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Abstract

By imposing global supersymmetry and scale invariance we construct an N= 8
superconformal mechanical system based on the inhomogeneous (2,8,6) linear multi-
plet. The unique action describes a special Kähler sigma model with a Calogero-type
potential and Fayet-Iliopoulos terms. The classical dynamics of the two propagating
bosons is restricted to a (warped) half-plane and bounded. We numerically inspect
typical trajectories of this special particle.
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1 Introduction and summary

For classical mechanics (field theory in 0+1 dimensions) there exists a rich landscape
of N= 8 supersymmetric models, distinguished by the number b of propagating bosonic
degrees of freedom and by the nature of the supersymmetry transformations (linear or non-
linear) [1, 2, 3]. Restricting to the linear type, the notation (b,N ,N−b) counts their prop-
agating bosonic, fermionic and auxiliary components. As was already observed in [4, 5],
an important role is played by a potential inhomogeneity in the supersymmetry transfor-
mation of the fermions. The parameters appearing there may be viewed as a constant
shift of the auxiliary components and are introduced through the superfield constraints.
Together with Fayet-Iliopoulos terms, they create a bosonic potential, lead to central
charges and partial supersymmetry breaking.

To accomodate these inhomogeneous terms, we apply the techniques discussed in [6]
and [7] and produce the most general inhomogeneous linear supermultiplets compatible
with the ordinary supersymmetry algebra {Qi, Qj} = δijH (without central extensions).

Here, we concentrate on the classical mechanics of a (2,8,6) particle. The Lagrangian and
Hamiltonian of this model has been formulated for a general prepotential F in [8] (without
inhomogeneity) and in [9] (with inhomogeneity). Here, we specialize to the conformal case
and investigate the classical dynamics of the conformal (2,8,6) particle.

The inhomogeneous (2,8,6)N= 8 supermultiplet, under the requirement of scale-invariance
for the action, defines a unique superconformal mechanical system. The only free parame-
ters are the the scale-setting Fayet-Iliopoulos coupling and the dimensionless shift entering
the inhomogeneous supersymmetry transformations.

We review the inhomogeneous supersymmetry transformations for N≤ 8 and rederive
the invariant conformal action for the inhomogeneous (2,8,6) multiplet including Fayet-
Iliopoulos terms, without using superspace technology. After eliminating the auxiliary
components we arrive at a very specific (non-isotropic and indefinite) Weyl factor and
bosonic potential in the two-dimensional target space. It proves to be legitimate (at least
classically) to restrict to a (positive-definite) half-space, where we present some typical
particle trajectories.

The inhomogeneous supersymmetry transformations that we investigate here close the
ordinary supersymmetry algebra without central extensions. This is the case because
we work within the Lagrangian framework. Central extensions of the supersymmetry
algebra can arise, both in the classical and quantum cases, as a consequence of the Hamil-
tonian formulation and the closure of the Noether-(super)charge algebra under the Poisson
bracket structure [4].

It is tempting to push the idea of this paper to even higher-extended supersymmetry.
For example, by coupling two inhomogeneous (2,8,6) multiplets linked by an extra, 9th,
supersymmetry, one should be able to construct anN= 9 superconformal mechanics model
with a four-dimensional target. This might be related with the standard reduction ofN= 4
super Yang-Mills to an off-shell multiplet of type (9,16,7) in one dimension.
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2 Inhomogeneous minimal linear supermultiplets

Minimal linear supermultiplets of extended supersymmetry in one dimension are usually
formulated with homogeneous transformations for their component fields. However, in
some cases it is possible to extend the supersymmetry transformations by the addition of
an inhomogeneous term. This is admissible at

• N= 2 for the supermultiplet (0, 2, 2)

• N= 4 for the supermultiplets (0, 4, 4) and (1, 4, 3)

• N= 8 for the supermultiplets (0, 8, 8) and (1, 8, 7) and (2, 8, 6)

The remaining N = 2, 4, 8 supermultiplets do not admit an inhomogeneous extension, as
can be easily verified by investigating the closure of the ordinary N -extended supersym-
metry algebra.

Let x and y be physical bosons, ψ, ψi, λ and λi denote fermions, and g, gi, f and fi describe
auxiliary fields. Here, the isospin index i runs over a range depending on the number of
supersymmetries. The presence of an inhomogeneous term requires the following mass
dimension for the fields:

[t] = −1 −→ [x] = −1 , [ψ] = −1
2
, [g] = 0 . (1)

In all the above cases, by a suitable R transformation, the inhomogeneous terms can be
rotated to point only in a specific iso-direction. We choose the one with the highest iso-
index, i.e. i = 2, 3 or 7, depending on the case. With this choice, let us list the various
supersymmetry transformations Qi for the six cases listed above.

(0,2,2). For the inhomogenous N= 2 (0, 2, 2) supermultiplet, the two supersymmetry
transformations, without loss of generality, can be expressed as (j, k = 1, 2, ε12 = 1)

Q1ψj = gj , Q1gj = ψ̇j ,

Q2ψj = εjkg̃k , Q2gj = εjkψ̇k ,
(2)

where the inhomogeneous extension hides in

g̃k := gk + ck with ck ∈ R , (3)

and we rotate to c1 = 0, c2 ≡ c > 0.

(0,4,4). For the N= 4 (0, 4, 4) multiplet, we have (i, j, k = 1, 2, 3, ε123 = 1)

Q0ψ = g , Q0ψj = gj , Q0g = ψ̇ , Q0gj = ψ̇j ,

Qiψ = gi , Qiψj = −δijg + εijkg̃k , Qig = −ψ̇i , Qigj = δijψ̇ − εijkψ̇k ,
(4)

and we may choose
g̃1 = g1 , g̃2 = g2 but g̃3 = g3 + c . (5)
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(1,4,3). The N= 4 (1, 4, 3) multiplet looks slightly different,

Q0x = ψ , Q0ψ = ẋ , Q0ψj = gj , Q4gj = ψ̇j ,

Qix = ψi , Qiψ = −gi , Qiψj = δijẋ+ εijkg̃k , Qigj = −δijψ̇ − εijkψ̇k ,
(6)

with the same g̃k as in (0,4,4).

(0,8,8). Without loss of generality, we can generate the N= 8 multiplets from the N= 4
ones by replacing the quaternionic structure constants εijk by the (totally antisymmetric)
octonionic structure constants cijk, with i, j, k = 1, . . . , 7 and

c123 = c147 = c165 = c246 = c257 = c354 = c367 = 1 , (7)

together with cijk = 0 for all other index combinations. Therefore, the case of (0,0,8)
yields

Q0ψ = g , Q0ψj = gj , Q0g = ψ̇ , Q0gj = ψ̇j ,

Qiψ = gi , Qiψj = −δijg + cijkg̃k , Qig = −ψ̇i , Qigj = δijψ̇ − cijkψ̇k ,
(8)

and we take
g̃k = gk + δk,7 c . (9)

(1,8,7). In analogy with (1,4,3), we get

Q0x = ψ , Q0ψ = ẋ , Q0ψj = gj , Q0gj = ψ̇j ,

Qix = ψi , Qiψ = −gi , Qiψj = δijẋ+ εijkg̃k , Qigj = −δijψ̇ − εijkψ̇k ,
(10)

and again g̃k = gk except for g̃7 = g7 + c with c > 0.

(2,8,6). This is the most interesting multiplet. It is convenient to present it in quater-
nionic form, by fusing (1, 4, 3)⊕(1, 4, 3) = (2, 8, 6), with components labeled by (x, ψ(i), g(i))
and (y, λ(i), f(i)), respectively, where i = 1, 2, 3. It is convenient to present the supersym-
metry transformations in the following table,

x g1 g2 g3 y f1 f2 f3 ψ ψ1 ψ2 ψ3 λ λ1 λ2 λ3
Q0 ψ ψ̇1 ψ̇2 ψ̇3 λ λ̇1 λ̇2 λ̇3 ẋ g1 g2 g3 ẏ f1 f2 f3
Q1 ψ1 −ψ̇ −ψ̇3 ψ̇2 λ1 −λ̇ λ̇3 −λ̇2 −g1 ẋ g̃3 −g̃2 −f1 ẏ −f̃3 f̃2
Q2 ψ2 ψ̇3 −ψ̇ −ψ̇1 λ2 −λ̇3 −λ̇ λ̇1 −g2 −g̃3 ẋ g̃1 −f2 f̃3 ẏ −f̃1
Q3 ψ3 −ψ̇2 ψ̇1 −ψ̇ λ3 λ̇2 −λ̇1 −λ̇ −g3 g̃2 −g̃1 ẋ −f3 −f̃2 f̃1 ẏ

Q4 λ −λ̇1 −λ̇2 −λ̇3 −ψ ψ̇1 ψ̇2 ψ̇3 −ẏ f1 f2 f3 ẋ −g1 −g2 −g3
Q5 λ1 λ̇ λ̇3 −λ̇2 −ψ1 −ψ̇ ψ̇3 −ψ̇2 −f1 −ẏ −f̃3 f̃2 g1 ẋ −g̃3 g̃2
Q6 λ2 −λ̇3 λ̇ λ̇1 −ψ2 −ψ̇3 −ψ̇ ψ̇1 −f2 f̃3 −ẏ −f̃1 g2 g̃3 ẋ −g̃1
Q7 λ3 λ̇2 −λ̇1 λ̇ −ψ3 ψ̇2 −ψ̇1 −ψ̇ −f3 −f̃2 f̃1 −ẏ g3 −g̃2 g̃1 ẋ

Inspection shows that Q0, Q1, Q2, Q3 act within each of the two (1,4,3) submultiplets,
while the additional supersymmetries Q4, Q5, Q6, Q7 mix the two. Having SO(3)-rotated
inside each (1,4,3) submultiplet to

g̃k = gk + δk3 c and f̃k = fk + δk3 c
′ (11)

we may employ a further SO(2) rotation, acting on the ψ3λ3 and g3f3 planes, to remove
the c′ contribution and align the inhomogeneity with one of the two N= 4 submultiplets.
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3 Invariant action for a (2,8,6) particle

To investigate the dynamics of superconformal particles on a line, based on the various
inhomogeneous supermultiplets, we shall need to construct invariant actions for them. For
N≥ 4 and the presence of at least one physical boson, there exists a canonical method [7]
to generate such actions, by setting

S =

∫
dt L =

∫
dt Q1Q2Q3Q4 F (x, y, . . .) , (12)

where F (x, y, . . .) is an unconstrained prepotential. In order to obtain conformally invari-
ant mechanics, the action should not contain any dimensionful coupling parameter, and
therefore, due to [Qi] = 1

2
, we demand that [F ] = −1. One can prove that the ensuing

scale invariance extends to full conformal invariance.

Without the inhomogeneous extension, (12) yields only a kinetic term with some metric.
It is the inhomogeneous term which will give rise to a Calogero-type potential. The action
may be complemented by the addition of a Fayet-Iliopoulos term

SFI =

∫
dt
∑

i

(qigi + rifi) with [qi] = [ri] = 1 , (13)

introducing dimensionful couplings compatible with conformal invariance. These Fayet-
Iliopoulos terms produce an oscillatorial damping, via the DFF trick of conformal me-
chanics [10].

For the (1,4,3) multiplet (only x and gi, no y or fi), the proper choice for the prepotential
is

F (x) = 1
4
x lnx −→ L+LFI = F ′′(x)

(
ẋ2 +g2

i + c g3

)
+qigi + fermions . (14)

After eliminating the auxiliary components gi via their equations of motion and putting
the fermions to zero, one gets

L′bos = F ′′(x)
(
ẋ2 − 1

4
c2
)
− 1

4
q2
i /F

′′(x) − 1
2
c q3

= 1
4

(
ẋ2 − 1

4
c2
)
/x − g2

i x − 1
2
c q3 (15)

= 1
2
ẇ2 − 1

8
c2w−2 − 1

2
g2

iw
2 − 1

2
c q3 ,

and we have recovered the standard conformal action after the coordinate change x = 1
2
w2.

Stepping up to N= 8, we change the iso-labelling to make Q0, Q1, Q2, Q3 manifest,

S =

∫
dt L =

∫
dt Q0Q1Q2Q3 F (x, y, . . .) . (16)

Demanding invariance under the additional four supersymmetries by requiring

QlL = ∂tWl for l = 4, 5, 6, 7 (17)
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imposes severe constraints on F . In fact, for the (1,8,7) multiplet no action can be
invariant under the inhomogeneous supersymmetry transformations.∗

However, the situation is much more interesting for the (2,8,6) multiplet. Here, the
constraint (17) says that, like in the homogeneous case [11], the prepotential F (x, y) must
be harmonic,

�F ≡ Fxx + Fyy = 0 . (18)

The general solution is encoded in a meromorphic function H(z) via

F (x, y) = H(z) +H(z) = 2 ReH(z) , (19)

where it is convenient to pass to complex coordinates,

z = x+ iy , ∂z = 1
2
(∂x − i∂y) , hi = gi + ifi , χ(i) = ψ(i) + iλ(i)

z̄ = x− iy , ∂z̄ = 1
2
(∂x + i∂y) , h̄i = gi − ifi , χ̄(i) = ψ(i) − iλ(i) .

(20)

Inserting (19) into (16), we obtain

L = 2 Re
{
Hzz( ˙̄zż + h̄ihi + c h3 + 1

2
˙̄χχ− 1

2
χ̄χ̇ + 1

2
˙̄χiχi − 1

2
χ̄iχ̇i)

+ Hzzz(χχihi + 1
2
εijkχiχjhk + c χχ3) + 1

6
Hzzzzεijkχχiχjχk

}
, (21)

where the inhomogeneous extension is clearly visible in the terms containing the param-
eter c. The bosonic metric gzz̄ = Hzz+H̄z̄z̄ is special Kähler of rigid type [12]. Reverting
to real notation and introducing the Weyl factors

Φ = 2 ReHzz = 1
2
(Fxx−Fyy) and Φ̃ = −2 ImHzz = Fxy , (22)

the Lagrangian reads

L = Φ
(
ẋ2 + ẏ2 + gi

2 + fi
2 − ψψ̇ − λλ̇− ψiψ̇i − λiλ̇i

)
+ Φx

(
ψψigi − ψλifi − λψifi − λλigi + εijk(1

2
giψjψk − 1

2
giλjλk − fiλjψk)

)
+ Φy

(
λψigi − λλifi + ψψifi + ψλigi + εijk(1

2
fiψjψk − 1

2
fiλjλk + giλjψk)

)
+ 1

2
(Φxx−Φyy)εijk

(
1
6
ψψiψjψk + 1

6
λλiλjλk − 1

2
ψψiλjλk − 1

2
λλiψjψk

)
+ Φxy εijk

(
1
6
λψiψjψk − 1

6
ψλiλjλk + 1

2
ψλiψjψk − 1

2
λψiλjλk)

)
+ c

(
Φg3 + Φ̃f3 + Φx(ψψ3 − λλ3) + Φy(λψ3 + ψλ3)

)
, (23)

to which we add the Fayet-Iliopoulos terms

LFI = qigi + rifi . (24)

The harmonic prepotential with the correct scaling dimension [H] = −1 is †

H(z) = 1
8
z ln z ←→ F (x, y) = 1

8
x ln(x2+y2)− 1

4
y arctan y

x
, (25)

∗In the homogeneous case the constraint reads F ′′′′(x) = 0, which produces L = (ax+b) ẋ2 + . . ..
†Multiplying H with a phase corresponds to an irrelevant rotation in the complex plane.
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and the corresponding Weyl factors read

Φ = 1
4

Re
1

z
= 1

4

x

x2+y2
and Φ̃ = −1

4
Im

1

z
= 1

4

y

x2+y2
. (26)

Note that the corresponding metric is an indefinite one, as it must be for any harmonic
Weyl factor.

In the bosonic limit, obtained by setting all fermions equal to zero, we obtain

Lbos + LFI = Φ (ẋ2 + ẏ2 + gi
2 + fi

2) + c (Φ g3 + Φ̃f3) + qigi + rifi . (27)

We eliminate the auxiliary fields via their algebraic equations of motion,

g1 = − q1

2Φ
, g2 = − q2

2Φ
, g3 = − q3+cΦ

2Φ

f1 = − r1

2Φ
, f2 = − r2

2Φ
, f3 = − r3+cΦ̃

2Φ
,

(28)

and arrive at

L′bos = Φ
(
ẋ2 + ẏ2

)
− 1

4Φ

(
q2

1 + q2
2 + (q3+cΦ)2 + r2

1 + r2
2 + (r3+cΦ̃)2

)
=

x

x2+y2

ẋ2 + ẏ2

4
− (q2

i +r2
i )(x2+y2)

x
− c

q3x+r3y

2x
− c2

16x
(29)

=: K − V ,

making explicit the effect of both the inhomogeneous supersymmetry transformation (c)
and the Fayet-Iliopoulos terms (qi, ri) on the potential V .

It is tempting to perform the same coordinate change as for the (1,4,3) multiplet, x = 1
2
w2,

which yields

L′bos = 1
2
(1+γ2)−1

(
ẇ2 +

ẏ2

w2

)
− 1

2
(1+γ2)(q2

i +r2
i )w2 − 1

2
c (q3+r3γ) − c2

8w2
, (30)

where γ = 2y/w2. This form reveals both the oscillator and Calogero terms, but also
shows the added complexity in two dimensions (mostly hidden in γ). Putting y ≡ 0 (also
γ=0) brings back the (1,4,3) result (15).

4 Trajectories of a (2,8,6) particle

Without loss of generality, let us drop inessential Fayet-Iliopoulos terms and put

q1 = q2 = r1 = r2 = 0 and q3 =: q , r3 =: r , q+ir =: s . (31)

In complex coordinates, the kinetic and potential energies then read

K = Φ ż ˙̄z = 1
8

z+z̄

zz̄
ż ˙̄z , (32)

V =
(
(q+cΦ)2 + (r+cΦ̃)2

)
/4Φ = 1

8

1

z+z̄

(
4sz̄ + c

)(
4s̄z + c

)
. (33)
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Figure 1: Potential V and its level curves for (c, q, r) = (4, 1, 2) −→ zmin = 1
5
(1−2i).

The level curves of this potential are circles of center and radius

z0(V ) =
2V − c s
4(q2+r2)

and r(V ) =

√
V (V−c q)

2(q2+r2)
, (34)

respectively, and its only minimum Vmin = cq is located at

zmin = z0(cq) =
c s̄

4(q2+r2)
. (35)

The parameter r governs the asymmetry under y → −y. The reflection x→ −x flips the
sign of V−1

2
cq3. Due to the factor of z+z̄ = 2x, both the Weyl factor and the potential are

strictly positive on the right half-space x>0 and strictly negative for x<0. Therefore, the
(2,8,6) particle is a reasonable dynamical system only if its trajectories do not cross the
x=0 dividing line. Seen from the right half-space, the potential barrier for x→0 has a hole
at y=0 if c=0, but the Weyl factor explodes precisely there. For large coordinate values,
the potential grows linearly with x and quadratically with y, so the x>0 trajectories
remain bounded.

The equation of motion takes the form

0 = Φ3z̈ + Φ2Φz ż
2 − 1

4
Φz̄

(
q2 + (r + 2icHzz)2

)
∝ (z+z̄)3zz̄ z̈ − (z+z̄)2z̄2ż2 + z2z̄2

(
(4qz)2 + (4rz+ic)2

)
, (36)

which in real coordinates reads

0 = ẍ− 1

2x

x2−y2

x2+y2
(ẋ2−ẏ2)− 2y

x2+y2
ẋ ẏ +

x2+y2

x3

(
2(q2+r2)(x2−y2)− cr y − 1

8
c2
)
,

0 = ÿ +
y

x2+y2
(ẋ2−ẏ2)− 1

x

x2−y2

x2+y2
ẋ ẏ +

x2+y2

x3

(
4(q2+r2)x y + cr x

)
. (37)
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Figure 2: Trajectories for (c, q, r) = (4, 1, 2) with initial conditions (z, ż)(0) = (1, 0) (left)
and (z, ż)(0) = ( 1

10
+i, 0) (right).

The only constant of motion of this system is the energy E = T+V , so the generic particle
motion is not integrable. Figure 2 shows the trajectory for the (c, q, r)-value chosen in
Figure 1 and a couple of initial conditions.

One sees that the curve does not fill out the region V (x, y) ≤ E, on effect of the position-
dependent effective mass M = 2Φ(x, y). It is also clear that the x=0 barrier is impene-
trable. Therefore, it makes sense to substitute w =

√
2x and introduce the dynamics in

the wy-plane according to (30). The trajectories of Figure 2 get somewhat distorted in
these variables, but their qualitative behavior is unchanged.
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