equation (12) solved for the unknowns {aé”} provides the solution of the first
step of the equivalent equation approach for nable metals, since it is clear
fram (12) that the {a\")} are cbtained in temms of |¢}, which stbstituted in
(6) provide an effective equation for the scattered pseudo wave function. This
means that ‘equation (12) incorporates the solution of the pure d impurity pro-
blem and how &-states mix with condution states. In order to get a better
feeling of things involved in equation (12) it is interesting to recover the
pure metal limit derived by Harrison just taking U = 0 in the equation defining
the aéf).
pseulo wave functions and the corresponding coefficients {ad}, one gets fram

(12)

s. If one calls |¢, > the pure metal (U = 0) limit of the scattered

<d|a|¢>
a - <d|¢k> + —— (13)

Ed— Ek

84

Substituting (13) into (4) one ocbtains the pure metal "true" wave function:

| la*><a'|a]e,>
|wk> = (1—za|a><a|)|¢k>- Zd,ld'><d'|¢k> + I k
Ed," Ek
|d'><d'|A|¢k>
= (1—2a|a><a| - Zd,ld'><d'|)|¢k> + I — . (14)

d'” "k

This expression provides a very simple interpretation of the first two terms
of (12). The first term - <d|¢k> is jus:t the orthogonalization contribution
of the d-states as it occurs in the normal metal, and as if tidht-binding sums
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were solutions of the exact crystal hamiltonian. The second term of (12) is then
the mixing term responsible fbr the occurrence of a d-like character inkthe con-
duction states. It must be emphsized that if V=V_ (atamic d-states exact solu-
tions of the crystal problem) then by (5)' it follows that A = 0 and the wave
function (14) is reduced to anormal. metal type wave function.

Now we are in position to discuss the meaning of the reamining terms of
equation (12). The third term of (12) describes impurity induced s-d mixing,
which campares formally to the second term just by replacing the mixing poten—
tial A by the "reduced" impurity potentialy (1-Z_|o><a

). Finally the last
term describes pure d-d-sacttering, which is the wesponsible for pilling-up
d-states at the top of the band or for the existence of a d-bound statr:es}outside
the d-band. To solve equation (12) for the coefficents {a\} is then equi-
valent to solve the pure d-d impurity problem defined by matrix elements
<d|yld'> . At this point we introduce for simplicity the approximation of
localized impurity potentials for which <d|u|d'> =T , where U is independent
of 4, 4'. Withinv this approximation it is possible to obtéin,a quite simple
e:q:zessiom‘for the aé+) coefficients without disturbing significantly the
physics of the problem. It follows then form (12) that:

<d'lA|¢‘1':> S <d'|U(1-Z§|a><aI)’|¢;>

2., a® =z ,<da'l¢H> + 1, T +
a' % d k ' T g d E - E
d' k k da'
. |
+ I, g, i) (15)
E - Ey

Introducing the function F(E) defined by: F(E) = I 4 I/E-Ed it follows from (15)

e el oz |w<able?
1 <a'l|ale, > <d'|u(1-z_|o><a e, >
a' a‘gt) B e _Zdv<d‘ |¢i:> + zdv k + zd' 2 k

1-0F (Ek) EyiE, | E - E ar

z

(16)
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Conbining eq.uaticns‘ (16) and (12), in the localized impurity poténtial approxi -
mation, it follows finally that the coefficients {ag')} are:

<dlalep>  <d|gQ-z lo<al) 6>
+

+ +
3§ )-—<d|¢k> +

Ed- Ek Ek - Ed
o~ . + +
i <d'|ale.> <d'|u(1-z |e><al) |4, >
+ -L<d"|¢p >+ ————+ I &
- ~1F ' ' - 1 -
(Ek Ed)(l U F(Ek)) d d' Eg - Ep d E - Egr

(17)

Expression (17) can be rewritten in a more practical way, if cne calculates
the total contribution Ig aé"') |@ of the d-states to the scattered wave func-
tion. Using the approximation ¥ = <d|u|d'> one gets:

|d><d|A |d><a| ™ -3 |o><a|)

Ly afl*)ld> ={=-I|@><d| + L ——+ I |¢;>
d d Ef~E d E-E;
|a><a]u [ Jar><at|a  Jat><d'[glaes foo<ah)|
+ 3 ~Z|d*><d'}+ T , +2 - < : |¢k>
- - 1 ) - -
4 (& -E) (-0 F(E)) l d d' Eg,- B E - Eg
| (18)

The advantage of expression (18) is that it shows clearly that whence |¢;>, is
cbtained fram a scattering type of calculation, by operating with known operators

one dbtaips directly the d-like part of the wave function. Equation (18) is
also the central step for cbtaining the equivalent scattering equation for
|¢; > bécause of its special form:

+), +
Zd aé )}d> = Operator |¢K>

Now, next step is to cbtain the equivalgnt equation for the scattered pseudo
wave function |¢:>. To do that we return to equation (6) which is now rewrit-

ten as:
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{T+V+Za(Ek—Ea)§|a><al}1¢1':> +I, aé*') EM|d> -1, E a§+) 4>

(

+) +
i uld>=Ee > (19)

) +
+ U(1—2a|a><a|)|¢k> +Lja

Expression (19) is written in such a way that the first three terms
contain non-vanishing contributions in the limit U —0 and the last two terms
are pure impurity effects. Now we calculate the terms I aé"') (E;~A) |a > and
Zdka aé"') |@> using expression (18); according to this expression in Zq aé"') |a>
there are terms independent of U, which describe pure metal effects and the
impurity dependent terms which we call Ty al) (u) |d>. In the calculation of
the above terms we insert explicitly for I al’ | enly the impurity
independent terms, keeping the remaining terms as aé'") (). In this way one

- ja><al
: (E ~A) |d><d|A
+) . ) d + +).
Zq aé )(Ed—A)|d> ={-5 E D) |d><d]| + £ [$> +2 3§ )(U)(Ed'A)ld>
, E - E d
d 'k
(20a)
Ek|d><d|A
+ + +
g E, ag )ld>> ={- 3 Ek|d><d| + Zd — |¢k> + Ed aé )(U) Ek[d > (20b)
Eq 7 By
Substituting (20a) and (20b) into (19) one cbtains:
. - J. (Ed—Ek-A)ld><dlA
{T+v+ (B -E ) |o><a] } ¢, >+ <~ £, (E,~A) |d><d|+ I E |d><d|+ I —= lo. >
o k a+'d 4k i - E -E k
: : d "k

(+

* d

) _ +
uld> = E |6, >

P w a0l - : a$? WE, &> + vz Jo><al) [o7> + a

z

d
(21)

The first two terms of (21) can be rearranged to reproduce the pure noble metal

pseudo-hamiltonian derived by Harrison 2; one cbtains for these terms:

"T+v+za(Ek—Ea)|a><a|+zd(Ek-Ed)|d><d]+sz[d><d|+zd|d><d|A +

Ald><d|A

P
hX +
d I¢k> =Z

+
'nobl ¢k> (22)

+

B, - Ey
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Using this result, equation (21) can be rewritten as:
+ + +) +). :
E A |65>=01-2 a><a]) 67> ; a )<U><Ed-Ek—A>|d>+§ a{Pvja> (23)

o

DETERMINATION OF THE EFFECTIVE IMPURITY POTENTIAL AND THE EQUIVALENT SACTTERING
EQUATICN

The effective impurity potential is defined in the following way:
U7 ¢;> = right hand side of (23)

More explicitly one gets:
Uld><d|A

P, .+ » + . +
U |op> = U(1-Fla><al) |¢p> + I {-Uld><d]+ — lo > +
- E
d "k
£, o (W) E,E -0) | 0> - (24
'a %a 4k

where in the last term of the right hand side of (23) the impurity independent
terms were separated fram the ag") (v) terms. It turns out fram (24) that the

first two contributions to the effective potential are given by:

uld><d|a
U(1-Z | a><a| -Zd|d><d|) + Ly m— (25)

o Ed- Ek

These terms do not involwve explicitly the d-d scattering which is contained
in the last terms of (24). Using equation (18) we calculate:

(B yE, ~0+0) | d><d| v(1-Z, |a><a])

1€ ) IS _ +
Ly ay  (U(E4qE.- +0)|d> =4I, — ¢, >
Kk d
(Ed—Ek-—A+U)Id><d[U[ » |d'><d"’|A |d'><d'lu(1-2a|0t><a[ .
+I -I |a»<«d'| + —————+73 ]¢k>
- -1 ' ! - ' -
d (B -E)(1-0 F(E)) [ d d'" Eg - E  d E - Eq

(26)
Using (25) and (26) one cbtains finally for the effective impurity potential:
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Uld><d|A (E~E, ~0+7) [d><d lua-za |a><al)

tf-'u(l-zala><a,l-2d|d><d|)+>:d .—E_T + 3 g
d 'k k d
(Ek—Ed—A+U)|d><d|Uf ~ldT><d'|a [a'><d' | u(1-Z_|o><al])
+I, - % |d'><a'|+ Z + 3 ' 2 (27)
- =11 ' ' - ' -
(4B, ) (1-T F(Ek))[_ d d' ;- B, d E - Egy

Using the UP defined in such a way, the scattering equation for the pseudo wave
function becomes

+ P .+
(Elsn"“il-iob)N’k> = Ule> (28)
or incorporating the out-going behaviour and the condition 1lim ¢; = [¢k> one
: V-0 -
cbtains the equivalent Lippman-Schwinger equation:
lor> =|¢, > + . UP|+>> (29)
1 e aanaalb L
k ®nob” *

Whence equation (29) is solved in terms of the impurity potential U, using equa-
tions (4) and (12) one obtains the "true" scattering wave furrction. The self

consistent solution is then cbtained using the same methods as in I.

INTERPRETATION OF THE EFFECTIVE POTENTIAL

The eguivalent problem defined by equations (29) and (27) provides a
clear picture of the scattering mechanism involving d-electrons in the noble
metal case. These mechanisms are all contained in the effective potential,
since the effective scattering equation is free electron like.  Fram eqm:aﬁim
(27) one sees that the matrix elements of U° between plane waves, <k'|tf k>
involve several cmtributions (cf. Appendix 1).

To put in pictorial temms let's introduce the following elementary

scattering processes:
‘a) The direct scattering fromk to k', in presence of a reductioh
factor (1—Za|a><a|— &‘-Id><d|) as in the case of normal metals without node effects
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(as it should be if tight binding states were exact states of the crystal hamil-

tonian) 1is depicted as:

kl

£ 9 =avarwcalz o)k >

b) Bare scattering by the impurity potential U is represented as:

K d.
._‘5...'/ or —‘i"a meaning <k'|U|k > and <d'|U|k > respectively.

c) Host metal s—-d mixing inducing s-d scattering

d

.’5.@/ i <d|A|x>

Ed-. Ek

e) The impurity effects reduced by inner shell ormogaia]ization:

d
R -
—»@/ = <d|U(1—2a|<x><a|>|k >

f) The matrix elements ¢k|d) are represented by:

4

e X

Using this notation it is possible to describe the processes involving d-d
scattering. Typical examples are provided by the last terms of (27).

In fact a s-d mixing involving d-d scattering can be depicted as:

d d'/@d 4/ Ad d'd |
_“gx/@\\ +—£—d{©\ + kg
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1

where 8 = @ times and the occurrence of the factor (1-U F(Ek)) cha-

1-0 F(E)
racterizes the usual &-d ~ scattering problem. Fram this factor one knows if
there exists impurity extracted d-bound states which appear in Anderson's model 4

of impurity problems.

Using this notation the effective potential matrix elements can be
analyzed in the following processes

L A —'4; _*{);/'\“' (‘\ /‘9\

FORMULATION OF THE IMPURITY PROBIEM FOR THE TRANSITICN METAL CASE

A) Pure Metal Results

At this point it is worthwile to summarize Harrison's main results
for the pure transition host. If we call |d> the tight-binding sum correspond-
ing to d-states, the "true" wave function for energies in the d-like region
read:

|pd> = |a> + (1-za|a><a|)|¢ > (30)

where the pseudo wave function |¢ > is defined as:

[¢> = Ekak|k> (31)
Substituting (30) in the Shrédinger equation and using (5), (7), (8b) and (8c)
one gets for |¢>

(T+V) | ¢> + L, (E-E ) |a><a[¢> + (E4E-D) |a> = E[¢> (32)
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Equation (32) is now solwved within a perturbation approach in powers of the s-d
mixing parameter A; one starts fram the following equation (obtained substituting

(31) into (32)):

k'2
Zier 8 o E)|k'>+ 2, a,V[k'>+ I a,(EE)|a><a|k'> +(E -E-4)|d>= 0
]
ko (33)
_ - <k|Ala> '
to dbtain z(for instance to first order in A): & = - ek E, being defined
- Ex
as E_= % + <k|W|>k where W is the noble metal pseudo potential (cf. expres-

sion 22). It will turn out in the following that equation (33) plays an essen—
tial role in incorporating boundary conditions (zero impurity potential limit) in
the scattering problem.

B) Definition of the Impurity Prablem

One starts incorporating in the problem three different aspects:

1. The orthogonality condition involving the inner shell states must be
autamatically ensured; in the present case it will be assumed that the
impure metal care states are not very much perturbed by the impurity
(dominant charge effects) ;

2. Since in the limit of zero s-d mixing, equation (30) for de> reduces to
the tight binding limit |d@>, it will be imposed that the scattering
solution |w£> is the sum of a daminant tight-binding like solution of
the impurity problem plus plane wave corrections through impurity and

host metal induced s—-d mixing.

3. The new pseudo wave function |¢+> involves élso scattering requirements
that means out—going behaviour; also in the limit of vanishing perturba-
tion it should reduce to the pure metal limit (involving only host metal
s-d mixing effects). In conclusion one describes the scattering problem
through:
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(+)
d

W’; > = Zd' as, Id'> + (1—Za|a><a|)|¢+> (34}

In equation (34) the coefficients a(T) are the solution of the pure tight

binding scattering problem 3 (cf. below), and the scattering conditions read:

*) _ +)

aj + Gad,

4’ (35)

where éad.(+) describes scattering and reduces to zero in the limit of zero per-
turbation. Quite similarly the scattered pseudo wave function is defined as:

+

67> = 2, alt [k'> (36)

the coefficients a]f',') being defined as

f

) = o, + sty @

the a being the solutions of (30) and (33), and correspond to the pure metal

limit., In these conditions equation (34) can be written as:

|W§+)> = {|a> +(1—Za|a><a|)|¢>} + Z'Gaét)ld'> + {(1—Z|a><a|)2'6aét)|k'>} . (38)
d o k

Equation (38) shows the characteristic features of the problem; the first term

is the pure metal d wave function, the second and the third being respectively

the scattered d-like states and the impurity admixed s-like states.

Finally, it should be emphasized that up to here only scattering
states are considered. If the impurity perturbation is strong enocugh to
extract d-bound states fraom the d-band, one should modify the proposed wave
function (38).

C) Definition of Tight Binding Impurity Prablem

First of all we introduce the tight binding hamiltonian defined by
j{,TB =T+ V,, V, being an atamic like potential, fram which the tight binding

of states is derived. Now we introduce the self-consistent impurity potential
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U, which must be determined at the end of the calculation. The pure tight bind

ing impurity prablem is defined as:

1
|d+> = |d> + — U]d+> (39)
E—ﬂT +ie
. with
+ (+) (+) (+)
a7 =240 ag ldt>, ag” =84 + 8y

The general solution of the problem (39) is given in 3, and in the following the

coefficients {a(",')} will be supposed known as functions of U and of the density

of states of the tight-binding d-band 3.

D) Determination of the Scattered Pseudo Wave Function

One starts fraom the usual equation:
@) 9> = B[S > (40)

Substituting (34) in (40) one gets:

(T+v)|¢+>+U]¢+>-za(r+v)|a><a|¢+>—uza[a><al¢+> + 34 aéf)(T+V)|d'>
+ + + +
+ Ly aé') Uld'> = Iy aé,) E|d'> + E|¢ > - L, E|lo><ald > (41)
Using equations (7), (8b) one has:
. +
L (T+V)|o><al¢™> = I E_|o><ale’> (42a)
+ +
Zdv.aé')(T+V)|d'> = Iy aé') (Egi-D)[d"> (42b)

Combining (41), (42a) and (42b) one gets:

(T+V+L (E-E ) la><al) |¢+>+U(1—Zul a><o|) |q>+> +1 ) (E41E-0) la' >

ar &a

+ 3 dT Uld'> = E|¢+> (43)

ar @

At this point it is very convenient to use (35) in order to separate the impuri-

ty dependent terms of a(-l.-); equation (43) becames finally:
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(T+V+I (E-E ) |a><a]) |¢+> + (B ~E-A) |d> - E|¢+> + U(1—Za|a><a|)|¢+>

+ g' 6a§T)(U)(Ed.—E-A)|d'> +3I

4 adT uld'> =0 (44)

The first three terms of equation (44), being the limit for zero impurity pertur-

bation of the scattering equation for the pseudo wave function, coincide with the

host metal equation (32). The fourth term describes s-s scattering induced by the

"reduced" impurity potential U(1-2a|a><oc ). Finally the last two terms are s-d
mixing terms involving respectively host metal s-d mixing to scattered d-states

and impurity induced s-d mixing.

E) Solution of the Scattering Equation by a Perturbation Approach

We firstly substitute equation (36) into equation (44), define W, =

=V+%EﬂJMXM,wga:

Zk' 818) (T+W0—Ek)|k'> + (Ed_Ek_A)|d> + Zk' al?") U(1‘2a|0‘><ot|‘)|k'>

+ i'aaéf)(U)(Ed,—Ek-A)ld'> + Ua> + : sa{ ula'> = 0 (45)

where we which to emphasize that the coefficients cSa(".') (U) are known fram a
previous solution of the prablem defined by (39). Since the zeroth order solu-
tion of (45) must correspond to Harrison's determination of the s-d admixing

coefficients 3y v of equation (37), we find from (45):
v @ (THW -, ) k"> + (E ~E, -0) ld > =0 (46)

the solution being given by Harrison (first arder solution is exemplified in

(30). Now it remains to determine the 8a\') coefficients in (37) in powers of the
scattering potential. In order to do that one should realize that the first two
terms of (45) just describe host metal contributions, all scattering properties
being cntained in the remaing terms. Once one recognizes this, the frist two

terms may bereplaced by:
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£, 62 (& ,-E, )|K'> (47)

k' O YT
where Ek" Ek are Harrison's renarmalized energies due to s-d mixing. To summarize:
one considers the scattering of s—-d renormalized states by the impurity potential.

Then to n-th order in the pertwbation U one gets:

z 6aé:)(n)(Ek"—Ek)|k"> + I Gaéx)(n_l) U(1-Z|a><a]) [k">
k" k" . a
+ 35, 6250 W)@y, -E 0 [a'> + z D pylas =0 (48)

d
where SaC(;.') (n) () is the n~th order term of the expansion of the scattering T

3 in powers of the impurity potential U. In expression (40), Ga]g,') © -

matrix
= &, solution of the pure metal problem as given by Harrison. Multiplying

everything by a state k'> one gets:

saéf)(“)s 5 Gaé:)(n-l) + 3 Gaé«:)(n)(U) k
k" E - E .+ ic d' E - E .+ ie
<k'|uld'>
+ I ag;) (n-1) ) ——— (49)
d' Ek-Ek,+1e

where the outgoing conditions are incorporated through the +ie in the denamina—
tor insuring that I 6a]£".'
kl

Finally, carbining expression (49) with (38) , one ocbtains for instance,

) () (U) k'> has an outgoing behaviour.

to first arder in impurity s-d mixing effects:

|1P;> = {|a> +(1-Z]|o><a|)|¢>} + zd,Gagf)(U)Idw
a

<k'|U(1-L |o><al) k">

+(1-—Z|a><ai) I oan k!> +(1-§|a><a|) X
a K" k' E, - E . + ie
<k'|E,,-E, -A|d'> <k'|uja>
X I 63&})(11) d_k k"> + (1-Z|a><al) Ty k' >  (50)

k',d’ Ek—Ek,+ie o Ek-Ek.+ie
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Expression (50) shows the essential features of the impurity states. The first
two terms are the well known host metal incident wave and the pure tight binding
scattering terms. The third term describes how already admixed s-like states
(through the coefficients ak..) are scattered by the "reduced" impurity potential
to other s-like states labelled by k'. Hence third terms is typically a s-s
scattering term. The fourth term describes how host metal s-d mixing couples
scattered d-states to s-like states, introducing then corrections to the pure d-d
tight binding scattering states. Finally the last term gives the direct impurity

induced s-d mixing of s-like states to the d-states.

DISCUSSIN

In both cases (transition and noble), the essential features of the
gpproach are the tight binding sums, plane wave expansions and the orthogonality
requirements. The host metal s-d mixing effects areise from the self-consistency
calculation in arder to dbtain the actual pure crystal potential V, and this will
be supposed to be done in a previous calculation. A very important consequence
of the orthogonality requirements in the impurity prablem is connected to the
fact that plane waves are not orthogonal to core states and the orthogonaliza—

tion procedure introduce a "reduction factor" in the "bare" impurity potential U,

in the form U(l—Ea]a><a ). In the text, sometimes the "bare" potential appears
as inducing s~d mixing and d-d scattering . However, the above reduced potential

may be thought as acting in these processes also because:

<d|v(-Z|a><al)|d'> = <d|u|a'> - I <d|U|a><ald'> = <d|Uu]d’>
o o
<k|v@-z|o><a|)|d > = <k|U|d > - T <k|U]a><a|d > =

<k|Uld >
o a .

this should be campared to
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<k|U(1—Za|a><a|)|k'> = <k|U|k'>v - £a<klula><a|k'> # <k|ulk'>

reflecting then non—orthogonality effects.

APPENDIX 1
In order to canplete the discussion of the effective impurity potential,

it is useful to write down the matrix elements of UP between plane waves, as cal-
culated fram equation (27)

<k'|U|d><d|A|k>
<kv|UP|k> = <kv|U(1—Za|a><a| —zd|d><d|)|k> + I -

By~ B

<k'|ald><d|U(1-Z [e><a|) k>

-I<k'|d><d|U(1-Z_|a><a|)|k> - +
d o d E-E
: kK d
<k'|U|d><d|U(1-%_|o><al) k>
+ Zd &
By ~ By
<d|u I o |at><a|Alx> |d'><d'[U(1—Za|a><al)|k>
-Z<k'|d> ————{ I [d"><d'|k>+ I ——————+ T
=17 ] | - ' -
d 1-0 F(E)) l_ d . d' Eg - E d E, -Eg
<k|Ald>  <d|vu f |d'><d'|A|k> ld'><d' |U1-E_|a><a|) [k>
-z ' L|d'><d" k> +3 +3 2
- -11 ' ' - N -
dE, - E  1-U F(E) Ld d' Eg, - E s E, - Egr
<K|ula> - <d|u ~ |ar><dr]ajx> |a'><d" |U(1-Z_|a><al)k>
+Z T |d'><a'|k> +I + 2
- ~1j - ' -
dE, - E 1-T0FE) [a' d' Ej - E, d E, - Eg

-

These matrix elements are important since one introduces the complete set of planes
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waves Zt|t><t| =1, in equation (29) in order to cbtain a tractable equation for
the scattering T matrix as discussed in detail in |I
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