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Our starting point 1s the classical Hahn-Banach theorem,
which became a simple and important tool in Functional Analysis
and its applications. In one of its different forms, 1t asserts
that, 1f ¥ is a continuous linear form defined on a vector sub-
space 8 of a real or complex normed vector space E, then P can be
extended to a continuous linear form ¢ defined on all of E; with
the same norm, that is | ¢} = || Pll. This result can also be stated
as a separation theorem for convex sets, in various equivalent ways
which will not be considered here. There arises, naturally, the
question as to whether the thn-Banach theorem generalizes to cop
tinuous linear transformations, instead of continuous linear forms.
It has been known for many years that this is not the case, in
general. A Banach space E, indeed, need not have a continuous
projection into one of its closed vector subspace. S, meaning that
the identity map of S may fail to have a continuous linear exten-
sion to a map from E into S, as shown by Banach and Mazur,Fichten-

holtz and Kantorovich, Murray and other authors. We are, then, led
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to the following question. Given two Banach spaces E and F and a

continuous linear transformation ¢ defined on a vector subsgpace
S of Ey which we may assume to be closed, having its values in F,
when does there exist a continuous linear extension P of P to
Ey with values in F and the same norm, that is | [ = ||¢]l 2 In
such a case, we shall say shortly that (E, F, S, ) has the exten
sion property. Due to the lack of an interesting answer to this
problem, some variations of it have been congidered by different
authors, who investigated this extension problem by not holding
E, Fy S and ¢ all as given data. Analogous situations have
occured in the study of extension problems pertinent to Algebra
and Topology which lead to the notion of injective objects in a
given category. The dual notion of projective objects arises in

the dual situation of lifting problems.l

Given a Banach spacé F, the problem of determining
necessary and sufficient conditions in order that (Ey Fy, S, ¥)
should have the extension property for any E, S and 9, that is,
for any Banach space E, any closed vector subspace S of E and any
continuous linear transformation ¥ of S into F,4 there should
exist a continuous linear extension $ of © to R with'ﬁalues
in F and the same norm | & | =:IPP|EV&as first solved in the
real case by the author, Goodner and Kelley, and in the complex
case by Hasumi. We shall then say shortly that F the extension
property of type co. The classical Hahn-Banéch theorem means,
of course, that F has the extension property of type oo if its

dimension is 1. A real or complex Banach space F has the exten-
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sion property of type oo if and only if it has the projection
property consisting in that, for any Banach space B containing F
as a Banach subspace, there is a projection of norm 1 of E into F,
provided of course F # 0. For real Banach spaces, it has been
known for a long time, as an easy and natural generalization of the
method for proving the classical real Hahn-Banach theorem, that if
F is a complete vector lattice with a metric order unit e, that l1s
an element e € F, e > 0, such that =~ A e & xgA e 1s equiva-
lent to AX|l x | for any x € F, then F has the extension property
6f type o0. Such a metrie order unit is unique. Moreover, the
metric order unit e is an extreme of the unit closed ball U =
{ x;x€F, || x|l ].} of F, meaning that it is impossible to
write e = Aa + (1 - A)b, with a,b e Uy, a#e; bfe, 0<A< L. It
turns out that this apparently special situation covers the general
case of the extension property of type oo for real Banach spaces,
in the following sense. If a real Banach space F has the extension
property of type oo and e is an extreme point of U, then there is
one and only one may of making F into a complete vector lattice so
that e becomes a metric order unit. Actually the order relation
on F thus associated to e is described explicitly by defining
X > 0 when we can write x = A (e + u) with A > 0 real and
u € U. The question of the existence of at least one extreme
point in the ﬁnit ¢closed ball of a real Banach space having the
extensioh property of type @ was first settled affirmatively by
Kelley in an indirect way and later by Aronszajn and Panitchpakdi

by a direct proof. Anyhow this seems to be one exceptional case
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of existence of at least one, and actually of sufficiently many
extreme points in-a closed convex set, which does not follow
obviously from the Krein-Milman theorem in the sense that one fails
to known how to endow the vector space at hand with a separated
locally convex topology under which the afqresaid set becomes com=
pvact. Since the extreme point e of U is not unique and so the
order relation well defined by each e 1is not unique, the pre-
ceding qharacterization of those real Banach spaces having the
extension prOperfy of type oo Involves a certain arbitrariness. A
more direct characterization is as follows. A collection € of nm
enpty sets is said to have thé binary intersection property when,
given any subcollection of 2 such that any two_membérs of it
intersect, 1t follows that all members of this subcollection have
a non empty intersection. Then, a neCessary-and sufficient con-
dition for a real Banach space F‘tb have the extension property 6f
type 0o is that the collection of all ciosea balls, with.arbitrary
centers ang radii, of F-should have the'binafy intersection proper
ty. From this point of view, the vélidity of the classical real
Hahn-Banach theorem amounts to the fact that the collection of all
non empty compact intervals in the real line R has the binary inter
section property. A Banach space F with the extension property of
type o has a simple functional representation. In’fact, If K
denotes a compact space and & (K, R) is the Banach space of all
real continuous functions on X, then & (K, R) is a éomplete
vector lattice if and'onlj K is a stonean space or an extremally

disconnected space, meariing that the closure of every open set is
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again open. Since the unit function e on K is a metric order unit
for €(K, R), we conclude that ¥©(K, R) has the extension property
of type oo if K is stonean. Conversely, if ¥(X, R) has the externr
sion property of type oo, then K is stonean, as it follows Immedi~
ately Lrom the binary intersection property characterization. The
classical real Hahn-Banach theorem corresponds to the case jx1whidh
K is reduced to a single point. More generally, a real Banach
space P has the extension property of type oo if and only if F is
metrically isomorphic to the Banach space ¥ (K, R) corresponding
to 3 sultable stonean compact space K, which is uniquely determined
by F up to homeomorphisms. Different proofs of this functional
representation theorem exist in the litterature. Let, indeed F bhe
a real Banach space with the extension property of type oo. Firstly,
if e is an extreme point of the unit closed ball U of F, then by
making F into a complete vector lattice with e as a metric order
unit, F becomes an (M)-space in the sense of Kakutanl, which there
fore is orderly and metrically lsomorphic to a Banach space B(K,4R)y
where the compact space K has to be stonean since F and hence
© (K, R) are complete vector lattices. Secondly, a direct proof
of such a metric isomorphism of F to ¥ (K, R) on a stonean compact
space K was provided by Kelley, without a priori using existence
of an extreme point on the unit closed ball U of F and thus proving
such an existence as a by-produet of the functional representation.
As shown by Hasumi in an interesting way, similar results hold in
the complex case. A complex Banach space F has the extension proper

ty of type oo if and only if F is metrigally isomorphic to the
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Banach space ¥(K, C) of all complex continuous functions on a
suitable stonéan compact space K; which is uniquely determined by
F up to homeomorphisms. Stonean spaces bear a natural relation-
ship to complete boolean algebras. The open-closed subsets of a
topological space K form a boolean algebra a(K). Conversely, as
Stone showed, every boolean algebra A is isomorphiec to the boolean
algebra a(K) of a sultable totally disconnected compact space K,
which is uniquely determined by A up to homeomorphisms. Moreover,
A 1s a complete boolean algebra if and only if the representation |
space K is a stonean space. Hence, there are as many real or
complex Banach spaces with the extension property of type oo, up
to metric isomorphisms, as there are stonean compact spaces, up to
homeomorphisms, or complete boolean algebras, up to isomorphisms.
The easy case in which F is finite dimensional deserves one word.
If n = dim F < 00 ; then F has the extension property of type o if
and only if F has a basis €49 sovy € whose elements are unique
appart from their order and signs, such that llxﬂ=max{lxi] ,..,Z,Ixnl}
if x = Z:xiel.e F; that 1s if and only if the balls in F are paral
lelepipeds.

Given a Banach space S, there arises the problem of determining
when, for every Banach space E containing S as a Banach subspace,
any Banach space F and any continuous linear transformatlon Y of
'S into F4 there should exist a continuocus linear extension & of
¥ to E with values in F and the same norm [ ¢ |:= || 9|l The
answer 1s that S should have the extension property of’type 00, SO

that this problem ieads to the same category of Banach spaces as
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the previous one.

Given a Banach space E, the problem of determiniﬁg neceg
sary and sufficent condition in order that, for any Banach space F,
any closed vector subspace S of E and any continuous linear trans-
formation % of S into F, there should exist a continuous linear
extension ¢ of Y to E with values in F and the same norm
l$d) = [¢|l, was first solved in the real case by Kakutani. It .
was also treated in the real case by Phillips and solved in the
complex case by Bohnenblust. We shall say shortly that E has the
extenslion property of type 2. Then it turns out that a necessary
and sufficent condition that E should have the extension property
of type 2 is that E be a Hilbert space in case E has dimension at
least equal to 3, since E always has the extension property of type
2 when its dimension is at most egual to 2. This is actually a
problem in dimension 3, in the sense that the general case dim E>3
reduces to the speclal case dim E=3, A related problem is as
follows. Let us denote by .£(8&, F) and .£(E, F) the Banach spaces
of all continuous linear transformationé of 8 and E into F, re-
spectively. Then we have the natural restriction map of £ (E, F)
into £(S, F). The problem is then that of, given a Banach space
E, to determine necessary and sufficient conditions in order that,
for any Banach space F and any closed vector subspace S of E,
there should exist a metric isomorphism of £(S8, F) into £(E, 8)
such that the compositién L(S, F) —>L(E, F)—>L(8, F) 1is the
identity, in other words, «£(S, F) gebs identified to a Banach

subspace of £(E, F) in such a way that the restriction map
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becomes a projection into that subspace. This I1Is a problem of
simultaneous extensions types but it also can be looked as a
lifting probiem. As Kakutani showed, it is necessary and sufficient
that E be a Hilbert space, under the same restriction on the d4i-

mension and for the same reason.

The extension problem has as its dual the lifting problem,
firstly studied by Grotheﬁdieck in a systematic way in the case of
linear continﬁous transformations in Banach spaces. In an equiva-
~ lent but slightly more general form, the previously considered ex-
tension problem can be rephrased by considering three Banach spaces
Ey F and S, a metric isomorphism o of S into B (which was the
identity in the previous case), a continuous linear transformation
@ of S into F and then asking for a contimous linear transfor-

® and fiell=1lwl .

mation ¢ of E into F such that ¢ o

More generally, we may say that

| E
$
(ext) o
_ N

(Ey, Fy S; o) has the extension property when the natural mapping
of L(E; F) into L (S, F) given by ¢ —~b o =¥ is a metric

homomorphism gf L(E, F) into £(S, F), meaning that, if 7] is
the closed vector subspace of QC(E, F) where this homomorphism
- vanishes; then the natural mapping of £ (E; F)/7 into .£(S, F)
is a metric isomorphism between these two Banach spaces, which

amounts to saying that given any continuous linear transformation



149

¥ of S into F and € > 0, there exists a continuous linear trang

formation ¢ of E into F such that § o= ¥ and

€
||<|%|I < H‘F’ll + & o« The previously used strict definition of the
extension property corresponds to having a strict metrie homonor-
phismy that is to having [f)} = [®] in place of | 4>€|] <je|+¢.
Since the concept of a metrie isomorphism o of S into E has as
its dual the concept of a metric homomorphism o of E into S, we
are led to the following situation. Let Ey F and S be three Banach
spaces and ¢ be a metric homomorphism of E into S. Then we say
that (E, Fy Sy ¢) has the 1lifting property when the natural mapping
of L (F, E) into LC(F, 8) given by $-—>cd=¥P is a metric
homomorphism of £ (F, E) into L (F, S). This means that, given

any continuous linear transformation ‘Y of F into S and & >0,

there exists a continuous linear transformation 4’& of F into E

$
N

such that crd)E = ¢ and | <be | < Pl + € . Basy examples

(1ift) g

nne<—1=

F

show us that we cannot expect in general to have a strict metric
homomorphism in this ample definition, that is to replace

I <i>E Il < lell +€ by J$Pl = |P|. The situation described by
the diagram (ext) leads to the diagram (1ift) if we pass to the
dual spaces and transposed maps. Conversely, the diagram (1ift)
gets transformed into the qiagram (ext) by passage to the dual

spaces and transposed maps. However, of course,; the two situations
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are not freely equivalent becatuse not every Bamach space is a dual
space and not every continucus linear transformation between Banach
spaces 1s a transposed transformation. In the finite dimensional
casey the (ext) and (1lift) diagrams are truly equivalent through
duality and transposition and such a remark shows its usefulness
even when we treat the general case. The problem of, given a real
Banach space F; t0 determine necessary and sufficient ccnditions
in order that (E; Fy, Sy &) should have the lifting property for any
Ey S and ¢ y in the ample sense, not in the strict sense, was first
considered by Kothe and Grothendieck, who proved that F has such a
1lifting property if and oniy if F lg metrically isomorphic to the
Banach space ﬂl(l) of all summable real functions on a suitable
set I, whose cardinal number is uniquely determined by F. Then we
say that F has the 1ifting preperty of itype L. A Banach space F
has the lifting property of tyve 1 if and only if it has the metric
homomorphism property consisting in that, for any Banach space E
having a metric homomorphism o into F and any € >0y there is a
continuous linear transformation ¢, of F into E such that o ¢
is the identity mapping of F and H#EH < 1+ &, Some interesting
variations of the 1ifting problem were encountered by Grothendieck
in the theory of metric and toposliogical tensor products of Banach
and topological weclior spaces. Given & real Banach space Fy then
the following conditiorz on F are squivalent (1) for any real
Banach space X and any closed vecstor subspace Y of X, the natural
mapping F @ Y —F ® X 1is a metrie isomorphism of the Tirst

space into the second onej; (2) the dual Barach space F' has the
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extension property of type oo ; (3) for any real Banach space X and
any closed vector subspace Y of X, every continuous linear transfogp
mation ¥ of F into S = X'/Y* can be 1lifted to a continuous linear
transformation ¢ of F into E = X' with the same norm [$l = J¢l;
(4) for any real Banach space X and any closed vector subspace Y of
X, every continuous linear transformation ¥ of F into S8 = X"/¥**
can be lifted to a continuous linear transformation ¢ of F into
the bidual X" with the same norm || ¢|| = || Pl; (5) F is metrical-
ly isomorphiec to a space Ll(F) of all real integrable functions

with respect to a suitable positive measure p on a locally com-
pact space, which is not unique. In the statements of the preceding
conditions,y it is sufficient to assume that X and Y are finite d4i-

mensional and then (3) and (4) become identical.

Given a Banach space S, there arises the problem of de-
termining when, for every Banach space E having a metric homomor-
phism o© into S, any Banach space ¥, any continuous linear transfor
mation Y of F into 8 and & > 0, there should exist a continuous
linear transformation ¢, of F into E such that o ¢, =¥ and
H#%H < el +¢. The answer is that § should have the lifting
properfy of type 1y so0 that we fall back in the same category of

Banach spaces as in a previous situation.

We finish the present exposition by listing some as yet

unsettled problems:

(1) The classical result concerning a compact convex

set In a separated locally convex topologleal vector space being
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the closed convex hull of its set of extreme points is the Krein-

Milman theorem. ©On the other hand, the Kelley-Aronszajn-Panitch-
pakdl work shows us that, if F is a separated locally convex topo-
logical vector space and K 1s a closed convex bounded subset of F
such that the collection of sets in the family «{AK + ay for Ae R,
A >0 and a € F has the binary intersection property, then K is
the closure of the convex hull of the set of its extreme points.
Since compactness and the binary intersection property have some
features In common, there should exist a nice result containing
both the Krein-Milman theorem and the Kelley-Aronszajn-Panitchpakdi

work.

(2) If E and F are locally convex topological vector
‘spaces and Y 1s a continuous linear transformation defined on a
vector subspace S of E with values in F, there arises the problem
of determining when Y has a continuous linear extension ¢ to E
with values in F. We thus have a topological extension problem
parallel to the metric extension problem considered above. The
question of studying the topological extension property and a
similarly defined topological 1lifting property has not been com-
pletely clarified. In particular, if F is a Banach space which
has the topological extension property for any Banach space E, any
closed vector subspace S of E and any continuous linear transfci-
mation of S into F, can F be rencrmed so as to have the metriec
extension property of type ®? A cartesian product of real or
complex lines ahd, more generally, of Banach spaces with the metric

extension property of type oo, is a simple example of a topological
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vector space F having the topological extension property for any

E, S and ¥ . What about the converse ? Dual questlons for the

lifting problem.

(3) If F is a real Banach space whose closed balls have
extreme points and whose collection of closed balls has the weak
binary intersection property, meaning that if any two members of a
finite subcollection intersect then this finite subcollection has
a non empty intersection,; is then F metrically isomorphic to some

€ (K, R) with K compact ?

(4) Let F be a real Banach space such that for any
Banach space X and any closed vector subspace ¥ of X the natural
mapping F é X —?F & X/Y is a metric homomorphism of the first
space into the second one. This 1s equivalent to the dual Banach
space F' being metrically isomorphic to some Ll(P); or to the
bidual Banach space F" having the extension property of type oo ;
or to any continuocus linear traﬁsfcrmation ¥ of a closed vector
subspace S of a real Banach space E into F having a continuous
linear extension ¢ to E with values in F", so that the diagra.tﬁ

¢,

——

T
—>F
)

3]

—_
is commutative, and with the same norm ol = §¥9)l; or to any
compact linear transformation ¥ of a closed vector subspace S

of a real Banach space E intd, F having a compact linear extension-
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¢ to E with values in F and norm | ¢l < el + & for any
given € > 0. The question of a suitable functional represen-

tation for such a spacé F as insinuated by Grothendleck is open.

(5) Given a linear transformation T on the Banach space
X with values in the Banach space Y; when do there exist Banach
spaces E and F, a closed vector subspace S of E and metric isomor-
phisms o and P of £(E, F) and £(Ss F) into X and Y, respec=
tively, such that p-lTa: is the natural restriction mapping of
&L (Ey F) into L£(S, F) ? The assumptions that come immediately
into mind, after our previous discussionsy are those according to
which T is a metric homomorphism of X into ¥, or a striet metrie
homomorphism of X into Y. Their role in this problem is nor cleaT.

Dually for the lifting problem.

(6) Let E and F be;Banach spaces; S a closed ' vector
subspace of E and ¥ a continuous linear transformation of S into
F. In order that there should exist a continuous linear extension
¢ of ¥ toE with values in F and the same norm |¢§ = |, is
1t necessary and sufficient that, for every vector subspace Elof E
containing S as a vector subépace of codimension 1 (or finite codi
mension) there should exist a continuous linear extension ¢i to
E, with values in F and the same norm | q>lil = [P 2 It is

- known that if a real Banach space F # 0 is such that every real
Banach space E containing F as a closed vector subspace of codi-
mension 1 has a projection into F of norm 1, then the same is true

without any restriction on the codimension. A similar remark holds,
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a fortiori, in the case of the extension property, where F is given

and Ey, S and P are arbitrary and we impose or not a codimension
restriction on S in E; and analogously in the case of the extension

property of type 2. Dual problem for the lifting property.

(7) Study all cases in which (E, F, S, ¢) has the ex-
tension property, either in the striet metric sense, i.e. | $] =
I, or in the ample metric sense,; i.e. | ¢€ | < ] +€5 orin
the topological sense, by holding some of the E; Fy S and ¥ as
given data and the remaining as arbitrary. For instance, gilven a
continuous linear transformation ¢ of a Banach space S into a
Banach space F, when does it have a continuous linear extension $
to E with values in F and the same norm | ¢ = [[#], for an
arbitrary Banach space E containing S as a Banach subspace ? This
is known to be true if either S or F has the extension property of
type 00, a condition however which does not involve ¢ itself. In
the case in which 211 E, Fy S and ¢ are given data, a theory of
metric or topological obstruction to extension is lacking. Same
questions with some of the spaces restricted to important cate-
gories (reflexive spaces, Hilbert spaces, P sﬁaces, C(K) spaces,
ete) and some of the transformations restricted to important cate-
gories (compact transformations, integral transformations, trace-
class transformations, ete). In applications of Functional Analy-
sis to Partial Differential Equations one encounters situations in
which certain continuous linear transformations should be extended,
but usually one notices a lack of general theorems to cover the

specific situations at hand. A study cf such concrete situatlion
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might lead to new interesting extension theorems. Some of the

extenslion problems have been studied only in the real case and
often the complex case requires additional effort. Most of the
known results concerning extension wait a dual study as to what

concerns lifting.

(8) Let F be a finite dimensional real vector space and
K a compact convex set in F. Assume that the collection of all
sets in the family {AK + a} for A€ R,A#0 and a € F has the
n-ary intersection property,; where n » 2, namely that given any
subcollection such that any n members of it intersect, there re-
sults that all members of the subcollection have a non empty inter
sectlon. Is it true that there exists a direct sum vector space
decomposition F = Fl + 0. F FS into vector subspaces of dimensions
at most equal to n -~ 1 and compact convex sets KyCFy (1=14y...098)
such that K = Kl + ce. + KS ? It is known, as a consequence of
a theorem of Helly, that, conversely, if such a decomposition exists,
then {AK + a} has the n-ary intersection property. The answer
to the above question is affirmative for n = 2, as shown by the
author as a by-product in the study of the extension problem,y pro-
vided K has a center of symmetry and, more generally, by Nagy,
without such restriction and by assuming only A= 1, This leads
to a characterization of parallelepipeds by their translations in
finite dimensional real vector spaces. A thorough discussion of

the case n = 2 was done by Hanner.
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