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Summary. The theory describes a model where the space around a positive ion of
an electrolytic solution is considered, taking explicitly into account inter-
action among first neighbors, and in addition the possibility that a given cell
will be not occupied by ions. It is thus deduced an expression for K which
coincides - at the limit of extremely dilute sclution - with the reciprocal of
Debye's characteristic length, sawving a normalization factor.

Following standard ocutlines, a formula for In £ (f, activity coeffi.
cient) as a function of g is obtained, being g the mean distance of closest a&p-
proach between two ions. The parameter g is fitted for different  electrolytes,
varying concentration and temperaturs.

It is found that g is not constant. In order to obtain agreement be-
tween theory and experiment, g must increase with concentration within the
theory's range. An explanation of this result is given. The .effect of tempers -
ture is discussed. .

For the chlorides, there is good agreement between ‘the ordination given
by the values of the parameter g and the ordsring capacity of ions in acqueous
solution. '

Reasonable values of g can be obteined for IO03K eand NO3K, for which
Debye-Huckel's theory fails.
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Introduction

The application of a statistical theory for strong electro-
lytes in not too dilute solutions (1) is studied in this paper.

With a method similar to that used by Bethe (2) in his work
on binary alloys, interaction among first neighbors is considered
explicitly, and in addition the possibility that a given cell may be
not occupied by ions (empty shell). This introduces a convenient

model for deseribing the problem's physical reality.

An expression for 1n f's dependence on g - the only adjusta
ble parameter in the theory - is obtained. a 1s the mean distance of
closest approach between two ions. It represents, really, an average
of mean distances of closest approach between two positive, negative
or of different sign ions, distances which can be respectively label~-
led as a{++), a(--) and a(+-). With these definitions the model
studied is regarded as a dynamical deformable lattice, due to the

distinct partial ordinations that the ioniec groups can take.

The parameter g is caleculated for different electrolytes,
varying concentration and temperature; some of its properties, over
which diserepancies exist, are discussed gualitatively. Doubts have
been thrown-for example -~ over its constancy with respect to concen-
tration (3). 1In that sense, it is attempted an interpretation of the
inf'luence of coulombian interactions and other variables related with

that parameter.

It is of interest estimating a in particular cases such as

IOBK and N03K; in fact, some values found in literature imply a
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contradiction with the physical meaning assigned to the parameter.

The results obtained allow to fix the method's range of
validity; that is,; when a solution begins to be concentrated in terms

of the theory.

Revie n on of C 1 =)

Spherical concentrical shells of thickness g around a posi-

tive ion are considered (Fig. l-a). Each one is divided in cells of

volume 53, in such a way that any 6ne has four neighboring ceils in

the same shell (Pig. 1-b).

Central
Gell I
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On caleulating the electric density p (r), the following

factors are taken into account:

a) ¥ (r), the potencial at the distance r from a
positive ion, produced by the solution's whole
charge distribution, excluding that of  the
spherical shell.

b) The interaction between an ion and its first
neighbors from the same spherical shell. One
only ring of our neighboring cells 1is con-
sidered-approximation sufficient in phenomena

ruled by short-range order. -
c¢) A potential 9 representing the mean potential
produced by the remaining ions from the spheri

cal shell, on each of the neighboring cells.

The following functions are defined:

£ (r)
4

exp(-z e ¥(r)/kT) 5 0 = exp(-z"€"/DakT)
exp(=-z ¢ 9-/kT) 8= &¢ (1)

it

where, according to what precedes, Vi is the Boltzmann factor repre-
senting interaction between two ions with the same sign which are at
a distance a; §,(r) is the Boltzmann factor corresponding to the
potential at a distance r from a positive ion, over another positive

ion; and 5; the Boltzmann factor of the mean interaction between
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the ions outside the first ring and one of the cells of the ringo

Calling f s f_ and f, the probabilities, saving a Dpro-
portionality factor, that the central cell (Fig. 1) be occupied by

a positive or negative lon, or empty, p(r) is expressed as:

oy =2 2 i | (2)
plr) = — = ZEN pad
a3 v/ad LatI_teg £,4E_+T,

And writing expliclitly £, f_ and fos

p(r) = zen[B1+ 87+ 87171 g1 489" e 5704/ [sCasdpeslyy% 4

+ ;-1(1+ a.?-l_'_s.-l ?)4 +(1+ d "'8‘-1)4 . (3)

=

If interaction among neighboring ions is neglected, that

p(r) = zen(t - £71)/3 (4)

The densitg expression used by Debye and other authors, 1s
relation (4}, without the divisor 3. This difference 1s due to not
considering the possibility of empty cells and to the use of Boltz-

mann factors without normalizing.

Any one of the cells of the spherical shell can be taken
as central (1). With this basis it is possible to obtain other ex-

pressions for £y £_ and f,, which equalized to' the former lead to:

E= § (1+d+ §-1)3 /(1+vg'15"1+ n&)> (s5)
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Removing o from (5), and replacing in (3); a Poisson e
quation is reached (valid also for concentrated electrolytes), de=-

pending on the parameter v

In the limiting case of infinitely dilute solutions, ¥ =
= 1; therefore, on dealing with not too dilute solutions, d can be

developed around W= Ll:

- ! 2 2
8 = 5 +(38/3 (9-1) +3 (2 axeqa),zzl (-DF + . (6)

because, by (5), O =l; for =1,

With this approximation, and developing g in series
§ 2 1-zeW/T = 1ox (7)

an expression of the electrical density for not too dilute solutions
is obtained in (3) and replaced in Poisson's equation. This allows
to define a certain quantity K, which plays in the theory the same

paper that Debye's wk(that is, the reciprocal of the characteristic

length); it coincides with Debye's in the limiting case, saving the
normalization factor.

2

KZ = 87 2% €% n(8n~-5)/9DKT (8)

The values v can take in (8) appear limited in a not satig
factory manner. Therefore, it is tried to extend the range of the

original development so as to avoid that limitation.

The expression for K has been obtained from (6) consider-

ing only the first order term. With the second order one:

8= (1-x)+ (-2x)(p-1) + 5(2-8x)(p-1)% (9
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Since, from (5):
(8873 Qyey = 82 -1 ; (aza/aqa)qzl = 2-8x
It is convenient to write (9) like this:
6=’-—‘*’(q2-2q+ 2) —x(4q2-=6fl+ 3) (10)

Similarly:

§7L 2 (pB-2q+ 2) +x(ag®-69+3) (11)

Replacing (10) and (11) in (3), taking into account (5),

and neglecting the terms in %2

zen {4%/3[1-(4Bx/3)+x/3) - 8™/ 3[1+(4Bx/3)x/3) }

( 12)
1+ A%/ 3[1~(aBx/3)4x/3]+ A~ 3[1+(4Bx/3) /3]
where

A= Qa-w2q+2 3 B = (4q2 =6q+3)/A (13)

Developing p in Taylor's series, and replacing in Pois=-

son's equation:

anzen(a3 - 443 arzZePn(aB=1)(a+ AY 3+ 443

o+ P (14)

AV= - .
D(1+ A3 4 4~4/3) 2DKT(1 + 4%/ 34 4~/ 3)2

which on changing varilable reduces to

Ab = kCY
where

2 41rz252n(4B-1)(4+A4/ 3+A"4/ 3)
K- = (15)

2DkT(1+a%/ 3 + 14/ 3)2
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In the limiting casey A =14 B = 1, so that Ka ¢oine-
cldes again with Debye’s expression (saving normalization). Bat

now kW 1is real for and value of VE

Following usual approximations (4}, w is related with
the experimental values for activity coefficients. In this formula

that permits adjustment of parameter a is attained.

The work necessary to charge an ion is calculated, con~
sidering the potential over a sphere of radius a (‘{’b), and an
instantaneous charge Aze (0<¢Ag1l). Repeating the procedure

for each ion, the solution's potential energy is given by:

1
W = ZNJ ZE t.bb (Azeg) da
0

Taking into account (15) it becomes:

1
W = 4z7e°N [ ‘J | A2 A 4B-1)(a+2¥ 3e4~43)  aa
D DT j 144%/34 4-4/3, 2zea\/—¥l"’—'1/(4}3~1)(4+A4/ 3444/ 3y
(16)

where A and B are given by (13), replacing z € by the instantaneous

charge Aze .

As In £ = (1/kT) (dW/3N), it is flnally obtained:
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1 o .
622> [Tor J‘ A2 A aB-1)(a+a¥ 3400473y 4a
ln £ = - 1/ : -
DT V 3DKT | 1,,4/3, 4=4/3, 2zeg\/ BT 3 aB-1)(4+2%/ 3424/ 3)

0 2DKT

1
az*e%a v J A3 (4B-1)(4+4%/ 3444/ 3) aA
+
DkT 3DkT ‘ - o | VN
2 41404% 34474 34050 A A 4B-1)(a+4% 34474/ 3)§
3DkT
(17
These integrals were calculated numerically by Simpsor's
formula. g is obtained by a four-point interpolation following

Lagrange 's method.

An electronic computer is used.

Results i di io

As is briefly indicated in the introduction, a is deter=-
mined for several substances at different temperatures and concen-

trations._

The solution's dielectric constant at 25°C is adjusted
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taking as a basis the data of Hasted Ritson and Collie (5), coherent
with further theoretical estimations (6). Due to experimental error,

formulae are extended to the other temperature considered.

The activity coefficients are picked from the tables of

reference (7), saving those of IOBK(B).

To control the theory's validity range, it is necessary to
consider the conditions imposed by the the value g = 1/K, and compati-

bility between distance a and the number of ions in the solution.

Fig. 2 (Table 1) representé results for chlorides and 804Mg
at 25°C. For chlorides, the mean distance of closest approach be=
tween two lons decreases - at a given concentration - for growing
molecular weights; this ordination is the one suggested by electro-
negativity scale (9). For SO4Mg, the only bivalent salt considered,
electrostatic attraction between ions seems to play now a more sig-

nificative part.

Pig. 2 shows that a increases with concentration, within
the theory's range. This result is so interpreted: remembering the
definition for a, it is seen that a(+~) is less than a(++) and ag(=-};
in very dilute solutions, an ion tends to round itself with ions of
opposite sign, and a(+-) predominates. As concentration increases,
interaction among first neighbors is no more almost only between ions
of oppoéite sign; a(++) and a(=--) concur more appreciably, through

sy to the mean value of a.

The curves are coherent with the hypothesis-made by some
authors =~ that hydration is minimum at infinite dilution. When there

are few ions in solution, the typical tetrahedrical structure of water
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Fig. 2: g as a function of concentration.
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molecules is not affected.  But when some ions can break such struc-
ture (owing to the fact that the interaction - ionudipole'is'stronger
than that dipole-dipole (10)), for the next ions added to the solution
it is easier to capture water molecules that do not belong any more
to a stable structure. It follows, by hydration, a's Increase with
concentration. This pleture gives also account of the ordination
obtained for the chlorides: the ions'? ordering capacity, calculated
from entropy measurements (11), gives an order inverse to their
size, following a column of the periodic table. Therefore small ions,
as Lit and H+, the so-called "order~producers" round them, have

greater effective radii.

O

A
A
13_
B = 0,5
12 4
117
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—_——
o
10 20 G
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8 r T i T T 'L-T
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Fig. 3: g (for ClNa) as a function of temperature at two different concentrations.
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Variation of a with temperature for ClNa at two different
concentrations is shown in Fig. 3 (Table II). The following expla~-
nation of the observed behaviour is proposed. Rising teﬁperature,
the bbmbardment of water molecules draw the lons apart one from an=~
other, as it intensifies the particles' random motion. At the same
time, the greater kinetic energy favours breaking the water tetra-

hedra, and thus ionic hydration. But when the greatest part of the

iens is saturated, the opposite effect takes place with further
increasing temperature; for water molecules will loose from the
hydrated ions. With dilution, this last effect will be seen at
lower temperatures because, being less the number of ilons, they
become saturated sooner. As interaction between an ion and the

first layer of water round it seems too great for thermal effec%sto
compete with it (10)(12), the described ‘processes take place propa-
bly beyond the first layer, in the transition region (13). It must
indeed be remarked the flatness of the curves, that is the weakness
of the pictured effects. Statistical arguments assign to T = co
theosame physical consequence that m —=0. Results of Fig. 3, and
the explanation just outlined - takiﬁg into account the method's
inherent limitations, and temperatures with physical = meaning-are

conveniently related with those arguments.

In Fig. 4 (Tables I and II) values of parameter g for ClNa

depending on concentration, are compared for different temperatures.

Values of a, close together for the lowest concentration
caleulated (Figs. 3 and 4) leave open the following questionz Which
would be the shape of the curves for a(T), on dealing with extremely

dilute solutions.
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Fig. 4: a (for ClNa) as a function of concentration at three different temperatures.
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Estimation of parameter g in the calculation corresponding
to IO3K is only accomplished for m =70,0001, since for higher éonceg
trations activity coefficients data do not seem reliable. It is
obtained a value of 6,83; Debye-Huckel's theory, with the same data,
glve g = -14R°

In the case of NO3K there are no déta for the dielectric
constant's variation with concentration. For m = 0,13 the other
studied solutions have practically the same dielectric constant; at
that concentration the calculated value for a is 5,411o Results
obtained for greater concentrations, and the general behaviour of the
curves corresponding to the rest of the substances, suggest that the
dielectric constant's decrease - supposed equal to that of ClK - 1s
greater than this one and, in a general way, than that of alﬁgline
halides. The values of g, lower than the others at the same concen-

tration, is alsoc explained by the strong disordering character of the

NOZ ion (13).

3
The order of magnitude resulting for‘IO3K énd N03K shows

that the adopted model allows to surpass the objection mentioned in
the introduction to Debye-Huckel's theory. |

Conclusions

1) a 1is not constant regarding concentration and temperature.
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2) For the cases considered, a Increases with concentratiocn within

the theory's range (more or less 0,4 molal).

3) For chlorides there is good agreement between the ordination
given by the values of parameter a and the ordering capacity of

ions in acqueous solution.

4) It is possible to assign reasonable values of a to IO_K and NO_K.

3 3
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Notation

k  Boltzmann constant
absolute temperature

ze charge of a positive ion

D dielectric constant



f rational activity coefficient ‘

N  number of positive or negative ions in the solution

V  volume of the solution

n number of positive or negative ions per unit volume

m molality
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Table I

m C1H C1Li C1lNa C1K C1Rb S0,Mg
0,0016 6444 6430
0,0020 6,43
0,0050 7,15
0,0064 6194 6,69
0,0200 8,70
0,0256 ' 7483 7 404
0,0500 10,32 |
0,0576 8447 7,58
0,1000 12,32 10,90 8,98 7493 7431 743
0,2000 14,92 12,94 10,07 844 7 564 8,10
0,3000 10,88 8,83 7591 8,65
0,4000 11,47 9,23 8425
0,5000 12,06 9453 8,60

* &k ¥ %
Table IT

T\m 0’1 052 ) 0,5
273 8,54 8393 10 ?55
283 8,89 ' 11,31
293 9,02 . 11,80
303 9,18 ‘ 12,17
313 9,24 12,47
323 9,20 12,64
333 9,20 12,76
- 553 9,18 12,83

373 9,08 10,12 12,64



