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ABSTRACT

The imaginary part of the optical potential has been investigated for low
energy incoming neutrons; by means of the nucleon~nucleon gross sections in nucleg
ar matter, The cross sections have been calculated under the assumption that pair
correlations for low excited stabtes of nuclear matter are the same as those for-
=28 in the ground state. The dependence of the effective mass on the single par-
ticle momentum has been taken into consideration using an empirical solution
which reproduces the present assumptions for the single particle spectrum. The rg
sulte have been applied to the nuclear surface in the Thomas-Fermi approximation.
The maximum in the imgginary potential was found to be at the surface outside of
the hglfwdensity radius. For low incident energies it is about 1.5 fermis bey-

ond this radius.
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provided by the U. S. Atomic Energy Comission, the Office of Naval Research and
the Air Force Office of Scientific Research.

+ Now at Laborgtory for Nuclear Science, Massachusetts Institute of Techmology,
Cambridge, Massachusetis. )
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The reascnable success of the Independent-Pair approximationl

for the calculation of the properties of nuclear matfer suggests an
application of the same method to the ecalculation of the imaginary
part of the potential in the optical model of the nucleus. It is the
magnitude which determines the "absorption® of a nuclear particlg
propagating within nuelear matter with an energy higher than theFer
mi 1imit. This absorption is eqguivalent to the removal of the parti
cle from the configuration space of the‘one—particle problem descri
bed by its motion in the optical potential.

In the approximation considered here it is equivalent toa col
lision with another particle within the nuclear matter.

The imaginary potential -iW which would describe this absorp
tion is given by

W= 3y, p<O> (1)

. /

where v, 1s the velocity of the particle absorbed, and <G> 1is

its average collision cross-section with the particles in the nu=

clear matter of density p. Hence the problem reduces to the calcu-
lation of <U0>. '

In this note we try to estimate the value of the imaginary po
tential with simple considerations which are not very accurate, but
which are probably accurate enough to bring out the essential featu
ref. It must be born in mind that the appfoximations‘inherentin.the

fundamental assumptions doc not warrant exact evaluations. Very simi

lar considerations were carried out by Verlet and GavoretZ. Their

1. L. G. Gomes, J. D. Walecka, and V. F. Weisskopf, Annals of Physics 3, 341 (1958)
2+ L., Verlet and J. Gavoret, Nuovo Cimento 3, 505, (1958).
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approach differs from ours only in the treatment of the nucleon-nu-
cleon forces. They make use of a separable potential which fits the
scattering data at low energy. The separability of the potential ma
kes it possible to calculate exactly the influence of nuciear mat-
ter on the scattering. It is questionable,; however, whether this ad
vantage out welghs the uncertainties introduced by the unphysical
character of a separable potential. A treatment of the same problem
has also been reported by ShawB, and Harada and Odaue
The collision cross-section is different from its value  for

a collision of two isolateﬁ particles because fo three reasons:

1. Certain final states of the collisions are excluded because
of the Pauli-pronciple.

2o The effective mass of the particles is different from their
actual mass.

Z. The interaction acts differently for a pair within . a Ferni
gas then for an isolated pair.
The effect of point 1) has been calculated by Lane and Wandel5 and

6» We will refer to their results in which the

Clementel and Villil
points 2) and 3) havé been left outy; as the "final states" appro=
ach, Point 2) can be easily taken into account if the effective

mass 1s known as a function of the momentum. We will use the follow

ing empirical dependence which reproduces present assumptions for a

3. G. L. Shaw, Bulletin American Physical Society 4, 49, (1959)
4o K. Harada and N, Oda, Progress Theoretical Physies 21, 260, (1959)

5., A. M. Lane and C. F. Wandel, Phys. Rev. 98, 1524, (1955)

6. E. Clementel and C. Villi, Nuovo Cimento 2, 176, (1955)
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particle with momentom k (kF is the Fermi momentum).

A k2
m 1 1
— = e = ] 4 R - S— (2)
m* v 2
1+ B kS
with A = 0.48 £2 B = 1.5% £2 (f 15 a fermi).

Point 3) implies that the scattering is governed by the Bethe-Gold
stone equation rather than by the ordinary two-particle Schroedin-
ger equation. A collision of two particles with initial momentum E&

and E} is described by

(VPP y, D =L [rE-PivaE) g, @ (3

Here k = IE - ? | is the magnitude of the relative momentum, and
T = ?l - rZ is the vector between the particles, v(r) is the inter

action potential, F(T) is given by

o e o
F(F) = felkor i
r (2m)
where the region of integration [ J inecludes only non-occupied mo=

mentum states for the pair:

1

N’LI—'

I?"’kl I?"?EI?E H

> Ko F K + )

o d [

The solution of (3) can be written in the form

l}fmp(?)z ART fag (85 9) o KT

and the scattering amplitude is given by
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= “ikp.r 5y
tap =~ v @B fo T LRy (e ()

where 'E} is the final momentum of magnitude k and direction

@, ¥ ;3 furthermore we have

{1 fop |‘i:'f+'13’|>kF and |k, - P 2> Kp

7 (ke B) =

0 ofherwise

Expression (li) differs from the scattering amplitude for the iso-
lated case by the factor ~ ¥% and $ by the fact that ‘pap () 1s
different from the wave function in the isolated case.

Let us eall
-8 .7 2
sp= | S Se 1 ve) Wy, (DNGF (5)

would be differential scattering cross-section G& of an iso

sap B
lated pair, if wﬁp were the solution of the ordinary two-particle

Schroedinger equation. O is almost independent of the scattering

ag
angle at the momenta considered here. We therefore are justified to

assume that, here also, 8 is independent of €, Y . We then can

xg
calculate the average cross-section <«0O>» appearing in (1):

— .

Ik, - &gl
<o> = %Zflfaﬁla —2 2 sine 46 4y
) L9

(6)

K K|
=2 V2[4 D ¥l £k k<5 >
m}? f A kg, a’”p ap” spin

where
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? §x& - x5
(&, E—f'q (Kp,P) 7z R,
and Sy, >spin is the average of Scx.p over the different spin

pairs, isotopic and ordinary. We make use of a well known approxima

R . - - % _
te relation, G?P =0, = L O,p which glves us

< Sap>spin = g (sap)nP

where (8 is the cross-section given by (5) between a neu~

aﬁ)nP
tron and a proton of momentum -}?om and Ep respectively.

We assume that the contributions to the cross-section from an
gular momenta ! higher than 0, are not different from the isola-
ted case. We can calculate them by subtracting from the experimen=-
tal cross-section the (I = 0) part as given by the phases of Chris=-
tian, Gammel and Thaler'. The (! = 0) part is caleulated by means
of formula (3). The wave function P is taken from the work of

Gomes=Walecka and Weisskopfl

« In that paper only collisions of pairs
are considered for which both partners are within the Fermi-distri-
bution. For the actual. density of nuclear matter the s-part of this

function can be approximated by

7
= v sin kr _ ginke 2~ 51(1.10 kpr)
Yo 4 ke * . (7
5 = 8i(1.10 kFc)
where ¢ 1s ﬁhe c¢core radius. We use here the same function :or

pairs of which one partner is outside the Fermi-distribution. This

7o JoLo Gammel, R.S. Christian and R.M. Thaler, Phys. Rev. 105, 311
(1956)
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will be a reasonable approximation if its momentum is not too far
from « For the potential v(r) we use a central potential
with a core radius C = 0.4 and an attractive exponential wellwhich
reproduces the singlet scattering length and effective range. The
effect of the tensor force and of the singlet-triplet difference is
neglected. It probably plays a smaller role here then in the isola~
ted case Just as in nuclear matterlo An approximate evalunation of
expression (5) 4is shown in Fig. 1 as function of hk2==|§a —~§k|2
together with the scattering cross-section qap for an  isolated
pair. This allows us now to calculate the imaginary potential with
the help of (6), for a given incident momentum k, > kpo The rela-
tion of kq with the incident energy € of the entering particle
1s as follows. The kinetic energy of the particle inside the nucle-
us will be & + B + Ep, where Ep 1s the Fermli energy and B is the
binding energy. Hence we find

1.2 _ 1.2
vka—ka-i-B*I-G (8)

where v 1s the ratio of effective mass to normal mass. Equation
(8) and (2) give a relation between 6 and L3

Table I shows the result of this calculation for nuclear mat-
ter of normal density ( p = 1.94 x 1050cm™3, - kp = Loh2 £71 ).

The first column gives the energy €, the second one the va-
lue of W as calculated by our method, the third one the value of
v for the corresponding k. as given by (8). The fourth column
gives W as calculated‘ by the "final states" approach, and the

fifth is the value calculated with our method but with v = 1. The
values in the fifth column are larger than the ones in the fourth
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Table I
I. PA. M. Wby the ) 1. PA. M.
: I B TR
1 1.06 0.77 1.88 2,11
7 2.3 0,78 .03 L1659
1 Mev.| L4.62 Mev.| 0.80 6£.88 Mev. 7.32 Mev.

one, because in the most important energy region Sa is larger

A
than the isolated cross-section Ghﬁ s as shown in Fig. 1., The most
important difference between the second and the fourth ccluuwn comes
mainly from the effective mass.

The small values of W reflect the fact that collisions are
strongly repressed by the Pauli-Principle (5); this, in turn, is
caused by the high Fermi momentum. We expect, therefore that the
lower density at the nuclear surface will give fise to a higher ab=
sorption, in spite of the fact that the density enters as a factor
in the expressicn of W. In order to get a first orientation of this
effect; we have calculeted W as a function of the nuclear radius

by caleculating first W as a function of density and then substitn
ting the well known density distribution:

-1
plrd = p(0) }—1 +exp (r --C)/a]

with a = 0,65 and C being the half-density rading (C = vovevee.
1.07 x 10“13 Al/3 em)o This method can only serve as a crude appro=

ximation since our ealeculation of WQP) is correct only for cons-
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tant p. Hence 1t 1s only appliecable, if p does not change over
distances d characteristic to the problem (4 ~ kEl)° This is not
fulfilled with the above p(r).
The dependence of W on P can be found as follows: There

is an explicit dependence of the integral (6) on kp and eq. (2)
gives the dependence of r on kF. The integral (5) also depends
implicitely on the density because of the fact that the approximati
ve expression (7) for Vopg ©O0Ly holds for densities close to the
nuclear matter density. For low p, de goes over into the solu-
should go over into ©

I op
for p ~+ 0. In order to obtain a crude orientation, we have calcu

tion of the isolated problem. Hence Sa

lated Sap with expression (7) for densities p from the central
density down to that density p* for which we get sap (p*) = Obﬁ°
From p* to p = 0, we simply have put Saﬂ (p) = U&ﬁ o

It is then simple to compute the imaginary potential as a
function of the radius. The result is shown in Fig. 2. The curves
show that there is a strong increase at the surface of the nucleus
caused by an increase of the effective mass and a lessening of the
effect of the Pauli-principle. It is perhaps significant that the
maximum of absorptioh lies outside the nuclear radinus C which is
the point where the density drops to one-half.

It is highly doubtful, however, whether our method of caleulg
ting W 1s applicable to the region where classlcally no particle
would be allowed. This is the region in which the real part of the
potential 1s less than the binding energy of the last nuclear (8

Mev.). This region 1s outside a radius D, which is marked in Fig.2
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and was obtained from the potential as given by Ross, Mark and Law-
son8. The curves for W are entirely meaningless for r> D. In or-=
der to get some vague information about W 1in that region, we have
also calculated W without taking into account the Pauli-brinciple,
by simply using the scattering cross-sections for isclated pairs.
The nucleons in the nucleus were assumed to be distributed with a
Fermi distribution corresponding to the density p and the momen-
tum of the incident particle was assumed to be given by (8). - The
resulting W is higher than the one calculated by the previous me-
thod, but it is of the same order for values r> D. We therefore be
lieve that the fall-off of W fesulting from the previous calcula-
tion is not an unreasonable estimate, even for r>D.

A preponderance of collisions outside the nuclear radius wonld
have two consequences: It would mean that direct reactions are favo
red, since collisions in the surface would make compouna nucleus for
mation less likely. Also,; the Coulémb barrier for nuclear reactions

is expected to correspond to a larger radius then C, in particular

in respect to direct reactions.

Acknowledgement: The author wishes to express his gratitude to Pro-

fesgor V. F. Welsskopf for proposing and orienting the development
of the work reported here and to CAPES and Conselho Nacional de Peg
guisas (Brazil) for their partial support during his stay at M. L T.

8. A.4, Ross; H. Mark, and R.D. Lawson, Fhys. Rev. 102, 1613 (1956).
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Figure 1 - Curve (a) is (s,,p)np as defined in eq. (5) and (b), q;p, the scat-

tering cross-section for an isvlated pair. The vertical scale is in units of
£2 (1 £ = 10 530m) and the horizontal scale is |k - k |2 = 4k% in £7%,
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W (r) for different values of
incoming neutron energies (€ )
C = Half - density radius

O T T T T T T T ==

c-4 C-3 C-2 C-l c  C+H C+2 C+3 C+4
Fermis

Figure 2 - The imaginery part W of the optical potential at the nuclear sur-

~ face; for different values of incoming neutron energies (<€ ). The vertical

scale is in Mev and the horizontal scale in f; € is the half density radius.
The dashed and dotted curve is the density function p(r) in arbitrary ver-
tical scale. D is the "classical® turning point. Curve (a) is W in the clag
sically forbidden region calculgted neglecting the exclusion principle.



