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ABSIRACT

A static parity violating nucleon-nuoleon potential dus to the twe
pion exchange is constructed, assuming the ourrent-current and CVC hypo-
theses for weak interactions. Rescattering terms az well as the »w» P -

wave in the strong 7= N vertex are taken into account.

Our results differ from those obtained by Blin Btoyle in a
perturbation caloulation for the strong interaction; namely, the range of
our potentials is longer and this might modify Partovi's results for the
asymmetry coefficients in photodisintegration of the deuteron.
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I - INTRODUCTION

1’2, there 1s

As suggested by a certain number of experiments
some evidence for a parity violation in nuclear interaction, the
rate of the parity non conserving parts of the interaction beiﬁg

of the order 10~7.

Such a violation is allowed when one assumes the current-
current hypothesis 3 in the weak processes by introducing a Weak
nucleon-nucleon interaction. Such an interaction may be obtained
by considering either a direet interaction or a w-meson exchange

between the nucleons.

The first type of interaction (called contact interaction)
has been studied by F. C. Michel ¢ but it gives rise to very
short range forces,. The second type (7m-meson exchange) has been
studied by R. J. Blin=Stoyle 5 in second order in perturbation
theory for the strong interaction vertex (see fig. 1). This |
calculation does not take into account the rescattering terms
which are known to be important in the w~N scattering, so that it
seems interesting to treat more accurately this type of mechanism

giving rise to the parity violating nucleon-nucleon forces.

The effects of parity violating potentials have been studied
by different authors. Thus static potential of the form (3?&33):?
has been used for computing the effects of parity violation in
the deuteron photodisintegration and also in the radiative capture

of neutrons by hydrogen and by deuteron 6’7.

With the help of this model Partovi 7 has shown that such ef
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fects are not easily measurable at the present. For example, in
the photodisintegration of the deuteron, the asymmetry coeffi-
cients of the cross sections and the polarizations are expected

8

to be of the order of 10™° to 1077,

2.) "5

In the same way, a velocity dependent potential (EF%-E;
has been used for evaluating the non regular 9 transition
amplitudes of the Ta*®L, Lul?5, Fe5” and 71293 nuclet 9. The
circular polarizations found experimentally (of the order 10'4)
are compatible with a rate F taken between 9 x 1077 and 110x 107/,

10

where F stands for the rate of the parity non conserving to

the parity conserving forces.

A precise determination of the parity violating nupleon-
nucleon potential may favour more important effects in light
nuclei, and on the other hand, may provide more accurate predic-

tions in heavy nuclei.

We have thus computed the contribution to the parity non
conserving N -N potential due to the two pion exchange, taking
into account the rescattering terms, as well as the w-mw p-wave
term in the m=- N scattering. Furthermore, the effects of form
factors in the weak currents are also included.

In the strong interaction case, Amati, Leader and Vitale 11

have computed the two pion exchange contribution (TPEC) to the
elastic scattering amplitude, using an analytic continuation of
the plon-nucleon amplitude at low energy. Cottingham and Vinh
12

Mau have shown that, with a certain approximation, one can



170

derive from the TPEC an equivalent energy independent potential.

We shall see that the current hypothesis for weak processes
will allow a parity violating part in the pion~-nucleon amplitude
and, consequently, a parity non conserning nucleon-nucleon inter

action.

In the following we shall use the method and the notations
of references (11) and (12). In section II, we expand the
nucleon-nucleon scattering amplitude in a set of scalar and
pseudo scalar perturbative operators and we generalize for the
coefficients of these invariants the dispersion relation postu=~

lated in ref. (11).

Unitarity is used for the computation of the spectral func-
tions in terms of the elastic pion-nucleon scattering amplitude.
The latter is calculated in section III to the first order in

the weak interaction.

From the scattering amplitude we construct, in section IV,

the potentials in the way given by Cottingham and Vinh Mau.

The results are presented and discussed in section V.

II - THR SCATTERING AMPLITUDE IN FIELD THEORY

We conslder the elastic scattering of two nucleons from a

state with four momenta Dyy P to a state with four momenta n,,

pZ (figo Za)o

We choose the three linearly independent four-vectors
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1
N = -2~ (nl+ nz) P

1
2
and the three scalars
= 2
s == (p+nf  t == (g =ny)® T =o(p-ny)”  (II2)

with the constraint

s+t+T =40 .

The scattering amplitude is defined from the S matrix
elements, by
S.. = 8., +18%n, +py =n, = p,)(m/2rE)"
£i - °fi 1% P 70z =P

\ (II.3)
x E(pzwpz E’<n2>xnz M ulng e, uley )%,

where E is the nucleon energy in the center of mass system and
u(e) and %, are respectively the space=time spinor and isospinor

of the nucleon with four momentum &,

M may be expanded in a set of spin and isospin invariant
operators:
M=) P Kevat,T) sE 1K (II.4)
ij ) 13 ‘
i,jsk '
where k stands for the symbols + or =; with Sy + (Sig) and
Tj+ (Tj") symmetric (antisymmetric) with respect to the ex=
change of the nucleons n and po |

*

If one only requires charge conservation, the operators TJ

take the form S and 13
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= 1P, AP, T, AP, s P 4 1Py g = 14e

J 3 3 37

(II1.5)
n D N

o= - : = pad
T, TBJ‘ 11-3,(1:,47)3 53 =1,
where (v AT’)B changes sign under time reversal.

The Sji operators are chosen to be:

+ _ .0 .D + _ n_p p
s, =171 8¢ = Tg "vP(ar. P + 17P.W)
s~ = 1" P1ParP N 8,5 =75 * 1yt P1Pay PivP o)
S;T = 17 . p 17PN Sz = (2 + 7. PP AP (II.6)
5 8 5 5

+ _ A0 D + _ n.p n,., p

+

* -4 0P < _ n,.p p

Sg” = v g Sip = 175 M17P.N + 17" P vy

It is possible to show that all other possible spin operators
may be expressed in terms of these ten operators, by developping
% and 7P in terms of four orthogonal four vectors constructed with NyPand A
and by using the Dirac equation. According to the transformations
properties given in Table I, these operators Sii may be
classified 14 as proper scalars for i = 1,5, time pseudoscalars
for 1 = 6, space pseudoscalars for i = 748, and proper pseudo-

scalars for 1 =9, 10.

+
Table I - Transformations propesties of the Sy -
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These invariant operators are a generalization of those
defined by Amati, Leader and Vitéle; they appear in the computa-
tion of fourth order Feynman graphs (an invariant of the form
(7én i‘Ysp) 172, p1 P.N also appears but one can express it in

terms of S7i and Ssi without introducing any new singularity).

The Mandelstam representation for the scalar functions PE,j
may then be considered as valid to the fourth order. If it 1is

assumed to be valid for any order, then one can write
00

- o i( £)
+ (wyt,t) %I 1 Piji¥e

P = + - at!
1] el T t1- t
M
4#2
(I1.7)
(es) (o o)
; at* %i (wiyt')
o — — Ll dw?
- (-
WZ tt=t W 4
9)42 4mZ

As we are interested in the long range forces, we shall
neglect the contribution of the last integral in (I1.7) the
t-dependence of which corresponds to a potential due to an ex-

change of to at least three pions 12.

In fact we are only interested in the parity violating ef-
+

fects and then we restrict ourselves to the contributlions Pz’j

with 1 = 6,10.

The pole term in (II.7) corresponds to the one pion ex-
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change (fig. 2b). It was pointed out, some time ago 15, that a

parity violation in the w-N vertex implies violation under time
reversal, but only if charge independence is assumed. In fact,
if we define the form factors by:

<0, 37 |ny> = ﬁ(nz){Fl(t)'rp - Fo($)0,y(n np)¥

a -
+ i ;I-:l F3(t)(nl-n2)ll}u(nl)‘t (11.8)
(OlJphﬁ = - pFW(t)quD-

where m, }4, mP are the nucleon, pion and lepton masses respective
ly, g is the gyromagnetic ratio, a some constant and Fl(O) =

= Fy(0) = F’D'(O) =1, we get, with the current-current hypothesis,
a non vanishing pole term contribution to the invariants 89+T2+,
89+ z +, Sq~ T, defined by (II.5) end (II.6). This pole contri
bution to (II-»7) is given by:

+ _ 1 M *

o' =% b Oy Lo m{z () ry0))

01493-" = ...Ob92 + (1109)
-1 M *

where &N is the ¥ =N = coupling constante.

We note that such a pole term corresponds to a second kind
current as defined by Weinberg 16 but, if the form factor Fi(t)
are real, this contribution, as opposed to the lepton case 17,»
does not imply a time reversal violation on account of particular

isotopic spin dependence (contribution to (’? nA_"Ep)B). However ,
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this term implies in non conservation of a vector current and is

disregarded in the actual computation.

+
The spectral functions pzj(w,t') are obtained by writing the

witarity relation in the t channel for the M matrix. We obtain:
S o5 (v, t1) 8, Fo.K = ———E~——-}é
— P1stVo 173

13k 2(2m)%t
(11.10)

with M = X2 (By po|¥ +l2m<anlvingn,
a2

where <4 stands for the annihilation N + N — 2w amplitude.

The summation is to be extended to the isospin indices and
to th: four momenta of the pions in the intermediate state (the

latter is essentially an angular integration 11y,

if we put U into the form T =715 +71" where ¥° stands for
the strong interacticn amplitude and v¥ 25r the weak interaction
amplitude, the terms‘%s+’tw and‘rw+‘rs will give us the contri-
bution we are looking for. These annihilation amplitudes are
obtained by analytic continuation of the elastic scattering w= N

amplitude,

Such an amplitude is written in the more general form as:

F = Fy= F,t. 7 - e 42 2,2 5y t,2
= Fym Fpbo ¥+ Fytply - 2 Fuby + 2 Fgly + 2 Fgbs 2 Fylsts
(IT.11)

+F (*‘%5 1 - —p - = T o T
N 3-FZ Fg(t,1t3+ tEt.T) + Flo((tAY)3t3"t3(LA )3)

with 18:
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where Q is one half of the sum of the pion quadrimomenta, A and B
are scalar functions of the usual scalars s, E, t and Erand %’are

the usual isotopic spin matrices.

We take this general form for the weak interaction amplitude
F¥ but the restrictions upon the strong interaction amplitude
reduce F° to:

F° = F - F t. 7 (II.11')
with
F; = = A] + 1y.Q B} (II.12')

If ¢ and B are the isotopic spin indices of the two pions,

we must consider the product of the matrix elements El;* %32 and
take‘the sum over the isotopic spin states of the pionse.
We get
3% P°‘ Ff""(ﬁ'lW + F) 1MP
+2 7S RV YR, P
-2 7S Py 5 PP (I1.13)

1 s¥,.. W W, W s* _w n p
+ 5 [Fl (1"‘5 +F7 +F9 )"'FZ F4:l('t'3 +’r3 )
+4 E’*‘ls*(FSW+F7W+F9w)-FZS* F;ﬂ (5" - 15P)
+2 ¥ F'(TRTP),

Taking into account the definitions (II.5), we can write the
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above formula in the form

' s¥ _w _ J} . S¥ w 1
2 FOLP Fpo‘ =y Cip i Fy Tk (II.13)
xR ijkd
inere Tlf are the isotopic spin operators and the coefficients
ijk can be obtained from (II.13).

With the appropriate phase space factors, we can then write:

1
- 2yy* g /)
M= = (t(t-4p))° 2 cijk%ij Ty + Sy (II.14)
16 .
1jxl .
where the term Sy comes from the product F¥ F° and can be

obtained directly by symmetrisation.

If we restrict ourselves to the part of the% which violates

the spacial parity conservation, %ij takes the form:

= |l., s* W n n w
%ij = [Ai + 172 . Bisj E',Ajs Iygt + iy .Qq(snBjS]dQ‘ab
(1I1.15)
- ! s n n n p_n
aij.1'r5 +biji/1p.N1fy5 ""ciji’f .P75 +dijyn.'r s +eijifl.Pi7p.N75n

where

- s¥* w ) s* W

P1g = - JﬁBis* A" @,

Q

- s* W 2_P gy s* w] -

Cij JEL A7 By +mle” - > ) By~ By aQa (I1,16)
— s¥* w

= Jon a
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with
D = N2P% - (N.P)?

o = £ (F°Q.P - PuN Q.N)
B =& (F°Q.N= P.N Q.P)
§ = @2 - (P +pm)°

n
After symmetrization, the operators (iqp.P75 iqp.N +
+ 1y2.P iyp-Nysp) can be expressed in terms of the others:

t n
1P P Ny e )= 3‘25 (75n+75p)'rn.'yp+ m('rsni'r .p+75P1qP.N)
iy?.p np.mysn-y;) = - "2’ (v 5“-751’ W2 oyP - m('Tsni'rn.P-‘rspi'rp.N)

The w obtain the expansion of M, in terms of the invariant
operators and the knowledge of the pion nucleon amplitude in the
appropriate region of integration allows us to compute the spec=

tral functions of (II.10).

III - THE m =N AMPLITUDE

We are mainly interested on the nucleon scattering near the
threshold, i.e. for w~ 4 m?, and then for small t and %. The
most important contribution to the integral of the spectral func-
tion éij(w,t') in equation (II.7) occur for not too large values
of the variable t'. These spectral functions can then be obtained

by extrapolation of the pion nucleon amplitude at low energy 12.

For the strong interaction part such an amplitude has been

constructed by Bowcock, Cottingham and Lurié 19 and used in
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references (11) and (12). We make use here of an equivalent

amplitude which we have built up in a previous work 20.

This amplitude takes into account the pole term due to the
nucleon exchange, a rescattering term approximated by the pole of
E3
the N33 resonance and the m - interaction in the S and P waves

also approximated by poles (p pole for the latter).

The 7 ~N amplitude to the first order of weak interaction
can be constructed in a similar way in the framework of the cur-
rent=current hypothesis. However the terms cowresponding to the
exchange of the nucleon and of the isobar N;3 (fig. 3) do not
contribute if the vector current is conserved. Indeed the
product of the 7w current with another~current is nothing else
than the divergence, as can be seen in the computation of the pole
term. Thus these contributionsauxaruled out in practical computa

tion.

The term equivalent to the mw=m p wave contribution may be
obtained either by including directly the p, or by introducing
the P in the form factor of the 2 pion current; this last procedure
was adopted here. We make use of the following currents:

v - +
(TerJ"_. |1rl> z= - ZFm(t)QHt
¢n, |38 = =2 1 Wn )rF ()7, .l (£)A (III.1)

2'cp 10y 2 1 ATt K °
. 2

where A= GA/G
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and obtain by comparing with (II.11) and (II.12):

A" =4 G, 2 N.QIm {Fﬂ:(t) FMI(t)}

Agg" =Mo"

Age' = - 4Gy £ N.Q Re{Fmt (t) FMI(t)} (111.2)
B,c" =2 G, Re {Fw:;(t) FA(t)}

Bsg' = Bpg'

Bgs = =2 G, Im{Fﬂ,: (t) FA(t)}

The “orm factors F_(t) F,(t) and Fy(t) are normalized to

1 for t = O and in the physical region for t, they may become
complex Zl.

The explicit expression for Ais, Bis, Ajsw, Bjéw in terms of
—

Q allows us to perform the integration (II.13). The spectral
functions Pijk are then determined by (II.10) bur their t -
dependence for t;vépa requires the knowledge of the form factors.
We assume that the form factors F_(t) and F,(t) are dominated by

22

the exchange of the p and of the 4 resonance (1080 MeV),

respectively (we assume for the latter jPG =1%7). The Fy1(t)

form factor corresponds to the exchange of a 1++ system 2l

and
could be dominated by the B resonance (1210 MeV). However there
is no evidence of such a pseudo-tensorial current and it has not

been included in our numerical computations.
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IV - DEFINITION OF THE POTENTIAL

A nucleon nucleon potential constructed so as to reproduce
the scattering amplitude in field theory has been obtained by Cot
cingham and Vinh Mau 12 in the case where parity conservation is
assumed. In a similar way, we can obtain a potential to the first
order of weak interactions, the main difference being the introdug
tion of supplementary invariants. Besides that, if we restrict
ourselves to the determination of a parity violating potential,
the absence of the pion exchange (because of the absence of a

second kind vector current) simplifies this determination.

The scattering amplitude has been expanded in a set of
linearly independent invariants (II.4). There will be then as
many types of linearly independent potentials as these invariants:

>y .k k o k
V(E) =2 Vo(_j (r)Q, Tj (IV.l)
oljk
where k = + 1 and the Tjk are isospin invariants defined in

(II.5). We have chosen the Slg to be:

o F =@ ,FF Q" = IR I

R+ = (T2 3P).F Q7= @R+ FPHF |
(1v.2

Ypre’ (@7 TD pg7= (F04 FP) . F

g\pTv+ = (o® A?P )P 'Q})Tv- - (3T TRT . o pn )2

e
where L = ?A? and ?n, -otp are the Pauli spin operatos acting on

the nucleons n and pe
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In the momentum space the potential is written:

-, - ~ k k k IV.3)
VB =TT Ay (1v.3
otjk
23
ith
Nps+ = e i(o- .A-Gp )o ’Q:ps = i(g‘,nﬁcp A+ U’pP °PA2’)
?"pvJ’ = (0%~ P).F ”91 T = (FR+oP).F (IV.4)
Bope™ = - AF0-FRE B "= - 1324 F). X

ﬁp’l’v.'- (2 FP).F ﬁpTV--': (TRAGPE A+ B . 53".5,8)/ 4°

In order to identify the potential scattering amplitude given
by the Liopman~Schwinger expansion and the field theory scattering
amplitude, we expand the latter in terms of these invariantse. By
expressing the Dirac.matrices and spinors with the help of the Pau

1i operators and spinors, we get

u(n,) alp,) Sii u(p,) ulng) Z X S"Ti"' x ° xps (IV.5)
ioc pz *n, n, 1

In the adiabatic approximation 12 and 24, the transformation ma-

trix X concerning the parity violating invariants is

-+
= + - + + +
X i PS PS pyt prst prvE
+ t/ 8 1/2 ot 2 0 0
8 + 1/m 1/2 m - 2/m 0 0
9 0 0 0 /2 m - /8w
10 0 0 0 V2 m - 3t/8 o~
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This transformation 1is energy independent and introduces no

new singularity.

If we then consider the potential

V(m =

k — ' NkTok IVQ
> me (t)vr P at' pR, 3 (Iv.7)

k
]_jP Pij (t1)
(ew)? ik | i

4%2

It will reproduce the scattering amplitude defined in (II.7)
for the longest range, since the one pion exchange term does not

contributes.

The potential (IV.l) is obtained by an inverse Fourier
transformation. If the interchange of the order of integration

is assumed to be valid, one obtains:

%

k _
Va.:i (r) = = dt (IV.8)

(2 T

e
[

1 @ e-rt
ZJ' xmk(t) pijk(t) o“k(r,t)
1r)3 i ay

where the Q (r,t) depend on the potential type (scalar, vector,

tensor)
+ +
qg(rgt) =1 for (oty k) = PV 4 PIV
t% 1 + +
= 1+ % for (OC, k) = PS 9 PTS~ (IV99)
r rt
1 3 3 -
= - 1+—_i'+“ for (oy k) = PTV
3 rt® rzt

The polynomial form of XiaF(t) makes the formula (IV.8) valid as

long as we are only interested to the longest range forces.
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V - RESULTS

The amplitudes A;." and By " obtained in (III.2) in the
same way as the AS and B® 20 amplitudes enable us to obtaln
srough (II.13) the contributions to the spectral functionsj the
integral (II.16) exhibits no special difficulty: the integrals
(IV.8) are computed numerically, the form factors (section III)
being chosen as Breit-Wigner formulae and normalized to unity at

the origin.

In the limit where the resonances p and Al are narrow
enough (“his corresponds to take the principal value of the

integral with extrapolation of the phenomenological form factors

22 and 25)

defined for t <0 s one obtains

—l
r - -
V()= (v, S(r)(E" "Pa,-w MESIC SR P).p)<'r3 31’ -0 FP)
r
(V.1)

where

XN
V. (r)==27 =7V
Ps S92 PS 15
pes ’ (V.2)

+ +
- = o
vpv(r) VPW2 va,3

with G = 1.25 x 1.01 x lOmS/M; we obtain the curves for Vps(r)
and va(r) drawn in fig. 4 and 5. We have also drawn, in fig. 4,

the potentials obtained by Blin Stoyle 5:

af? 2 1 o—pT
’Z"ps = — 1 4+ — + ‘
2 T 2.2 3
T T (V.3)

> E—G(r)~0821o'8 =3 8(r)
by = o 8(r) x 0.82.2077 p
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We notice on fig. 4 that the static potential that we have obtained
(solid line) has a much longer range than the Blin-Stoyle potential.
on. might then think that the corresponding effects in the
~bserved processes will be more important. Note also that the
computations performed by Partovi 7 correspond to a weak coupling
constant G smaller than the one used in Blin-Stoyle potential

(1 x 1070 erg em> instead of 1.40 x 1072 erg cm’). Purthermore,

we have obtained an important velocity depending potential, the

corresponding effects of which may modify Partovi's results.

The potential (V.l) seems to us to be more reasonable, butb
it may be changed if we include large width for p and Al’ second

kind axial current and vector current non-conservatione.

With the experimental width of p and Ay, we obtain a

et e - 0 D -, n P .
contribution ‘to ‘st v A’t )3 a.nd.va 44 AT )3 but it seems
that a more careful definition of the analytic continuation rules

out such contributionse.

The real part of the second kind axial current gives rise,
trough (III.2), to a contribution of the form Q‘st-(Tn A'tp)3 and
@y (W ATP)z. The numerical calculation with such a term of
the order of the vector current shows that the contribution to
Qst-Cfn/(fp)B is important but such a result has no particular
significance. Another contribution of this form may also be
obtained with a second kind vector current (which violates the
vector current conservation). The effect of such a contribution

due to the plon pole has been studied 26, but it seems not pos-
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sible to test the existence of second kind weak current with such

an effecte.

The effect of the non-conservation of the vector N-N* cur-
rent is more easily appreciable. Indeed if we ineclude in the
vector N-N* current 27 2 "maximum violation" 28, we obtain a
contribution quite large but the main result is that this contri
bution takes the form: -

V@) = (7 (=)@, FP). -E +

+ V (r)(FR-FPLEN1P- g (BRLFP+v] 5P))

and such a potential would give rise to effects in pp and nn

interaction.
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FIGURE CAPTIONS

Fig. 1 = Diagram studied by Blin-Stoyle.

Fig. 2 =~ 2a = Nucleon-Nucleon scattering.
2b = One pion exchange.

2¢ - Two pion exchange.
Fig. 3 = w-N scattering exchange in the direct channel.

Fig. 4 = The potentialfvps(r)
In dotted, the corresponding potential obtained by
Blin~Stoyle.

Fig. 5 The potential va(r).
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Fig. 1
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