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1 Introduction

In this work we intend to investigate a class of models defined by ladders of the type

D D

w = Zg@}_i:c+A+ZgOZ-l_i (1)
1=0 =2

F = Yn'=¢+v+B+> n" (2)
1=0 =3

containing the basic fields {c, A, ¢, ¥} of TYMT as given in [1, 2, 3]. These ladders satisfy

connection-curvature like equations

. 1
dW+§[W,W] = F (3)
dF +W,F] = 0 (4)
with
~ D .
d=b+d+> A", (5)
1=2

In this formulation, the presence of high component fields ¢; ~*, 77~ in the ladders W, F,
and of additional operators A" in the general derivative d offers an attempt to extend
the superfield approach of TYMT originally introduced in [2]. Here, an object written as
Xij is supposed to have bidegree (i,j) where i denotes form degree and j the ghost number.
The operators A}~ are superderivations that acting on a field X}, produce a field with
bidegree (i+k,r+1-i). The field B is a two-form, generally not depending on the curvature
of A, F = dA + A% The general derivative d contains the BRST operator b, which is
determined from (3,4) after expanding these equations in terms with same form degree.
The operator d denotes the exterior derivative.

One motivation for the study of such models is to look for possible extensions of the
Chern-Simons term, the gauge anomaly and the Donaldson polynomials. The extensions
of the Chern-Simons term and the gauge anomaly were developed in [4] for a model defined
by D-dimensional ladders W = c+ A+ @y +-- -+ oh P, F=o¢+p+B+n '+ +n5?
and derivative d = b+ d. The power of this formulation is that it allows to encode in a
single model both expressions for the Chern-Simons term and the gauge anomaly.

As for the Donaldson polynomials, the strategy is to consider descent equations

bwi+dwi =0, bwi+dws=0
bwi+dw? =0, bw}+dwy=0, bwj=0
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with the cycles w?”'(() <1 < 4) being polynomials in the functional space

V= {c, A i 0, B2 de, dA, dpi "t do, dip, dB, dnf’i}. When we consider a simple
model, defined on the functional space V = {c,A,¢,¢,dc, dA,d¢,d¢}, one finds the
generators of Donaldson polynomials [1, 2, 3, 4, 5] as a possible solution to the descent
equations , i.e.

wg = Tr(%gf), wd = TT(¢¢), w3 = Tr(qSF + %1&2), wy = TT(¢F), W = TT(%PQ) - (7)
As it was shown in [5], for a model with ladders W = ¢+ A, F = ¢ + ¢ and differential

A—i . a—i :
' =w; (o, ..., a8), which

d=b+d+ A7+ A3? + A;? we have obtained solutions w
reduce to (7) when the parameters (aq, ..., ag) are set to zero. The interesting aspect of
this solution is that it shows the existence of other quantum field theory models providing
a description for the Donaldson polynomials that differs from the approach of [1, 2, 3].

The purpose of our study is twofold. First, we intend to complete the study of models
described by ladders (1,2) [4, 5, 6, 7] by considering the case of negative ghost number
fields and a general derivative as in (5). Thus, we expect that the presence of negative
ghost number fields, the field B and operators A} " will modify the solution (7) giving
a generalization for the Donaldson polynomials for a model described by (1,2,5). In
general, even though these extensions may not define interesting topological invariants,
they still contain the terms associated to the generators of Donaldson polynomials (see
eqs. (110-114)).

Second, we try to put our work into a general perspective by showing how an ap-
propriate choice of ladders and derivative d allow us to describe several distinct models
e.g. Yang-Mills, TYMT, Chern-Simons, BF etc. In this respect, our model is a particu-
lar case of a superfield formalism which consists on accommodating gauge fields, ghosts,
antighosts etc. as component of certain ladders. Essentially, these models can be divided
in two categories: (I) those admitting ladders satisfying connection-curvature like equa-
tions (e.g. [2]-[10]); and (II) those where this requirement is absent (e.g. [11, 12, 13, 14]).
The ideas underlying the models in category (I) constitute a general approach for de-
termining the BRST transformations for a set of fields given that equations (3,4,5) are
satisfied for a certain choice of ladders W, F and derivative d. In these models, the
general derivative contains at least the BRST operator and the exterior derivative, while
the ladders may contain several others component fields. The combined use of extended
ladders and derivatives has found applications in many different models (see for example

the recent development of [10] for the sthocastic quantization of Yang-Mills theory in five
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dimensions, and [5, 7] for the description of TYMT and 4-dimensional Yang-Mills theory).

The main feature of our model lies on the existence of a (1,-1) derivation ¢ that al-
lows us to exhibit a particular solution for the descent equations (6) once we have solved
bwa = 0. Mathematically, § converts a problem of determining the cohomology of b mod-
ulo d into a simple one, the cohomology of b alone. It was in this context that ¢ has
originally appeared in [15], and since then it has been successfully applied in the alge-
braic renormalization of several models [16, 17]. Formally, we define § through equations
(26,27,28). In particular, from (28) we obtain the form of the operators A} ™" as given in
(31), and condition d = [d,b]. The ¢ operator is closely related to the so-called VSUSY
symmetry discovered in the quantization of Chern-Simons [18, 19] and BF topological
theories [20]. This symmetry is determined by an odd derivation §, parametrized by a
vector field 7 = 740, and it satisfies an equation of the type ' [§,,0] = £, [21] with
L, the Lie derivative along 7. Another common aspect is that many VSUSY models
are formulated adopting a superfield formalism [19, 20, 21, 22|, which resembles (3,4,5).
Nonetheless, in all these models the VSUSY operator d, is not restricted by (26,27,28).

From a mathematical point of view, it is difficult to adopt the interpretation of [2, 3]
and consider the negative ghost number fields as components of a curvature and connection
on the G-bundle ? ((P x C)/G, M x C/G). In addition, the operators A;™" can’t be
interpreted as components of a general derivative in this bundle. This lead us to look for
another description.

One possibility is to use the construction of BRST differential algebras as given by
M. Dubois-Violette [8, 9]. This treatment has been applied successfully in [5] for a model
containing only positive ghost number fields and the operators A!~*. Our task here is to
introduce in a consistent way negative ghost number fields into the approach of BRST
differential algebras used in [5, 8, 9]. We recall that, even before the formulation of
TQFT, the two lowest components ¢, A of W were already geometrically understood as
the Maurer-Cartan form on the group of gauge transformations [23] and a connection
1-form on a principal bundle. Therefore, since ¢ is a field with ghost number one, it will

be considered here as a 1-form on the group of gauge transformations. We cannot think

of ¢;

the same space as c¢ it would be natural to take the multiplication between them as the

~i(i > 2) as a (i-1)-form on the same space. In fact, if ¢}~

;" were a (i-1)-form on

Tn the literature of VSUSY there are some modifications on the form assumed by [d,, b].
2C and G denotes respectively the space of connections and the group of gauge transformations on a

principal fibre bundle P.
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exterior product of forms. Then, ¢ A ¢} "

;" would be a i-form. Nonetheless, the additive

Z-graded structure (associated to the ghost number) of the space which they belong would
force ¢ A ;" to be a (i-2)-form. Therefore, we will have an ambiguity if we consider the
positive and negative ghost number fields belonging to the same space. The solution is
to define the negative ghost number field ¢} " as a (i-1)-form on the dual of the algebra
of the group of gauge transformations. A similar argument shows that the negative ghost
number fields n?~* should be defined as (i-2)-forms on this same space.

The other problem, on the meaning of d, is solved as a consequence of the first one,
e.g. once we know the space ™™ (m and n labeling respectively form degree and ghost
number) each of the fields in W and F belongs, we can define a space K = @(mvn)lC(m’”)
on which d acts as a derivation. Indeed, we will see that K = DB (mn)ez+x 2K ™) will have
the structure of a bigraded differential algebra with (™™ being the space of n-linear
antisymmetric maps on G or G*, polynomial in C and with values in Q™ (P), i.e (™" =
F(C x G" Q™(P)) ~ F(C,\"G*@Q™(P)) if n > 0 and K™™ = F(C x G, Q"(P)) =~
F(C,N\"GeQ™(P)) if n < 0. Here, G denotes the Lie algebra of the group of gauge
transformations, Q(P) is the space of forms in P and C is the space of connections on P.
The ladders W and F will be elements of a subalgebra H C K that is generated by the
fields o, ", doi ", n77", dni ™" i > 0.

Our work is organized as follows. In Section 2 we introduce two generalized ladders
W, F whose components will accommodate the fields of our model. We impose the lad-
ders satisfy a couple of connection-curvature like equations that will be related to the
BRST transformations of the fields. We adopt a step-by-step procedure for determining
the BRST transformations, we introduce the § operator, determine A;™" and all con-
straints they satisfy. In Section 3 we discuss a 4-dimensional model with ladders of the
type W =c+ A+ p;', F = ¢+ + B and differential d= b+d+ A7+ A%+ A
We analyse how the expression for the Donaldson polynomials are modified by the pres-
ence of the fields 5 ', B and the operators A;', A%, A;®. In Section 4 we show how
the original zero-curvature models of [6, 7] are obtained as a particular case of imposing
F = 0. In Section 5 we give a mathematical interpretation of our model. We relate our
construction to the set up of BRST algebras following closely the approach developed in
[8, 9]. We review the concepts of gauge group and gauge algebra, and finally present an
explicit realization of our model in terms of the algebra of differential forms on a principal
fibre bundle P.
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2 Constructing the Model

Let G be a Lie group and G its Lie algebra whose generators we denote by {e,} (a =
1,..,dim G). We denote the product e, ...eq, =75, 4, € With ’ygl w, E K (K=RorC).
Let us consider a set of fields and its derivatives {p} ¢, dpl =" 3 n; — d772 N,0<i,j7<D
with the upper and lower indices labeling respectively ghost number and form degree.
At this point, those fields are considered as Lie algebra valued maps defined on a generic
spacetime M. We denote by V the space of local polynomials in the fields and their deriva-
tives. The total degree of a field is given by the sum of its form degree and ghost number.
We say that o € V is an homogeneous element of bidegree (m,n) if it is written as a sum
of terms with form degree m and ghost number n. The total degree of an homogeneous
element of type (m,n) is then m + n. Given two homogeneous elements of bidegrees
(m,n), (p,q), apn,Bi €V, we define the Lie-bracket: [a, 5] = af — (— 1)m+n)eta) 3,

2.1 The BRST transformations

Let W, F and d be given by (1,2,5) and satisfying (3,4). Expanding (3,4) in terms with

same form degree we obtain (we adopt the convention A} :=b, A} := d)
k
boy " Hde i+ AT T+ Z ot = 0, 0<k<D (8)

bnzik—i_drr] +ZA1Z2]€+Z+Z i) zf+l = O7 OSkSD(g)

ZAl AR =0 0<k<D. (10)

Let us now suppose that it exists ¢,p € N, 2 < ¢ < D, 2 < g < D (the case ¢ = 1 was
studied in [5]) such that

—i 0 if i>q 2 _ 0 if j7>0p
o; = and 7;
#£0 if i<gq #0 if j<p.
Then (8,9) break into:
L& 4
by " = —dii” ZN o =g lei e T 0<k<q (1)
i=0

q+1 T . 1.4 3 _H -
Z A : q—gl —i = _d@q 5 Z 7(10q—El i + anr(lJ (]‘2)
=2 i=1
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k q
—i 1—k+ti 1 —i 1=kt -
Y AT =—3 2 v o R k> g+ 2 (13)
i=k—q i=k—q
k . . k . .
b * = —dmp 5 =Y AT =S e i, 0<k<p (14)
1=2 =0
= 14 = 144
1—i  — 7 2— 1—1 - 1
DOATI N = —dny =Y e, (15)
=2 =1
k . . k . .
STAFIEEI = =S el it k>p+2. (16)
1=2 =0

Egs. (11,14) cannot be taken as the BRST tranformations of the fields unless we specify
the form of the operators A *(i > 2) on their right hand side. One way of dealing with

this is to impose

k
SAligI 0, 0<k<g a7)
=2

k . .
YAl =0, 0<k<p (18)
=2

which then fix the BRST transformations as

_ R e -
boi ™ = ot — 5Dl e 4 m Tt 0<k<g (19)
=0
k ‘ ,
it = =k =Yl i, 0<k<p. (20)
=0

2.2 Implementing the conditions [b,d] = 0 and b* = 0

Let us now consider (10). Taking & = 0 and k = 1 we obtain * = 0 and [b, d] = 0. These
two conditions should be satisfied on the set {¢} ", dcpil_i,n?_j, dn?_j}, (0<i<q 0<
j < p). Implementing the condition [b, d] = 0 fixes the BRST transformation of the field

derivatives
k
bdo ™ = Y ldei o i —dy 7, 0<k<q (21)
1=0
bdng " = D [deoi T ni i =Y e L dn i, 0<k<p. (22)
=0 =0

The nilpotency of b is satisfied on the fields ¢} %0 < i < ¢ with no further restriction,
but over n77%, 0 < i < p we obtain

W 1 1—i 2—k+i W 1—k+i [ 1 2—i

Yo Mler e = X0 Y e e S T+

i=0

r=0 =0 r=0

gt =

N —
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e(a,k) -
- 2[77@ Zank Z+Z]7 nggp (23)

i=0
with €(q, k) = min{q, k} being the minimum element between ¢ and k. Since the fields

are independent, in order to obtain b277,%_k’ = 0 we should have

1@ 1 2k R 1—k 1o 2
0 - 5 [[(,0 7(101 7’{+T nkz Z—H Z Z SOkz z—H? 777@ 7?+TH (24)
=0 r=0 =0 r=0
e(a,k) -
0 = [77‘ 3 Me— z—H]' (25)
=0

The only way to vanish (25) without imposing any constraint on the fields n?~* is to take
€(q, k) = k. With this choice, and using Jacobi identity, we have also satisfied (24).
Since the condition €(q, k) = k must be verified for all values of k£ within 0 < k < p

we obtain the constraint p < q.

2.3 Determination of A}/, i > 2

The operators A; ™" are determined through the introduction of an operator & of bidegree

(1,—1) such that

W = e (26)
F = ¢ (27)
d = ebe™ . (28)
These equations are equivalent to
dor " = (k+ D¢y, 0<k<q (29)
ot = (kL. 0<k<p (30)
At = L5515 keterms
k - k' ) JERR ] ) R
1 k=2 (k —2)!

= HTZO(_ )rmak 276, d)o" . (31)

Taking & = 1 in (31) gives d = [d,b]. This condition should be implemented over each
field. Indeed, when applied over ¢; ", 7]] o0 <i<g 0< 7 < p we obtain the

S-transformation of dy! ™ dn T0<i<(g—=1),0<j<(p—1)as

sdpy ™ = (k+1)dept, 0<k<q-—2 (32)
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6d 2—q __ —d 1-q¢ (q+1) I 1— —q+1 1 q+1

gt = —dp, 5 > e et + (g 4+ Dngd (33)
=1

6dnz_k = (k+ l)dn,;ffl, 0<k<p-2 (34)
p+1 '

Sdny = —dpi P —(p+ 1) e T (35)

=1

Acting d = [0, b] on d(pclfq and using p < ¢ we are let with

q—1 q A
bédipy 1 = [0dipl™, g —ddn2 ™"+ (q+1) > [dei ™, L] - Z AR N
1=1 =1
(36)

In order to solve this equation we observe that (5d<p;_q is a field of bidegree (¢ + 2, —q),
therefore it can be written as ddpy ™7 = a 3{_,[p; ", 0, ,'] which susbtituting on (36)

(g+1)
2

fixes a = — and reduces the last equation to

q
Sdn2 ™" = (q+ 1) [ o 80 (37)
1=2

If we suppose that p < ¢ we have ddn?™ = 0 and this gives S7 [0/, ¢, 1 7 =0
which introduces an unwanted constraint on the fields. Therefore, we should consider
p = q. Eq.(37) then determines 6d772*‘1. It is straightforward to show that applying
d = [0,b] on dn}~? we will obtain the same equation for ddn;~?. We can also avoid the
previous constraint by setting 77" = 0, which corresponds to take p=0. These are the
zero curvature models of section 4.

Once we have determined the action of d on the fields and their derivatives we have
fixed the form of the operators A} . It is straightforward to show that the consistency

equations for A; ™% > 2

k
AT =0, 2<k<q¢<D (38)
=2
i 1— 1-k 2—k 1k_1 ) 1-k
S OAT i = —dwk:1_§Z[‘Pi Lot k=q+1 (39)
=2 =1

1—i, 1-k 1 ¢ i 1-k
S Al =g Yl et a+2<k<D (40)
i=k—q i=k—q
k
STATIEE =0, 2<k<q¢<D (41)
1=2
k k—1 ) )
YA = —dn Ty = Y[t k=g +1 (42)
1=2 i=1

k q
At = = N [l b, ¢+2<k<D (43)
i=k—q i=k

.
I
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are satisfied for this choice of A} ™"

For convenience we collect below all transformations of our model (with p = ¢):

1 k
bor * = —dpi Tt =5 Do e T, 0<k<gq (44)
1=0
k .
i * = —dph =Dl i, 0<k<gq (45)
=0
k
bdoy ™ = D ldei ot —dppF, 0<k<gq (46)
1=0
k k ) )
bdny ™" = S ldei i =D el L dnE T, 0<k<gq (47)
=0 =0
Spp " = (k+1)gpy, 0<k<gq (48)
6d<p,£*k = (k+ l)dcpkH, 0<k<qg-—2 (49)
Sdpid = —dp) T — ( 5 )ZM , Pgtii] (50)
=1
_ q +1 a i —g—1+i
sagit = DS g G1)
=2
st = (k+1n!, 0<k<gq (52)
sdnp " = (k+1)dnt,, 0<k<qg-—2 (53)
q .
Sdng 4 = —dn2"—(q+ 1) o T (54)
=1
2 I ] +1
5d77q—q = Z Z? q—EQ il - (55)
=2

It is important to notice that in the case ¢ = D, equations (50,51, 54,55) vanish trivially.
In this case, all ¢ transformations of the field derivatives are encoded on (49,53) that
essentially mean [0,d] = 0. Then, from (31) we have A} ™" = 0, i > 2 and consequently

all consistency equations (38-43) will vanish.

3 A Model with ¢g=2, D=4

Let
W = c+A+p;! (56)
F = ¢+¢+B (57)
d = b+d+ A+ A2+ AP (58)
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The BRST transformations corresponding to the generalized connection and curvature

equations (3,4,5) are given by

be = —c*+¢

bA = —dc—|[c,A]+ ¢
bpy! = —F—[cp'|+B
bp = —[c,¢]

b = —d¢—[c, 9] - [A, ¢]

bB = —d¢—[CaB]—[Aa¢]—[¢2_1a ]7

the ¢ transformations have the form

oc=A, ddc=dA
§A =2py", 0dA = —dp;' —3[A, ;']
-1, -1

Syt =0, ddoyt = —3p5"p;
0p =1, odo = dy

S = 2B, ddi = —dB — 3[A, B] — 3|y, Y]

§B =0, 0dB=—3[p;", B

and the A transformations are given by

Ayte
ASTA
Aylpy!
Ao
Ay
AS'B
A lde
Ay'dA
Aytdpy!
Aylde
A tdy

= 0
3 3

= —5619051 —5lA ©3"]

3
= _580219021
= 0
3 3 3
= —ZdB-Z[A,B] - S[p5!
3. _
= _5[902173]
= 0
3, 3
- _= dAl — 2
3. _ _
= _5[90217(19021]
= 0
3 3
= —2[B,dA] -2
2 2

[A, dps ]

3 3
[A> dB] - é[wa dgpgl] - 5[30517 CM]
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A;'dB

A3%c

A3?A
Ag*ey!
A%
Ay
A;’B
A3%de
A32dA
Agtdey!
A3?de
Ag*dy
A3?dB
AP

3 _ 3. _
_5[37d302 1] - 2[30217d8]
1. 1 _
§d§02 ! + 5[147 2 1]

1 4 -

5@219021

0

1 1 1,
1, -

5[302173]

0

1. 1 1
5[902 7dA]+§[A7d()02 ]
1, - _
5[90217d¢21]

0

1 1 1
—[B,dA] + =|A,dB| + =
1 _ 1. _
Q[Badgp2l]+§[ﬁp21ad3]
0

0.

]

. dez"] + 57", dy]

Let us consider now the system of descent equations given in (6). We can rewrite it in the

form (b+d)o = (d—A)d = 0 with & = wi +wi +wi+wl +wd and A = A+ A2+ AL

A particular solution is given by

O =e(wi+Q)

with Q = Qf + Q3 + O} + QF satisfying

In terms of these 's we have

b0 = A2 - 2A%08 4+ 3A W]
by = AP —2A %]
b = Aj'wg
bV = 0.
64 3 2

0
Wy

5
_ - 4 - 3 - 2
= ettt

+ 69 + Qf

(96)

(101)
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5 52
wi = §w§ + 59? + 693 + (102)
62
w? = §w§ + 695 + Q3 (103)
WP o= Swi+ Q3. (104)

Here we notice that the cycles exhibited in (101-104) are obtained from €’s by the action
of 0. These (2's are solutions of the intermediate equations (97-100), which don’t involve
the exterior derivative. It is the combination of the d-operator and these equations (97-
100) that allow us to transform a problem of cohomology of b modulo d (6) into a simple
one. In order to solve (101-104) we should first determine wj, the solution of bwi = 0.
Our intention is to analyse how the cocycle Tr3¢? (which appears in [1, 3]) is modified
by the presence of the negative ghost number field 5!, the field B, and the operators
AS', A3?, Ap?. Therefore we take

1
wi = Tr(§¢2) . (105)
Then, we obtain s solving (97-100). Replacing them in (101-104) we obtain
wd = TT{§51 (02¢ — c*dc + c[A, ng]) + %(ﬁQ — B4) (gb@/) — ngdc) + %53( — A+ Ade —
—¢¢+ pdc — c[A, ¢]) + o(Pde + ed + ¢dc) + %gzﬁ@/) + gqﬁdc}

2 = Tr{%ﬁl (2B — FdA+24% + 20[A, Y] — A, de] + 2cle5", 9]) +
+§(52 — B1)(20B — ¢dA + ¢? — pdc) + %53( — 2B + *dA — 2A%) —
—26B + ¢dA — * + pde — 2c[A, 9] + c[A, dd] — 2c[0; ", ¢]) +
+a1(PA? = @B + A — clp; ', ¢]) + a2 (A% — 6B + ¢dA) +
+as (2B + cdip + 6B + c[A,¥] + clp; !, ¢]) + au( — FdA — cdip — ¢pdA —
—c[A, dd]) + as(Ade + %zﬁ +¢B — ¢dA — %dcdc) +ag( - %W +pde —

—¢B + ¢pdA — %dcdc) +0(cPdA + cdip + Adg + ¢dA + pdc + c[A, dc] )

1 2 1 2
~ OB + 6dA — L + Sydel
9B+ 30dA — 29 + Syde

2 1 1
w; = TT{Qﬁl (§c2d<,02_1 + A% — §A2dc + A, 03" + c[A, B] - §C[A’ dA] +

+elr, vl = geler’ dd + Ale", 6]) + 26, (36der’ + 9B - Syda -

(106)

(107)
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1 1 2 1
—gBdc + Alpy !, ¢]) + ﬂs( - gCngagl + cdB — 2A%) + §A2dc — §¢d<p;1 —

~20B + gwolA + %Bdc = [A py] = A, Bl + %c[fh dA] = clpy", ¥ +

+§c[<p2 Jde] = 3A[p; ", 6]) + B — §¢dg021 — B — %wdA - %Bdc +
+dedA — Alp, ,qb]) + s (02902_114 + cA® + cpytp — ey tde — cBA +

+edAA — Appst) + Bs(A%de — g3 d — Bde + dedA) +

+61(A%) — ;"¢ — Bde + dedA) + Bs(Pdpy" + cdB + ¢dip; " + c[A, dA] +
+clpy, de]) + Bo(Adv + 2051 d¢ + vdA + 2Bde — 3dedA) +

tar (= dpy" — P[A, ;"] — c[A, B+ c[A, dA] — clpz !, ¥] — Alg; ', ¢]) +
taz (A% — ¢dipy ' — B + pdA — Alpy, ¢]) + as( — cdB + 24% + Ady +
+B + Algs", 6]) + au(cdpy! + cdB — 24%dc — Adi + ¢dipy ' — vdA +
+3c%[A, 05 '] + 3c[A, B] — 2¢[A, dA] + 3A[p5 ", ¢ + 3c[ps !, ] — 2c[wy !, dc]) +
t+as (Ad + 207 do + ¢dipy ' + 3YB — pdA — dedA + 3A[g5 ", ¢]) +

+ag( — ¢dpy" — 3YB + 20:dA + 2Bdc — dedA — 3A[; ", ¢]) +

+a( - %c2dcp2_1 — %ch + A%dc + Ady + @3 ' dg — %qﬁdgo;l +PdA +

+Bie— S1A, 05"~ S[A, B] + c[A, dA] — Sz’ ] + clgz' de] -

1 _ 2 2 _
~SAlez',0]) - 30der’ —wB + SudA + 2 Bde - Algr', 6]} (108)
0 -1 -1 4 2 1 2 -1 -1 -1
Wy = {2@(0 P2 P2 +§A B — gA dA+ @3 05 ¢+ c[A% 3 '] + oA, dy '] +
1 _ _ 2
+elpy !, B] + A[ W= Al l,dC]) + 2ﬁz( oy O+ vdpy ! + 2B —
1 _ _ 2
_gBdA - gdCdQDQ + gA[ 2]~ [802 ’ ]) + 53( —pyley — §A2B +
2 11 4
+§A2dA + AdB — §<p§1<p51¢ — wd<p;1 — 532 + gBdA + gdcdtpgl —
_ _ 10 _ 4 _
—c[A%, 5] = c[A, dpy "] = clp3 !, B] - ?A[QOQ L]+ §A[902 ladc]) +
2 7 1 4
+B4( 07" ¢3¢ — gy + T B? — 3 BAA — sdedgy" + dAdA + S Alpy,y] -

—§A[§02 ,dc]) + s (20 0y oyt — cpy tdA + 2cdApyt — cdpy A+ A* + A’B —
—A%dA — Apy'de + 207 03" ¢ + 2c[A%, 03 '] + 2c[0; !, Bl + Al 9]) +
+06(A%dA — 3 dip — BdA — dedpy" + dAdA — Alp;", dc]) +
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+61(24°B — gy dy — BdA — dedey ' + dAdA + 24[p; ", ¥ — 3A[py ", dd]) +
—l—ﬁg;( — 3y Yoyt 4+ 2A%dA + AdB — 305 0y o+ vdp,t — 3c[A%, 05t —
—3c[y", B + 3c[y" dA] + Ay de]) + By — 6A°B — AdB + iy dyp —
—pdip;" +ABdA + 3dedgy ' — 3dAdA — 6A[p;" ] + 9A[p; !, de]) +

—i—ozl( — 2205 oot — APB + A%dA — 205, 05t — 2¢[A%, 3] — c[A, dpy ] —

~2c[p;", B] + clpy !, dA] - Alpy " 0]) + an(A%B — 2071076 — pdpy !t — B2 +

+BdA — Alp; ', ) + as( — A’B — AdB + 25 036 + o 'dip + B +

+Alpy " v]) + oa (3
-1 9 a2 1 9 S 1

—Hﬂd% — BdA + QC[A )y P2 ] + 3C[A7 dg02 ] + 26[302 7B] 26[302 7dA] +

+6A[p; ", ¥ — 3Alp; ", dd]) + as( — 34°B - —AdB + 605 03 D + 205 Hdy +

5 1 1
t5dpy" +3B% — BdA + gdedgy’ — SdAdA+3Alp;" U] + 5A[cpgl, de]) +

1
tag( — 605 "' — Budipy ! — 3B + 3BAA + 2dedpy — SdAdA — 6Alpy ! v] +

9 9
Pyt gt +6A°B — 3A%dA + AdB + 5902_1902_1@25 — @5ty +

+3AJp; ", del) + 1 (Per st + 05076 + A% 0! ]+c[so2 ,B] = clp;!,dA]) +

+y2( — A*B + A%dA — Alp; ', ¢ + Al dd]) +73(24°B + AdB + vdyp; " —

—ded;" + 2A[p7 " Y] — Alpy ' de]) + (= A*B + 20705 0 + 03 ' dp + B? —

—BdA + Alg;",¥]) + 75 (A2B — @3y — BdA + dAdA + Alp;", 9] — 2A[p5", dd]) +

3, 1 3
‘HT( - 50 ¢y 'y —3A’B + A%dA — §AdB 5902 Yoo to oy tdi — _wdSO
3 3 3
+BdA + dCd()OQ_I - EC[A27 (102_1] - §C[A7 d(pQ_I] - 2 [()02 7B] 3"4[902_ 777Z)] +

) 5, L5
+24[p; ", dd]) — 23" 07 "6 — iy —

3 6 3 3
2
+§A[§02_1, dC]} .

Considered in this form, this previous solution for w; ™" doesn’t relate to any familiar
model. Here, let us consider some specific cases. First, let us consider the two form
B decomposing as B = F + B [5] with F' the curvature of A. In this decomposition,
the two form B should be introduced in order to maintain the nilpotency of the BRST
transformation of ¢;'. We have b2p;' = 0 = bB = —[c¢, B] + |6, ¢5']. Then, taking

By = 1 with all other parameters set to zero we obtain w; * as

W= TT(%d)Q) (110)

“B*>+ —BdA + —dcdgogl — gA[%lﬂﬂ] +

(109)
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Wi = Tr(ev) (111)
wi = Tr(¢F + %@zﬂ +¢B) (112)
wj = Tr(YF +¢Dap;" + ¥'B) (113)
W) = TT(%F2+ %BQ +FB+ 937" ¢+ $Dag;") . (114)

We observe that the inclusion of additional fields ¢5', B in the ladders, and of addi-
tional derivations A~ in d modify the previous solution (7) of the descent equations.
Nonetheless, (110-114) still contains the terms associated to the Donaldson polynomi-
als. A similar behaviour has been observed in [5] for the case p,' = 0, B # F,
which also generates a solution including additional terms to the Donaldson polyno-
mials. Now, if we look at our general solution (106-109) we see that they represent
a family of solutions parametrized by 21 parameters (f3,...,0) which writes as @ =
Lo+ +F2+(EB2+ 9B+ yB+ FB+¢Dapy' + Dy + 93 03 '0) +0(5, ..., 0).
Here, there is no possibility to choose the parameters (3, ...,0) in such a way that @
reduces to the Donaldson polynomials. From [5], it seems then that the only cases having
a complete agreement with (7) are p,' = 0, B = F that gives the same result as (7),
and ;' = 0, B = 0 that represents a family of solutions parametrized by points of R®
and such that to the origin we have associated (7), i.e. © = 3(¢+ ¢ + F)* + O(ay, ..., ag)
son generators as a particular case of a more general expression. Therefore, it may be
possible that other extended formulations may admit, as a limit case, other topological
invariants. Nonetheless, up to the analysis of this example, it is not known if a choice of
higher components ladders would generate a solution of this type.

The cycle w) is particularly important since it defines a BRST invariant action
1 14 -
S = /Tr(§F2 + 5B+ FB+¢y'¢3"0 + UDags") (115)

which can be taken as the starting point for a pertubative analysis of our model. This
action incorporates, from the begining, extra terms on ¢y, B in addition to the usual
non-gauge fixed TYMT action [ TrF?. Thus, in much the same way as it was done in [24],
we may interpret the fields ¢5*, B as part of the additional fields necessary to perform
the gauge fixing of the action [TrF?. If we want to proceed further on finding a fully
gauge fixed action, we will have to introduce other fields (antifields, antighosts) with total

degree different than 0 and 1, which will be accommodated as component fields of other
ladders.
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Another application of the model given by (56-58) is on the description of four-
dimensional BF model. In fact, consider the cycle w (109). Let us take v, = 1,79 =
0,v3 = é,m = —%,75 = —g,ﬁg = 1 with all other parameters equal to zero. Then, we

obtain an invariant action given by 3

= [wd= [Tr(BF +vDagy" + 307" + Ble, o] + 0y ' = cligy ', F1) (116)

which contains the usual term of the BF model. It is important to notice that this deriva-
tion of four-dimensional BF action is based on a pair of connection and curvature ladders
(56,57) with the assumption that B # F. In contrast, the usual superfield formulation
of D-dimensional BF models [6, 25] employs a gauge ladder together with a matter lad-
der B having the two form B as its highest component field, i.e B|p = B. In section
4.2 we will obtain the equivalent of action (116) for the zero curvature formulation of

four-dimensional BF model.

4 The zero-curvature models

As we have seen, the model presented in section 2 is based on gauge and curvature ladders
W, F satisfying dW + s W, W] = F, dF + W, F] = 0. As a limit case of this model
we can pose a zero curvature condition F = 0 that reduces the previous equations to
dW + LW, W] = 0. Here, (44-55) become

- 1 , —1 7
bor "t = =gt =5 e e 0<k<gq (117)
=0
k
bdpy ™" = Y [del ™, ok, 0<k<gq (118)
1=0
Spp * = (k+ Dyt 0<k<g (119)
ddpy " = (k+1)dpty, 0<k<g-2 (120)
- 0 @+ D) S g
=1
- A+1) Ry ami gt
sagt = DS o g (122)
=2

that agree with the same equations obtained in the non-complete ladder case (i.e. with

q # D) of [7]. In our approach we treat both cases ¢ = D (refered in [6] as the complete

3Here, we may also interpret ! as one of the fields necessary to perform the gauge fixing of the BF

action.
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ladder case) and g # D in the same way, with the fundamental equations given as above.
Indeed, the equations for the complete ladder case are a particular case of (117-122)
when one takes ¢ = D. Basically, what differs one and another situation is just the
definition of the generalized derivative that assumes the form d = b + d when ¢ = D
andd =b+d+>2,A}"" when ¢ # D. The main role of the operators A} ™", i > 2 is
to avoid possible constraints that would arise from the zero curvature condition in the
case of ¢ # D. For example, in the absence of A} ™" we would have from (39,40) the two

constraints below

- LN i gt
dpg™ = =3 ;[%  Paiii]
I 1—3 1—-k
0 = Z [@Z—Z,@k:z-l—l]’ k>q+2
i=k—q

As we have pointed out at the end of section 2, ¢ = D determines A;~" = 0 and this
explains why these operators are absent in the complete ladder case of [6].

Let us consider general descent equations of the type

{ bwSH 4+ dwGHtl = 0, 0<i<D-1 (123)

bwitP = 0.

This system of descent equations can be solved following the same procedure of section 3,
e.g. writing © = 2P wEP and A = X2, Al the descent equations assume the form
0= (b+d)& = (d—A)&. A particular solution is @ = e’ (w§+P+Q) with Q = 2, QF+P—
satisfying
k-1
DU = ()R (k — DAL R0 + 37 (1)1 = DAITQEHPM 1 <k < D . (124)
=2
We note that when ¢ = D we have 2 =0 and A = 0, then © = e‘SwOGJrD and d = b+ d.
When G + D = 4, (124) agrees with (97-100).

4.1 The Chern-Simons term

Consider a model with ¢ = 3,D = 3 and F = 0. Let us take the cocyle w9 such that
b [ w) = 0. This will be related to the Chern-Simons form. As it was shown in [6], w) can
be obtained by expanding & = e°wj = e‘s(éT rc®) and taking the terms with form degree

equal to 3. This results on

1 1 1
§= [ Tr(AF - SAY) - 50 [ Trices® + Apy") . (125)
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Nonetheless, the presence of the field ;! allow us to consider a more general solution by

introducing on (125) the term
1
/ (depy ' + 5 AdA) . (126)

Then, the action given by (125) 4 (126) is also possible and represents a contribution due
to the extra field @5 .

4.2 BF system

The D-dimensional BF system can be formulated as a zero curvature system by introduc-

ing two complete ladders [6]

D D
W=> ™", B=> B’?* (127)
=0 1=0

where W is a gauge ladder with total degree 1, which satisfies a zero curvature condition.
The other ladder B has total degree (D-2) and satisfies dB+ W, B] = 0. For the complete
ladder case, we have seen that d = b+ d. Let us consider the case D=4. Here, the gauge

and the matter ladder B are taken as

W=c+A+p; + 932+ (128)
B=¢+1v+B+B;'+B;”. (129)

The BRST transformations for the component fields follow from the equations satisfied

by W and B and are given by

be = —¢ (130)
bA = —dc—|c, 4] (131)
R (132)
bzt = —dpy' — e, w5~ [A 7] (133)
by = —d(pgl—[0,8043]_[Aa¢32]_%[802178021] (134)
b6 = —[c,d] (135)
by = —do— [e.v] — A, d] (136)
bB = —dv —[c, B] - [A,¥] - [p;", 9] (137)
bB;' = —dB—l[c,B;'] - [4,B] - [, %] — 03", 9] (138)
bBy? = —dB;' —[e, By — [A, By = [ ' Bl = [v3?,¢] — 1’ 0] . (139)
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The BRST transformations for ¢, ¢, B agree with the ones given in (62,63,64). Nonethe-
less, since W is a connection with zero curvature, the BRST transformations for the
components ¢, A, o, ! differ from (59,60,61).

From [6] we obtain an invariant action as

S = /Tr BdW + W?)[! (140)

= /TT(BF +¥Dapy’ + ¢y 0y ¢+ Ble, oy '] + dle, 0r”] + Yle. 3% + 9D aps” +
+B5 ' Dac+ Bi*¢?) . (141)

This previous action agrees with the one given in (116) except by the presence of higher
components fields o372, p;°, Bs', B;? that doesn’t enter in the ladders (56,57). Con-
versely, there are also the presence of terms on ;' in (116) that don’t appear in (141),
those terms being brought by the derivations A} ", which are absent on the the generalized
derivative d = b+d. Both approaches are entirely different since they are based on ladders
that satisfy different equations. As for the general formulation of BF models in dimen-
sions other than D=4, we emphasize that a matter ladder B, satisfying dB + [W, B] = 0,
should be used to accomodate the field B. It is a particular feature of 4 dimensions that

we can take the ladder B (57) as the generalized curvature of W (56).

5 Mathematical aspects

5.1 BRST §G-operation

In this subsection we review some basic definitions concerning the structure of graded
commutative differential algebras and BRST G-operations. Although our approach is
based on the formalism exposed in [8, 9] we will adopt some definitions in a different
context.
A Z-graded supercommutative algebra is a structure defined by (A, *) such that: (1) (A, *)

is an algebra in the usual sense (we are considering algebras defined over a field K
that can be R or C), (2)the graded structure is defined by a direct sum decomposi-
tion A = ®,,ezA™ such that A™ x A" C A™™" and the supercommutativity stands for
axf=(-1)"Fxa, Yaec A" VG e A" From now on we will use the term commu-
tative as meaning supercommutative. All graded (bigraded) structure to be considered
here will be defined either over Z or Z+ = N U {0}.
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A superderivation on A of degree k is a linear map ¥ : A* — A*™* such that ¥U(af) =
(Va)B+(=1)*ma¥3, Va € A™. We denote the set of k-superderivations on A as D¥(A).
Defining a product between two superderivations on A as the composition map we have
that D(A) = e, DF(A) together with this product becomes a graded algebra.

A graded commutative differential algebra is a structure defined by (A, *,d) with
(1) (A, %) a graded commutative algebra and (2)d a superderivation on A of degree 1
such that d* = 0.

A G-operation is defined by (A, *,d,I,L) with (1) (A,*,d) a graded commutative
differential algebra and (2)I : G — D7 '(A), X — Ix and L : G — D°(A), X —
Lx = [d,Ix] such that [[xy] = LxIly — IyLx and Lixy] = LxLy — LyLx, VX,Y €
G. We extend these two operations to GRA as Ix(Y®a) = Y®Ixa, Lx(Y®a) =
Y®Lxa, VX, Y € G, Va € A.

Given a G-operation over a graded algebra A we define an algebraic connection on A
as an element w € GRA' such that Iyw = X®1 ~ X, Lyw = [w, X], VX € G. Given a
G-operation we denote its set of algebraic connections by C.

The curvature of an algebraic connection is an element o € G®.4? that satisfies dw +
slw,w] = 0. In particular this condition implies do + [w,0] = 0, Ixo = 0, Lxo =
[0, X],VX € G.

Given w; = Y4} €q, 0wy’ € GRA', i € N, we define wy..wy, = Y14, €ay o, QWY ...0" =
e ee®@(Wr.wn)® € GRA™ with (w1..wn)® = Xyay Yoy an Wi Wi

Now, let us consider bigraded algebras. The definitions will be immediate extensions
from the graded case.

A bigraded commutative algebra is a pair (T, *) such that T is an algebra that admits
a direct sum decomposition of the type T = @ n)czx 2 Y mm) and the product * satisfies
Yy 1 (rs) ¢ YmFrnts) with commutativity meaning a3 = (—1)™+0+9)8xq Vo €
Amn) g e A8 Given a bigraded algebra, Y' = @®mez Y™™ defines a graded
structure on Y, i.e. T = P,z T".

We also have the same concept of superderivation on Y: a (r, s)-superderivation is a
linear map W : Tmn) — Tm+rnts) with U(aB) = (Va)f + (=1)+)Mm a3 Va €
Tmn) We denote D(T) = S(nnyezxzD ™™ (Y) = B,e2D"(Y) where the total degree of
a superderivation is given by the sum of its bidegree indices.

A bigraded commutative differential algebra is defined as (T, , d) with (1) (T, *) a bi-

graded commutative algebra and (2) d a superderivation of total degree 1, d = ®mezd™=m.
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A bigraded G-operation is defined as (7, %, d, I, E) with (1) (T, *,(i) a bigraded com-
mutative differential algebra and (2)1 : G — D~Y(Y) with Iy = S,ey 10" ™, and
L:G— DY) with [d,Ix] = Lx = Y ey f/()?’_m).

An algebraic connection on a bigraded G-operation Y is an element © € GRYT!, © =
YD ok satistying Ixo = X®1, Lxd = [0, X].

D ~2—1
i=0 9;

The curvature of the algebraic connection @ is an element ¢ € GRY?, o=
such that do + 1[@, @] = 5.
This previous definition of bigraded G-operation is too general. In the next definition

we will restrict it in order to fit our purposes.

Definition 1 (BRST G-operation) A BRST G-operation is the structure determined

by (Y, %,d, I, L,&,p) where (1) (T, *,d, I, L) is a G-operation with

(i)  YmM =10} if m<0 orm>D with De N

D
(i) d= Y dmtM =b+d+ Y AT =0 (142)
meZ+t 1=2
(i) Ix= Y I¢m = I (143)
mezZ
(i) Lx= > LY ™™ = LYY with L = [d, ]] (144)
meZ

and (2) @ is an algebraic connection on T with curvature p.
Theorem 1 For a BRST G-operation we have

Ixd+dix = Ly (145)
Ixb+blx = (146)
IxAF ATy =0, Vi>2. (147)
Ixol™" = 0, i#1 (148)

Ixd) = X®1 (149)

Lx@l™ = [0} X], 0<i<D (150)

Ix*" = 0, 0<i<D (151)

(152)

Lyg7" = [&7.X], 0<i<D.
Proof: This follows immediately from definition 1.

We extend Iy, Ly to G®T in the same way as we did for the graded case. Note that

our definition of BRST G-operation is an extension of that one adopted in [8] in which
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we allow the differential d to have components AL~ other than d®" = b and ) = d.
We also allow the algebraic connection and curvature to contain other component fields
in addition to &g, @Y, 93, o1, 09

Finally, we consider aut’(A) = {¢ € GA® | Lx{ = £, X], VX € G} that will
correspond later on to the concept of the infinitesimal gauge transformations, and aut**(.A)
its dual. In terms of the generators of G we write £ = 3, €,Q£® with €% € A°. Here, the
space A° is a subalgebra of A, therefore it has a structure of a K-vector space. The space
A* is then understood as the space of K-linear mappings on A". Given ¢ € aut(A) we
define

a—lea=Y T, a— Lea =3, ((d6*) [ya+ 7 Lya)

and we extend them to G®A as I¢(X®a) = X®Ica, Le(X®a) = X®L¢a. In particular,
they act on the space of algebraic connections C C G®A! giving

Le(w) = dé+[w,¢] (153)

Le(w) = €. (154)
It is immediate to check that

IxLew = 0 (155)

LxLew = [Lew,X] (156)

therefore L¢w is not an algebraic connection. We obtain an algebraic connection through
the combination w+Lew. Here Lew is interpreted as the infinitesimal gauge transformation

of w. Given an algebraic connection w we also define

D,:GRA— GgrA
Dy=d+w,..] (157)

and we have Lew = D,&. It is straightforward to derive the following properties:

IXDngw = 0, LXDngw = [Dngw,X] . (159)
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5.2 An example of bigraded algebra: (IC, )

Let us denote K0 ={1:C — A°, 1(w) =1¢€ A°, Vw € C}

o { F(C x (aut®(A)", A™) = F(C, \*(aut® (A))@A™) if n > 0 (160

F(C x (aut®™(A)", A™) ~ F(C, A" (aut’(A))@A™) if n < 0

and K = B nyez+x2zK ™. Here, F(Cx (aut’(A))", A™) denotes the space of n-linear an-
tisymmetric maps in aut’(A) with values in A™, and analogously F(C x (aut®*(.A))", A™)
denotes the space of n-linear antisymmetric maps in aut®(A) with values in A™.

We write 70 = Y (5 0y T"®@wy, with 77 : C — A™(aut®*(A)) if n > 0 or 7" : C —
N (aut’(A)) if n < 0 and w,, : C — A™. The last sum is done over decomposable
elements {7, w,,}. Let us introduce a product among elements of F(C, \"(aut®*(A))) U

F(C, N (aut®(A))),
Definition 2 Letn, n’ € N. Given 7", 7%, 77" 7" ¢ F(C, N"(aut® (A)))UF(C, \"(aut’(A)))

we define

1 . .
Z €T (w;gap "'750'71,)7— (w;gan.ua "'7€O'n+n/) (161)

(n+n')! P

1 ~—n * * \~—n' * *
mUG; €EsT (w;fal,...,fan)T (w3€an+1’""50n+n1)(162)

a2 (Wi €, oy Ep) =

A

A — / .
T xR T (Wi &L ) =

n+n’
PR Wi s Grn) = T @ e G T ) (163)
e €S D
%n*%_nl(W;gla'“véﬂn*nJ = %H(W;gla"'7571*”’?%_”/(“))) forn > n/ (164)
N C D A

Notice that fixing (n’-n) elements £}, ...&%,_ on the right-hand side of (163) we have 7"
as a n-linear antisymmetric map on (aut*’(A)). For simplicity let us consider 7" (w) as
a decomposable element 07 A ... A 0%. Using the isomorphism Fipeqr (A" (aut*(A)), K) ~
Flaut*®(A) x ... xaut**(A), K) (the rhs denoting the space of n-linear antisymmetric maps
in aut®(A)) we interpret 77" (w; &, ..., &5 T (W) = FT (Wi &, L, €5 0T, L, 0F) that

is the exact meaning to the rhs of (163).
Definition 3 We define a product in K as

* IC(mvn) X ]C(m/yn/) N Ic(m-l—m/,n—i—n’)

/ /

(TP, 7)) = TR s, = 7k 2V (= 1) ™ Wiy A Wy (165)

m? 'm/



CBPF-NF-008/04 24

Theorem 2 (K, %) is a bigraded commutative algebra.
Proof: The product * satisfies I sfC(m' 1) g jotmtm/ntn') which makes K = @(m,n)ez+lec(m’”)

a graded algebra. The product * satisfies 7" x 7% = (=1)""#" % 7", and we have

n n __ n+m)(n’+m’) -n’ no: : :
Ty X Ty = (—1)( ) )Tm/ * T, , L.e. x 18 commutative.

5.2.1 Extending (K, ) to a bigraded G-operation

Let (A,-,d,I,L) be a Z*-graded G-operation. Define on K the maps d, Ix, Lx,VX € G

as

d - K(m,n) N K(m-‘,—l,n)

(dor,)(w; Grs -+, Gn) = d(ogy, (Wi G-+, Ga)) (166)
INX . ’C(m,n) N ’C(mfl,n)

(INXO[ZL)(W; Clu Ty Cn) = IX(afn(w; Clu T CTL)) (167)
L s K —, jolm)

(ix&%)(uﬁ Gy Gn)) = Lix(ap, (Wi Gy -4 Ga)) (168)

Va" € K™ and with ¢;, i = 1,---,n denoting elements of either aut®(A) or aut®™(A).
I and L satisfy

Iixy) = Lxly —IyLx (169)
Lixy) = LxLy —LyLx, VX, Y €G (170)

and this makes (K, x, d, I, Z) a bigraded G-operation.

5.3 A particular example of a BRST G-operation: H

Let us define the following elements of GRX

o Fp=¢=) e, € GRF(C x aut’(A), A%

N N
(i) = €+ 0O Inw)" = € + 08 (am)

o N=A=>e,A cGaFC,A")

N
A'w) =w* + > A(Lyw)*, A€ K (172)

i=1
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o gif= =2 @ sl € GRIF(C x (aut™ (A))F 1 AF) k> 2

~a - k( 517 . 7£k 1) Z eil AN eikq(gf“'ngl)(@(Dw(L@ilw"'LGik,1w>)a

{t1,e i —11C{1,..,N}

o =0= e,@¢" € GRF(C x (aut’(A))%, A%)
w b &)= D TN, &), 0,] (174)

{’i1,i2}C{1 ..... N}

o l=¢= Zea@n;“ € GRF(C x (aut’(A))', A

N
=>_ 0" ()®(Lo,w)" (175)
=1
e H=B=) e,®B"cgaFC,A%
. . N . 1.~ - g
BY(w) = F*(w) + Y BY(LpwLg,w)" with ' =d + 5[A, A, BY e K (176)
i,j=1
o = Zea®na2 " e GRF(C x (aut™(A)*2, A", k>3
7’722 k(w7 517 75]972) — Z 911 /\ /\ Qik—Q (éik, 7&;72)®(L911WL91k72wp)a
{i1,esip—_2}C{1,...,N}
(177)

Vér, € aut®(A), V& € aut™(A) and for 6; € aut’(A) and 6% € aut®™(A), i = 1,---, N.
The integer N may denote any number of elements of aut®(A) and its dual. In this sense,
to any choice of N pairs (6;,0*) we have a specific form for ¢; *, 727" given by (171-177).

In addition, given a certain field ¢} ~* or 77~* we have associated a finite sequence of fields

c - A = ... @i—k ... @}VN
I (178)
o = b -t Y

each of them defined by (171-177) in terms of the same N pairs (6;,0*) that appear in
it or
From (153,156) we notice that they also satisfy
Ixgi™ = 0, i#1
]X~ = X®1

179
180

Ixi?™" = 0, 0<i<D

(179)
(180)
Lxg™ = [p7,X], 0<i<D (181)
(182)
(183)

Ly = [ X], 0<i<D. 183
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Once again, let (A, -, d, I, L) be a G-operation and C C GRA' be the space of algebraic

connections on A. We introduce a particular BRST G-operation as follows

Definition 4 (H,*,d, I, L,o, p) is a BRST G-operation with (1) (H, , d, I, L) a G-operation
such that

(i)H is the subalgebra of K generated by {3} ', d@; ", 77", di? " }iz1..n. The graded
structure of H is obtained from the graded structure of K and we write H = @® (s, n)e 2+ x ZH )
with H™nm) = Cmn) N H.

(ii) The product in H is defined by the same product in K as given in (165).

(iii) The differential in H is a map d: Hmn) — gt =gy o (=)

d=YP A = b4+ d+ P, A7 with d® = 0 and d a superderivation of degree (1,0)
defined as (166). The BRST operator is a superderivation of bidegree (0,1), b : H™™ —
Hmn ) defined by (44-47), and A}7" @ Hmn) — HmFin—i+D) g 5 guperderivation of
degree (i,1-i) defined as in (31) with § given as in (48-55) *.

(iv) The interior product I is given by (167) and the Lie derivative L is given by (168).

(2) The algebraic connection and curvature are defined as @ = YN @™ and § =
SN 727t From (179-183) we obtain that Ix& = X®1, Ly& = [0, X], Ixd6 =0, Lxo =
[0, X].

The zero curvature limit is a particular case of the previous construction when H is

0.

generated by {3l d@l~}ioy .. v and the algebraic connection satisfies do + 1o, @]

6 The gauge group and the gauge algebra

In this section we review the concepts of gauge group and gauge algebra. Our main
purpose is to set up our notations and give an intuitive development of these concepts.

Let m : P — M be a principal fibre bundle with structure group GG. Let us denote
G the Lie algebra of G and R = P x G — P, Rg : P — P the right action of G on P.
For X € G we have associated a X € F }L’S;(P), with F }LSQ(P) the space of fundamental
vector fields on P. Given f € F(P,R), X € ]—"ﬁ’%(P) we define (f - X)(p) = f(p)X(p).
This turns F ﬁ%(P) into a F(P, R)-module that we denote as Ry,,4(FP). We have the
isomorphisms F (P, G) ~ F(P, R)®G =~ Ry,,,q(P) where the second isomorphism is defined
as F(P,R)®G 3 fOX « f-X € Ryuna(P).

“Here d replaces d in the expressions for b, A, § given in (44-55).
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The gauge group of P is denoted by G and can be identified in three equivalent ways:
G = Aut,(P) ~ Fo(P,G) ~ I'(AdP) [23, 26]. Here, f € Aut,(P) C Diff(P) is
such that 7o f = m, f%g of = fo Rg,Vg € G. The group structure of Aut,(P)
is defined by the composition of maps. Next, f € Feo(P,G) is a map f P - G
such that f (pg) = Ad(g™") f (p). The group structure of F.,(P,G) is given by pointwise
multiplication, (f - f')(p) = f(p)f'(p). Finally, T(AdP) denotes the space of C™ sections
on the adjoint bundle AdP = P x 44 G with Ad the adjoint map on G [23, 26]. In this
work we will consider just the first two identifications.

The 1-1 map between Aut,(P) and F.,(P, G) is defined as follows. Given f € Aut,(P)
we can define f € Feo(P,G) [8, 23, 26] such that f(p) = pf(p), ¥p € P. Conversely, given
[ € Fou(P,G) we define f € Aut,(P), f = Ro (id, f) with id the identity map on P.
Those two maps allow us to identify Aut,(P) ~ F.,(P,G).

The concept of tangent space on a space of maps [27] can be used to define the tangent
space of Aut,(P) at f. This will give a definition for the gauge algebra in the same way
as one defines the Lie algebra of a Lie group as the tangent space to the identity. We
define Xy € Ty(Aut,(P)) as a map Xy : P — T(P) such that X;(p) € Ty (P) with

d
Xy = %gbthzo (184)
and

o ¢ € Aut,(P) (ie,mogy=m, Ryodi=¢i0Ry ¢o=f)
e ¢,: R— P is adifferentiable curve in P such that ¢,(t) = ¢:(p)

Then we have

d

d
W*Xf(p) = aﬁ ° ¢t(p)|t:o = i

Le. X;(p) € Vi = Ty (7 (@), (w(p) = 7(f(p)) = 2). Also

7(p)lt=0 =0

d = d
Rg*Xf(p) = %Rg 0 ¢i(p)]i=0 = %qﬁt(p.g)h:o = Xf(p.g)

ie. RyX;= Xy

Now, since f is a 1-1 map we note that p # p' = X¢(p) € Ty # Trpy 2 Xp(p'), therefore
it is possible to choose a vector field X € F10(P) such that Vp € P, X;(p) = Erpm X (f(p))
(6fp) € R), or X; = (¢ X) o f with & € F(P,R), i.e. X; € X(P). The first condition
restricts X € f}iﬁé(}?) and consequently X; = (- X) o f € Rpyua(P). The second
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condition gives E(f(p))RyeX s = E(f(09)) Xs(pg)- Let {&, i = 1,....,dim G} be a basis
for Fiu%)(P). Then X = \ig; and X; = (£- X) o f = (8- &) o f with & = N'&. We have
then characterized

o Ti(Aut,(P))={(g"-&)o f|é' e F(P,R), & ¢ f};ﬁ;(P)} with

E(f(p))Rge€i(f(p)) = E'(f(p9))éi(f(pg)) - (185)

Let us now consider the tangent space on the identity map I € Aut,(P). From the
previous development we obtain that X; € Tj(Aut,(P)) has the form X; = glé; and

should satisfy &'(p) Ry.€;(p) = £(pg)éi(pg). We then have

E'(p)Rgui(p) = &'(p) Rgu Rpuei(e) = &' (p) Ry Ryuei(€) = Ryu(E'(p) Ryvese))  (186)
&' (pg)éi(pg) = &' (pg) Rygsei(€) = £ (pg) RpuLysei(€) = Rpi(8'(pg) Lgsei(e)) . (187)

Since the action of G on P is free we obtain, & (p)Ry.ei(e) = €' (pg)Lgwe;(e) and then
ad(g 1) (& (p)ei(e)) = &'(pg)ei(e). We then define F. (P, G) as the set of elements of this
type, i.e. Feo(P,G) = {€ = €'®e; | E(pg) = ad(g~)é(p), €' € F(P,R), e; € G}. This
result defines an isomorphism 77 (Aut,(P)) ~ F.,(P, G) that provides another description
for the gauge algebra G.

Here, for the case of T;(Aut,(P)) let us find an explicit form for the diffeomorphisms
¢; (184). Consider X; = &'e; = %@\t:o- Let us take local charts (U,,1,) of G and
(Vs,xp) of P in terms of which we can write R;(x) = x" o R, 0oy~ (z). We denote

Y(g) =x = (z',---,2"), ¥'(g) = 2" and x(p) =y = (v',---,¥™), X' () = y". We can

write &;(p) = Rp.e;(e) = 81;’1(1.90) w(e)aiyr|x(p) and £'(p) = 24" o exp(te(p))|i=o then
: d IR’ (z) 0
X =¢c'(p)é; = — te - P O
1p) =& @)elp) = "0 eap(tép))limo—5 5= o 3 Iviw
d .. 9 d - )
- @Rp(exp(t‘f(p)))|t:08—yr|x(p) = aRp(exp(té(p)))h:O (188)

that suggest us to define ¢y = Reupuz) With ¢i(p) = R(p, (exp(té(p)))) = Ry(exp(té(p))).
(188) agrees with the same expression given in Schmid [26] for the elements Zz of the

gauge algebra.

7 An explicit realization for H

Let P(M, G) be a principal fibre bundle with structure group G. We define A = Q(P) =
Drez+ Y (P) = @reg+ A", Considering the interior product and Lie derivative on Q(P)



CBPF-NF-008/04 29

we define VX (with G 3 X « X € Fp.0)(P))
Ix = Ig, Lx=Lg

that satisfies conditions I[xy] = LxIy — IyLx, Lixy) = LxLy — LyLx, VX,Y €G.
Therefore, taking the multiplication on Q(P) as the exterior product and the differential
as the exterior derivative it is straightforward to see that (Q(P),A,d, I, L) becomes a
G-operation.

A connection on P is an element w € GROY(P) that satisfies Riw = ad(g™?) -

w, w(X) = X with ad(g) = LsR;-1.. These conditions imply
Lxw=|w,X]|, Iyw=X®1.

With the choice A" = Q"(P) we have that aut’(A) is the gauge algebra, i.e. aut’(A) =
Fey(P,G). Indeed, let & € Fou(P,G). Since F(P,G) ~ GRO(P) we can write { =
Yo ea®E*. Then VX € G, Lx& = [€,X] (see [5]). We have analogue expressions for
Le - Q(P) — Q(P) (153) and D,, : GRQ(P) — GRQ(P) (157).

The components of the algebraic conection and the curvature will depend on the as-
signement of at least N=D linearly independent elements of aut’(P) and its dual aut*°(P).
Their definition follow the same procedure given in (171-177) and they are functions

(0<i<q<D,with ¢ € Z and D the spacetime dimension):

“=grt e HOY c F(CxG,QP))
A= g0 e HBO < F(C,QNP))

P e HED o F(C x G Q(P))
¢* =i3? e H"? c F(Cx G Q(P))
e =it e HOY o F(Cx G al(P)
B =3 e H®Y < F(C,0*(P))

At e HPT) c F(Cx G 0N(P))

and they generate a bigraded differential algebra H = @, n)ez+x 2H™™) _ The algebraic

connection and its curvature are elements

w € Q®H1 - g®(H(O’l)@H(l’O)@,,,@H(qvl—@)

5 € GoH? = Ga( HOPaH M aH g, .aH*70) |
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The § operator is a (1, —1)-bigraded derivation on H and €° defines homomorphisms

e GRHOYD — GaH', € GaH"D - GRH?

E—efe=0 ¢ — =10
which transforms
~ 1 ~ o~ 7 e‘S T~ 1 ~ o~ ~
bc+§[c,c]:gb — dw+§[w,w]:g

bp+ (6,0 =0 = do+[0,0=0.

8 Concluding remarks

(1) Our model extends the original TYMT defined for positive ghost number fields to
more general models containing negative ghost number fields as well. The main ideas
behind one and another formulation is to accommodate the fields either as components of
a connection with total degree 1 or as components of a curvature which has total degree
2. Nonetheless, in the process of obtaining Witten’s action for TYMT as the gauge fixing
of the symmetries of the classical action [TrF A F [2, 24] we have to introduce other
fields with total degree other than 1 or 2 that cannot be components of W or F. We
can, however, define other ladders in order to accommodate those fields in the same way
as it was done in [6]. For example, for fields with total degrees -1 and 0 it is possible
to introduce two ladders B = 3, 60; 1%, ¥ = 3, A\;* and impose BRST transformations
from dB + W, B] = W. Then, we can develop our model following the same procedure of
section 2. Other choices of ladders and transformations are possible and will depend on

what type of model one intends to build.

(2) A parallel development that is close to ours, and that presents an equivalent form of
equations (26,27), was proposed in [13] in the study of two and four dimensional topolog-
ical matter. In fact, the operators § and b satisfying [d,b] = d and [b,d] = 0 suggest that
they are related to the odd generators G, and @) of the topological algebra. Here, iden-
tifying 0 = §,@dz* — G = G,@dz" and —b «— @ we obtain that [G,Q] =d, [Q,d] = 0.
In addition to these relations, we may have models with either [0,d] = 0 or [0,d] # 0
which would correspond to [G,d] = 0 or [G, d] # 0. This last possibility, however, doesn’t
appear in the topological algebras of [13]. Since [6,d] = Aj', it may be possible to have

topological algebras with extra generators A} % = 5[0, AZM k=2,---D. The existence
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in [13] of a set of descendents fields given by ¢/(Z)M2mun (2) = %Gy, (G- |Gy ()] 18
equivalent to the imposition of (26,27). A quite similar approach was presented in [14] in
the study of balanced topological field theory. Despite these analogies, the details behind
one and another formulation are completely different. In a forthcoming paper [28] we
will show how to construct topological algebras for models defined by ladders (1,2) and
derivative d = b+ d. In particular, by taking the case of two dimensions we also show

how the § operator induces a supersymmetry algebra.

(3) It may be possible to interpret our model in terms of equivariant cohomology. First,
we introduce the Weil algebra W(G) = S(G*)® A(G*) where we assume ¢* as the odd
generators of degree 1, and ¢* as the even generators of degree 2. The differential in
W(G) is defined as dyc® = — fcbc* + ¢, dwo® = — flLc’¢C. In the construction of [29],
TYMT is understood in terms of the BRST model for equivariant cohomology, i.e. as a
differential algebra (B, dp) with B = (W(G)®Q(M))pasic the subalgebra of W (G)®Q(M)
invariant by the action of I,®1 4+ 1®1, and L,®1 + 1®L, (we denote by I,®1 and L,®1
the action of the interior derivative and the Lie derivative on W(G), and 1®I, and 1®L,
the respective action on (M)). The differential is dg = dw®1 + 1Q&dy + "R L, — ¢*R1,,.
Since the generators of B contain only the positive ghost number fields ¢* and ¢ there
is no possibility to introduce negative ghost number fields in B. A solution would be to
replace (M) by an appropriate G-algebra B such that W (G)®B would accommodate the
negative ghost number fields. In this approach, the BRST operator is considered as the
differential in the algebra B = W(G)®B [29, 31]. The problem then reduces to find an
appropriate differential for B so that it gives the correct transformations for all the fields.
The increasing complexity of the transformations of negative ghost number fields make

this program difficult to be implemented.

(4) We have seen that bTr¢™ = 0 <L ATrFN =0 = b+ d)TrFN + ATrFN = 0.
TrFN is the N-th Chern class with F given by (2). In the problem of cohomology of
b (modulo d) (b+ d)QEN) = 0, the solution Q@N) doesn’t coincide with TrFN (unless
A = 0). This is a major difference from the results of [1, 2, 3] where the Chern class TrF»
(being a solution of descent equations) also belonged to the cohomology of b modulo d. In
our model, when [4, d] # 0, QCN) and TrFYN will not agree. A direct consequence of this

was observed in the model of section 3, as it is explicitly seen in the differences between



CBPF-NF-008/04 32
(110-114) and (7).
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