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Abstract

Chern-Simons AdS supergravity theories are gauge theories for the super-AdS
group. These theories possess a fermionic symmetry which differs from standard
supersymmetry. In this paper, we study five-dimensional Chern-Simons AdS super-
gravity in a Randall-Sundrum scenario with two Minkowski 3-branes. After making
modifications to the D = 5 Chern-Simons AdS supergravity action and fermionic
symmetry transformations, we obtain a Z2-invariant total action S = S̃bulk +Sbrane
and fermionic transformations δ̃ε. While δ̃εS̃bulk = 0, the fermionic symmetry is
broken by Sbrane. Our total action reduces to the original Randall-Sundrum model
when S̃bulk is restricted to its gravitational sector. We solve the Killing spinor
equations for a bosonic configuration with vanishing su(N) and u(1) gauge fields.
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1 Introduction

Chern-Simons AdS supergravity [1, 2, 3] theories can be constructed only in odd spacetime
dimensions. As the name implies, they are gauge theories for supersymmetric extensions
of the AdS group.1 They have a fiber bundle structure and hence are potentially renor-
malizable [2]. The dynamical fields form a single adS superalgebra-valued connection
and hence the supersymmetry algebra closes automatically off-shell without requiring
auxiliary fields [4]. The Lagrangian in dimension D = 2n− 1 is a Chern-Simons (2n− 1)-
form for the super-adS connection and is a polynomial of order n in the corresponding
curvature. Unlike standard supergravity theories, there can be a mismatch between the
number of bosonic and fermionic degrees of freedom.2 For this reason, the ‘supersymme-
try’ of Chern-Simons AdS supergravity theories is perhaps better referred to as a fermionic
symmetry.

D = 11, N = 1 Chern-Simons AdS supergravity may correspond to an off-shell su-
pergravity limit of M-theory [2, 3]. It has expected features of M-theory which are not
shared by D= 11 Cremmer-Julia-Scherk (CJS) supergravity [5]. These features include
an osp(32|1) superalgebra [6] and higher powers of curvature [7]. Hořava-Witten theory
[8] is obtained from CJS supergravity by compactifying on an S1/Z2 orbifold and re-
quiring gauge and gravitational anomalies to cancel. This theory gives the low energy,
strongly coupled limit of the heterotic E8 × E8 string theory. In light of the above dis-
cussion, it would be interesting to reformulate Hořava-Witten theory with D=11, N= 1
Chern-Simons AdS supergravity.

Reformulating Hořava-Witten theory as described above may prove to be difficult. It
is simpler to compactify the five-dimensional version of Chern-Simons AdS supergravity
on an S1/Z2 orbifold and ignore anomaly cancellation issues. Canonical sectors of D=
5 Chern-Simons AdS supergravity have been investigated in locally AdS5 backgrounds
possessing a spatial boundary with topology S1 × S1 × S1 located at infinity [9]. In
this paper, as a preamble to reformulating Hořava-Witten theory, we will study D = 5
Chern-Simons AdS supergravity in a Randall-Sundrum background with two Minkowski
3-branes [10]. We choose coordinates xµ = (xµ̄, x5) to parameterize the five-dimensional
spacetime manifold.3 In terms of these coordinates, the background metric takes the form

gµνdx
µdxν = a2(x5)η

(4)
µ̄ν̄ dx

µ̄dxν̄ + (dx5)2, (1.1)

where η
(4)
µ̄ν̄ = diag(−1, 1, 1, 1)µ̄ν̄ , a(x5) ≡ exp(−|x5|/`) is the warp factor, and ` is the

AdS5 curvature radius. The coordinate x5 parameterizes an S1/Z2 orbifold, where the
circle S1 has radius ρ and Z2 acts as x5 → −x5. We choose the range −πρ ≤ x5 ≤ πρ
with the endpoints identified as x5 ' x5 + 2πρ. The Minkowski 3-branes are located at

1The AdS group in dimension D ≥ 2 is SO(D− 1, 2). The corresponding super-AdS groups are given
in [3]. For D=5 and D=11, the super-AdS groups are respectively SU(2, 2|N) and OSp(32|N).

2For example, in D=5 Chern-Simons AdS supergravity [1], the number of bosonic degrees of freedom
(N2 + 15) is equal to the number of fermionic degrees of freedom (8N) only for N =3 and N =5.

3We use indices µ, ν, . . . = 0, 1, 2, 3, 5 for local spacetime and a, b, . . . = 0̇, 1̇, 2̇, 3̇, 5̇ for tangent space-
time. The corresponding metrics, gµν and ηab = diag(−1, 1, 1, 1, 1)ab, are related by gµν = eµ

aeν
bηab,

where eµ
a is the fünfbein. Barred indices µ̄, ν̄, . . . = 0, 1, 2, 3, and ā, b̄, . . . = 0̇, 1̇, 2̇, 3̇ denote the four-

dimensional counterparts of µ, ν, . . . and a, b, . . ., respectively.
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the Z2 fixed points x5 = 0 and x5 = πρ. These 3-branes have corresponding tensions T (0)

and T (πρ) and may support (3 + 1)-dimensional field theories.
This paper is organized as follows: In Section 2, we construct a Z2-invariant bulk

theory. This bulk theory is obtained by making modifications to the D=5 Chern-Simons
AdS supergravity action and fermionic symmetry transformations which allow consistent
orbifold conditions to be imposed. The variation of the resulting bulk action Sbulk under
the resulting fermionic transformations δε vanishes everywhere except at the Z2 fixed
points. We calculate δεSbulk in Section 3. In Section 4, we modify Sbulk and δε to obtain a
modified Z2-invariant bulk theory. The modified bulk action S̃bulk is invariant under the
modified fermionic transformations δ̃ε. In Section 5, we complete our model by adding
the brane action Sbrane. We show in Section 6 that our total action

S = S̃bulk + Sbrane (1.2)

reduces to the original Randall-Sundrum model [10] when S̃bulk is restricted to its grav-
itational sector. In Section 7, we solve the Killing spinor equations for a purely bosonic
configuration with vanishing su(N) and u(1) gauge fields. Our concluding remarks are
given in Section 8. Finally, in the Appendix, we work out the fünfbein, spin connection,
curvature 2-form components, Ricci tensor, and Ricci scalar for our metric (1.1).

2 Z2-invariant bulk theory

In this section, we construct a Z2-invariant bulk theory. The bulk theory is obtained
by making modifications to the D = 5 Chern-Simons AdS supergravity [1] action and
fermionic symmetry transformations which allow consistent orbifold conditions to be im-
posed.

The field content of D=5 Chern-Simons AdS supergravity is the fünfbein eµ
a, the spin

connection ωµ
ab, the su(N) gauge connection Aµ = Aiµτi, the u(1) gauge connection Bµ,

and N complex gravitini ψµr which transform as Dirac spinors in a vector representation
of su(N).4 These fields form a connection for the adS superalgebra su(2, 2|N). The action
and fermionic symmetry transformations are given in [9] in terms of the AdS5 curvature
radius `. The only free parameter in the action is a dimensionless constant k. To allow
consistent Z2 orbifold conditions to be imposed, we make the following modifications:

1. Rescale the su(N) and u(1) gauge connections:

A→ gAA, B → gBB.

4We use indices i, j, . . . = 1, . . . , N2 − 1 to label the N × N -dimensional su(N) generators τi. The
indices r, s, . . . = 1, . . . , N label vector representations of su(N). We will use the notation Ar

s ≡ Ai(τi)r
s.

Spinor indices α, β, . . . will sometimes be suppressed.
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2. Replace gA, gB, `−1, and k by the Z2-odd expressions5

GA ≡ gA sgn(x5), GB ≡ gB sgn(x5), L−1 ≡ `−1 sgn(x5),

K ≡ k sgn(x5).

In this manner, we obtain the bulk action

Sbulk = Sgrav + Ssu(N) + Su(1) + Sferm, (2.1)

where

Sgrav =
∫

1
8
Kεabcde

(
1
L
RabRcdee + 2

3L3R
abecedee + 1

5L5 e
aebecedee

)
,

Ssu(N) =
∫
iK str

(
G3
AAF

2 − 1
2
G4
AA

3F + 1
10
G5
AA

5
)
,

Su(1) =
∫
K

[
−

(
1
42 − 1

N2

)
G3
BB(dB)2 + 3

4L2

(
T aTa − L2

2
RabRab

−Rabeaeb
)
GBB − 3

N
G2
AGBF

r
sF

s
rB

]
,

Sferm =
∫

3
2i
K

(
ψ̄rαRα

β∇ψβr + ψ̄sαF r
s∇ψαr

)
+ c.c., (2.2)

and the transformations

δεe
a = −1

2
(ψ̄rΓaεr − ε̄rΓaψr), δεω

ab = 1
4
(ψ̄rΓabεr − ε̄rΓabψr),

δεψr = −∇εr, δεψ̄
r = −∇ε̄r,

δεA
r
s = i

(
ψ̄rεs − ε̄rψs

)
, δεB = i

(
ψ̄rεr − ε̄rψr

)
. (2.3)

In these expressions, Γa are the Dirac matrices6, Γab ≡ 1
2

(
ΓaΓb − ΓbΓa

)
, Rab = dωab +

ωacωc
b is the curvature 2-form, T a = dea +ωabe

b is the torsion 2-form, F = dA+GAA
2 =

F iτi is the su(N) curvature,

Rα
β ≡ 1

2L
T a(Γa)

α
β + 1

4
(Rab + 1

L2 e
aeb)(Γab)

α
β + i

4
GB dB δαβ − 1

2
ψαs ψ̄

s
β,

F r
s ≡ F r

s + i
N
GB dB δrs − 1

2
ψ̄rβψ

β
s , (2.4)

str is a symmetrized trace satisfying str(τiτjτk) ≡ 1
2i

tr ({τi, τj}τk), ∇ is the adS5×su(N)×
u(1) covariant derivative, and

∇ψr ≡
(
d+ 1

4
ωabΓab + 1

2L
eaΓa

)
ψr −GAA

s
rψs + i

(
1
4
− 1

N

)
GBBψr,

∇εr ≡
(
d+ 1

4
ωabΓab + 1

2L
eaΓa

)
εr −GAA

s
rεs + i

(
1
4
− 1

N

)
GBBεr. (2.5)

Note that the results in the Appendix can be used to show that the torsion vanishes for
our metric.

We impose the following orbifold conditions:

5The signum function sgn(x5) is +1 for 0 < x5 < πρ and −1 for −πρ < x5 < 0. It obeys sgn2(x5) = 1
and ∂5 sgn(x5) = 2[δ(x5)− δ(x5 − πρ)].

6We choose a chiral basis for the 4× 4 Dirac matrices

Γa =
(
Γā,Γ5̇

)
=

([
0 −iσā

−iσ̄ā 0

]
,

[
−1 0
0 1

])
,

where σā = (1, ~σ) and σ̄ā = (1,−~σ). These matrices satisfy tr (ΓaΓbΓcΓdΓe) = −4iεabcde, where εabcde is
the Levi-Civita tensor and ε0̇1̇2̇3̇5̇ = 1.
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1. Periodicity on S1. The fields and the fermionic parameters εr, denoted generically
by φ, are required to be periodic on the circle S1. That is,

φ(xµ̄, x5) = φ(xµ̄, x5 + 2πρ). (2.6)

2. Z2 parity assignments. The bosonic field components

Φ = eµ
ā, e5

5̇, Ai5, B5, Θ = eµ̄
5̇, e5

ā, Aiµ̄, Bµ̄

are chosen to satisfy

Φ(xµ, x5) = +Φ(xµ,−x5), Θ(xµ, x5) = −Θ(xµ,−x5). (2.7)

That is, the Φ components are Z2-even and the Θ components are Z2-odd. For the
gravitini, we require

Γ5̇ ψµ̄r(x
µ̄, x5) = +ψµ̄r(x

µ̄,−x5),

Γ5̇ ψ5r(x
µ̄, x5) = −ψ5r(x

µ̄,−x5). (2.8)

Finally, the fermionic parameters εr are required to satisfy

Γ5̇ εr(x
µ̄, x5) = + εr(x

µ,−x5). (2.9)

These conditions imply that the Z2-odd quantities vanish at the orbifold fixed points. It
is straightforward to check that Sbulk is Z2-even and that the transformations (2.3) are
consistent with the Z2 parity assignments.

3 Calculation of δεSbulk

The D= 5 Chern-Simons AdS supergravity action is invariant (up to a boundary term)
under its fermionic symmetry transformations. In Section 2, we modified this action and
its fermionic transformations to obtain a Z2-invariant bulk theory. Due to the signum
functions introduced by the modifications, δεSbulk contains terms which have no counter-
part in the unmodified theory. More specifically, the extra terms arise from ∂5 acting
on the signum functions to yield delta functions. Such ‘delta function’ contributions to
δεSbulk can potentially spoil the fermionic symmetry only at the Z2 fixed points. Thus,
Sbulk is invariant under its fermionic transformations everywhere except perhaps at the
Z2 fixed points. In this section, we will calculate δεSbulk.
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For our metric and Z2 parity assignments, the uncancelled variation δεSbulk arises from
the variation of the 4-Fermi terms. The 4-Fermi terms are

Sψ4 = 3i
4

∫
K

(
ψ̄rαψ

α
s ψ̄

s
β∇ψβr + ψ̄sαψ̄

r
βψ

β
s∇ψαr

)
+ c.c.

= 3i
2

∫
Kψ̄rαψ

α
s ψ̄

s
β∇ψβr + c.c.

= 3i
2

∫
K

(
ψ̄rψs

) (
ψ̄s∇ψr

)
+ c.c.

= 3i
2

1
5!

∫
d5x εµνρσλK

(
ψ̄rµψνs

) (
ψ̄sρ∇σψλr

)
+ c.c.

= 3i
2

1
4!

∫
d5xK

[
ε5ν̄ρ̄σ̄λ̄

(
ψ̄r5ψν̄s

) (
ψ̄sρ̄∇σ̄ψλ̄r

)
+ εµ̄5ρ̄σ̄λ̄

(
ψ̄rµ̄ψ5s

) (
ψ̄sρ̄∇σ̄ψλ̄r

)
+εµ̄ν̄5σ̄λ̄

(
ψ̄rµ̄ψν̄s

) (
ψ̄s5∇σ̄ψλ̄r

)
+ εµ̄ν̄ρ̄5λ̄

(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄∇5ψλ̄r

)
+εµ̄ν̄ρ̄σ̄5

(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄∇σ̄ψ5r

) ]
+ c.c. (3.1)

Let us now compute δεSbulk by applying δε to (3.1) and dropping all terms which contribute
no delta functions. For our metric and Z2 parity assignments, we can drop all but

1. The ∂µ part of ∇µ.

2. The −∂µεr part of δε = −∇µεr.

The only contributing terms are thus contained in the expression

Q ≡ −3i
2

1
4!

∫
d5xK

{
ε5ν̄ρ̄σ̄λ̄ (∂5ε̄

rψν̄s)
(
ψ̄sρ̄∂σ̄ψλ̄r

)
+εµ̄5ρ̄σ̄λ̄

(
ψ̄rµ̄∂5εs

) (
ψ̄sρ̄∂σ̄ψλ̄r

)
+ εµ̄ν̄5σ̄λ̄

(
ψ̄rµ̄ψν̄s

)
(∂5ε̄

s∂σ̄ψλ̄r)

+εµ̄ν̄ρ̄5λ̄
[
(∂µ̄ε̄

rψν̄s)
(
ψ̄sρ̄∂5ψλ̄r

)
+

(
ψ̄rµ̄∂ν̄εs

) (
ψ̄sρ̄∂5ψλ̄r

)
+

(
ψ̄rµ̄ψν̄s

)
(∂ρ̄ε̄

s∂5ψλ̄r) +
(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄∂5∂λ̄εr

) ]
+εµ̄ν̄ρ̄σ̄5

(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄∂σ̄∂5εr

) }
+ c.c. (3.2)

More specifically, the delta function terms contained in Q are obtained by integrating by
parts and keeping only the terms in which ∂5 acts on K. Thus,

δεSbulk = 3i
2

1
4!

∫
d5x ∂5K

{
ε5ν̄ρ̄σ̄λ̄ (ε̄rψν̄s)

(
ψ̄sρ̄∂σ̄ψλ̄r

)
+εµ̄5ρ̄σ̄λ̄

(
ψ̄rµ̄εs

) (
ψ̄sρ̄∂σ̄ψλ̄r

)
+ εµ̄ν̄5σ̄λ̄

(
ψ̄rµ̄ψν̄s

)
(ε̄s∂σ̄ψλ̄r)

+εµ̄ν̄ρ̄5λ̄
[
(∂µ̄ε̄

rψν̄s)
(
ψ̄sρ̄ψλ̄r

)
+

(
ψ̄rµ̄∂ν̄εs

) (
ψ̄sρ̄ψλ̄r

)
+

(
ψ̄rµ̄ψν̄s

)
(∂ρ̄ε̄

sψλ̄r) +
(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄∂λ̄εr

) ]
+εµ̄ν̄ρ̄σ̄5

(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄∂σ̄εr

) }
+ c.c., (3.3)

where
∂5K = 2k

[
δ(x5)− δ(x5 − πρ)

]
. (3.4)
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4 Modified Z2-invariant bulk theory

The result (3.3) for δεSbulk demonstrates that Sbulk is not invariant under the fermionic
transformations δε. In this section, we will modify Sbulk and δε by replacing the adS5 ×
su(N)× u(1) covariant derivative ∇ with ∇̃, where

∇̃σψλr ≡ ∇σψλr + 2δ5
σδ

λ̄
λ

[
δ(x5)− δ(x5 − πρ)

]
sgn(x5)Γ5̇ψλ̄r,

∇̃σεr ≡ ∇σεr + 2δ5
σ

[
δ(x5)− δ(x5 − πρ)

]
sgn(x5)Γ5̇εr. (4.1)

We will show that the modified bulk action

S̃bulk ≡ Sbulk
(
∇ → ∇̃

)
≡ Sbulk + ∆Sbulk (4.2)

is invariant under the modified transformations

δ̃ε ≡ δε
(
∇ → ∇̃

)
≡ δε + ∆δε. (4.3)

That is, we will show that

δ̃εS̃bulk = δεSbulk + (∆δε)Sbulk + δ̃ε (∆Sbulk) (4.4)

vanishes. It is straightforward to check that S̃bulk is Z2-invariant and the transformations
δ̃ε are consistent with our Z2 parity assignments.

We begin by computing (∆δε)Sbulk. For our metric and Z2 parity assignments, the
only part of Sbulk which is not invariant under ∆δε is Sψ4 (given by (3.1)). Note that

(∆δε)ψλr = −2δ5
λ

[
δ(x5)− δ(x5 − πρ)

]
sgn(x5)Γ5̇εr. (4.5)

Thus, after using K sgn(x5) = k, (2.9), and (3.4), we obtain

(∆δε)Sbulk = −3i
2

1
4!

∫
d5x ∂5K

[
ε5ν̄ρ̄σ̄λ̄ (ε̄rψν̄s)

(
ψ̄sρ̄∂σ̄ψλ̄r

)
+εµ̄5ρ̄σ̄λ̄

(
ψ̄rµ̄εs

) (
ψ̄sρ̄∂σ̄ψλ̄r

)
+ εµ̄ν̄5σ̄λ̄

(
ψ̄rµ̄ψν̄s

)
(ε̄s∂σ̄ψλ̄r)

+εµ̄ν̄ρ̄σ̄5
(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄∂σ̄εr

) ]
+ c.c. (4.6)

Now, let us compute δ̃ε (∆Sbulk). For our metric and Z2 parity assignments, the

only part of Sbulk which is changed by the replacement ∇ → ∇̃ is Sψ4 . After using
K sgn(x5) = k, (2.8), and (3.4), we obtain

∆Sbulk = 3i
2

1
4!

∫
d5x ∂5K εµ̄ν̄ρ̄5λ̄

(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄ψλ̄r

)
+ c.c. (4.7)

Applying δ̃ε to (4.7) yields

δ̃ε (∆Sbulk) = −3i
2

1
4!

∫
d5x ∂5K εµ̄ν̄ρ̄5λ̄

[
(∂µ̄ε̄

rψν̄s)
(
ψ̄sρ̄ψλ̄r

)
+

(
ψ̄rµ̄∂ν̄εs

) (
ψ̄sρ̄ψλ̄r

)
+

(
ψ̄rµ̄ψν̄s

)
(∂ρ̄ε̄

sψλ̄r) +
(
ψ̄rµ̄ψν̄s

) (
ψ̄sρ̄∂λ̄εr

) ]
+ c.c. (4.8)

Using the results (3.3), (4.6), and (4.8) in (4.4) yields

δ̃εS̃bulk = 0. (4.9)
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5 Brane action

To complete our model, we add the brane action Sbrane. In the absence of particle exci-
tations, the brane action consists of brane tensions. That is,

Sbrane = −
∫
d5x e(4)

[
T (0)δ(x5) + T (πρ)δ(x5 − πρ)

]
+ excitations, (5.1)

where e(4) ≡ det(eµ̄
ā). As discussed in Section 2, Z2-odd quantities vanish at the Z2 fixed

points. Thus, it is clear that Sbrane is Z2-even. Further discussion of 3-brane actions can
be found in [11].

6 Connection with original RS model

In this section, we will show that our total action S = S̃bulk+Sbrane reduces to the original
Randall-Sundrum model [10] when S̃bulk is restricted to its gravitational sector.

The gravitational sector of S̃bulk is Sgrav, given by the first equation of (2.2). Sgrav
consists of three terms:

1. The ‘Gauss-Bonnet’ term
∫

1
8
KεabcdeR

abRcdee/L.

2. The ‘Einstein-Hilbert’ term
∫

1
8
· 2

3
KεabcdeR

abecedee/L3.

3. The ‘cosmological constant’ term
∫

1
8
· 1

5
Kεabcdee

aebecedee/L5.

For our metric, the first term can be expressed as a linear combination of the other
two. Summing the three terms yields an effective Einstein-Hilbert term and an effective
cosmological constant term. To demonstrate this explicitly, let us evaluate Sgrav for our
metric. Using the results in the Appendix, we obtain

εabcdeR
abRcdee = d5x e

(
−120

`4
+

192

`3
[
δ(x5)− δ(x5 − πρ)

])
,

εabcdeR
abecedee = d5x e (−6R) ,

εabcdee
aebecedee = d5x e (−5!) , (6.1)
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where e ≡ det(eµ
a). Thus,

Sgrav =

∫
d5x e

1

8

{
k

`

(
−120

`4
+

192

`3
[
δ(x5)− δ(x5 − πρ)

])
+

2k

3`3
(−6R) +

k

5`5
(−5!)

}
=

∫
d5x e

k

`3

{
−15

`2
+

24

`

[
δ(x5)− δ(x5 − πρ)

]
− 1

2
R− 3

`2

}
=

∫
d5x e

k

`3

{
3

2

(
−20

`2
+

16

`

[
δ(x5)− δ(x5 − πρ)

])
− 1

2
R +

12

`2

}
=

∫
d5x e

k

`3

(
R +

12

`2

)
=

∫
d5x e

(
2M3R− Λ

)
, (6.2)

where M is the five-dimensional gravitational mass scale7, Λ is the bulk cosmological
constant, and

M3 =
k

2`3
, Λ = −24M3

`2
. (6.3)

Combining the result (6.2) with (5.1) , we obtain the action of the original Randall-
Sundrum model. It is shown in [10] that the five-dimensional vacuum Einstein’s equations
for this system,

Rµν −
1

2
gµνR = − 1

4M3

{
gµνΛ +

e(4)

e
δµ̄µδ

ν̄
νgµ̄ν̄

[
T (0)δ(x5) + T (πρ)δ(x5 − πρ)

]}
, (6.4)

are solved by our metric provided that the relations

T (0) = −T (πρ) = 24M3/`, Λ = −24M3/`2 (6.5)

are satisfied.

7 Killing spinors

In this section, we will solve the Killing spinor equations for a purely bosonic configuration
with vanishing su(N) and u(1) gauge fields. In this case, the Killing spinor equations
reduce to

0 = δεψµ̄r = −∂µ̄εr −
1

2

a′

a
Γµ̄ (Γ5̇ − 1) εr,

0 = δεψ5r = −∂5εr +
1

2

a′

a
Γ5̇εr − 2

[
δ(x5)− δ(x5 − πρ)

]
sgn(x5)Γ5̇εr. (7.1)

7M is related to the four-dimensional gravitational mass scale M(4) = 2.43 × 1018 GeV by M2
(4) =

M3
∫ +πρ

−πρ
dx5 a2(x5) = M3` [1− exp(−2πρ/`)]. The effective mass scales on the 3-branes at x5 = 0 and

x5 = πρ are respectively M(4) and M(4)e
−πρ/`. If the Standard Model fields live on the 3-brane at

x5 = πρ, then M(4)e
−πρ/` can be associated with the electroweak scale.
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To solve these equations, split εr into Z2-even (ε+r ) and Z2-odd (ε−r ) pieces:

εr = ε+r + ε−r , (7.2)

where
ε± ≡ 1

2
(εr ± Γ5̇εr) = ±Γ5̇ε

±
r . (7.3)

We obtain the following system of equations:

∂µ̄ε
+
r = − (a′/a) Γµ̄Γ5̇ε

−
r ,

∂µ̄ε
−
r = 0,

∂5ε
+
r = +1

2
(a′/a) ε+r − 2

[
δ(x5)− δ(x5 − πρ)

]
sgn(x5)ε+r ,

∂5ε
−
r = −1

2
(a′/a) ε−r + 2

[
δ(x5)− δ(x5 − πρ)

]
sgn(x5)ε−r . (7.4)

These equations are solved by

ε+r = a1/2
[
−

(
a′/a2

)
xµ̄Γµ̄Γ5̇ sgn(x5)χ−(0)

r + χ+(0)
r

]
= a1/2

[
(1/`)xµ̄δµ̄

āΓāΓ5̇ χ
−(0)
r + χ+(0)

r

]
,

ε−r = a−1/2 sgn(x5)χ−(0)
r , (7.5)

where χ
+(0)
r and χ

−(0)
r are constant (projected) spinors.8 Thus, our solution for the Killing

spinors is

εr = a1/2χ+(0)
r + a−1/2 sgn(x5)

(
1− a′

a
xµ̄Γµ̄Γ5̇

)
χ−(0)
r . (7.6)

8 Conclusion

We have constructed a Randall-Sundrum scenario from D=5 Chern-Simons AdS super-
gravity. Our total action S = S̃bulk + Sbrane is Z2-invariant. S̃bulk is invariant under the
fermionic transformations δ̃ε. However,

δ̃εSbrane = −
∫
d5x δ̃εe

(4)
[
T (0)δ(x5) + T (πρ)δ(x5 − πρ)

]
+ · · · , (8.1)

where
δ̃εe

(4) = e(4)
[
−1

2

(
ψ̄rµ̄Γ

µ̄εr − ε̄rΓµ̄ψµ̄r
)]
. (8.2)

Thus, the fermionic symmetry is broken by Sbrane. Nevertheless, the Killing spinors of
Section 7 are globally defined.

Our model reduces to the original Randall-Sundrum model [10] when S̃bulk is restricted
to its gravitational sector. The original Randall-Sundrum model involves the fine-tuning
relations

T (0) = −T (πρ) = 24M3/`, Λ = −24M3/`2.

8It is straightforward to check that (7.5) satisfies the first, second, and fourth equations of (7.4).
There is, however, a subtlety in checking that (7.5) satisfies the third equation of (7.4). Unlike ε−r , ε+r is a
smooth function of x5. Thus, the second term on the right side of the third equation of (7.4) contributes
nothing.
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Randall-Sundrum scenarios constructed from standard D=5 supergravity theories yield
these relations (up to an overall normalization factor) as a consequence of local supersym-
metry (some examples are given in [12]). In our case, the relation Λ = −24M3/`2 follows
from our metric choice. We do not obtain the relations T (0) = −T (πρ) = 24M3/` as a
consequence of local fermionic symmetry. These are fine-tuning relations in our model.

A Appendix

In this Appendix, we work out the fünfbein, spin connection, curvature 2-form compo-
nents, Ricci tensor, and Ricci scalar for our metric (1.1). For the fünfbein, we obtain

eµ̄
ā = aδµ̄

ā, eµ̄ā = eµ̄
b̄ηb̄ā, eµ̄ā = gµ̄ν̄eν̄

ā,

eā
µ̄ = a−1δā

µ̄, eāµ̄ = eā
ν̄gν̄µ̄, eāµ̄ = ηāb̄eb̄

µ̄,

e5
5̇ = e55̇ = e55̇ = 1, e5̇

5 = e5̇5 = e5̇5 = 1. (A.1)

Our conventions for the spin connection, curvature 2-form components, Ricci tensor, and
Ricci scalar are respectively

ωµ
ab = 1

2
eνa(∂µeν

b − ∂νeµ
b)− 1

2
eνb(∂µeν

a − ∂νeµ
a)

− 1
2
eρaeσb(∂ρeσc − ∂σeρc)e

c
µ,

Rµν
ab = ∂µων

ab − ∂νωµ
ab + ωµ

acωνc
b − ων

acωµc
b,

Rνσ = Rµν
abea

µebσ, R = ea
µeb

νRµν
ab.

For the metric (1.1), the nonzero quantities here are

ωµ̄
ā5̇ = −ωµ̄5̇ā = a′δµ̄

ā = −eµ̄ā/L, (A.2)

Rµ̄ν̄
āb̄ = −a′ 2(δµ̄

āδν̄
b̄ − δµ̄

b̄δν̄
ā) = −(eµ̄

āeν̄
b̄ − eµ̄

b̄eν̄
ā)/`2,

R5µ̄
ā5̇ = a′′δµ̄

ā = eµ̄
ā
{
1/`2 − 2[δ(x5)− δ(x5 − πρ)]/`

}
, (A.3)

Rµ̄ν̄ = −(aa′′ + 3a′ 2)ηµ̄ν̄ = −
{
4/`2 − 2[δ(x5)− δ(x5 − πρ)]/`

}
gµ̄ν̄ ,

R55 = −4a−1a′′ = −
{
4/`2 − 8[δ(x5)− δ(x5 − πρ)]/`

}
, (A.4)

R = −8a−1a′′ − 12a−2a′ 2 = −20/`2 + 16[δ(x5)− δ(x5 − πρ)]/`, (A.5)

and those related to (A.3) by Rµν
ab = −Rνµ

ab = −Rµν
ba. The prime symbol ′ denotes

partial differentiation with respect to x5.
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