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1 Introduction

In this work we intend to investigate a class of models defined by ladders of the type

W ≡
D∑
i=0

ϕ1−i
i = c+ A +

D∑
i=2

ϕ1−i
i (1)

F ≡
D∑
i=0

η2−i
i = φ+ ψ +B +

D∑
i=3

η2−i
i (2)

containing the basic fields {c, A, φ, ψ} of TYMT as given in [1, 2, 3]. These ladders satisfy
connection-curvature like equations

d̃W +
1

2
[W,W] = F (3)

d̃F + [W,F ] = 0 (4)

with

d̃ = b+ d+
D∑
i=2

∆1−i
i . (5)

In this formulation, the presence of high component fields ϕ1−i
i , η2−i

i in the laddersW, F ,
and of additional operators ∆1−i

i in the general derivative d̃ offers an attempt to extend

the superfield approach of TYMT originally introduced in [2]. Here, an object written as

Xj
i is supposed to have bidegree (i,j) where i denotes form degree and j the ghost number.

The operators ∆1−i
i are superderivations that acting on a field Xr

k produce a field with

bidegree (i+k,r+1-i). The field B is a two-form, generally not depending on the curvature

of A, F = dA + A2. The general derivative d̃ contains the BRST operator b, which is

determined from (3,4) after expanding these equations in terms with same form degree.

The operator d denotes the exterior derivative.

One motivation for the study of such models is to look for possible extensions of the

Chern-Simons term, the gauge anomaly and the Donaldson polynomials. The extensions

of the Chern-Simons term and the gauge anomaly were developed in [4] for a model defined

by D-dimensional laddersW = c+A+ϕ−1
2 + · · ·+ϕ1−D

D , F = φ+ψ+B+η−1
3 + · · ·+η2−D

D

and derivative d̃ = b + d. The power of this formulation is that it allows to encode in a

single model both expressions for the Chern-Simons term and the gauge anomaly.

As for the Donaldson polynomials, the strategy is to consider descent equations



bω0

4 + dω
1
3 = 0 , bω1

3 + dω
2
2 = 0

bω2
2 + dω

3
1 = 0 , bω3

1 + dω
4
0 = 0, bω4

0 = 0
(6)
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with the cycles ω4−i
i (0 ≤ i ≤ 4) being polynomials in the functional space

V =
{
c, A, ϕ1−i

i , φ, ψ, B, η2−i
i ; dc, dA, dϕ1−i

i , dφ, dψ, dB, dη2−i
i

}
. When we consider a simple

model, defined on the functional space V =
{
c, A, φ, ψ, dc, dA, dφ, dψ

}
, one finds the

generators of Donaldson polynomials [1, 2, 3, 4, 5] as a possible solution to the descent

equations , i.e.

ω4
0 = Tr

(1
2
φ2

)
, ω3

1 = Tr
(
φψ

)
, ω2

2 = Tr
(
φF +

1

2
ψ2

)
, ω1

3 = Tr
(
ψF

)
, ω0

4 = Tr
(1
2
F 2

)
. (7)

As it was shown in [5], for a model with ladders W = c + A, F = φ + ψ and differential

d̃ = b + d +∆−1
2 + ∆−2

3 +∆−3
4 we have obtained solutions ω4−i

i ≡ ω4−i
i (α1, ..., α8), which

reduce to (7) when the parameters (α1, ..., α8) are set to zero. The interesting aspect of

this solution is that it shows the existence of other quantum field theory models providing

a description for the Donaldson polynomials that differs from the approach of [1, 2, 3].

The purpose of our study is twofold. First, we intend to complete the study of models

described by ladders (1,2) [4, 5, 6, 7] by considering the case of negative ghost number

fields and a general derivative as in (5). Thus, we expect that the presence of negative

ghost number fields, the field B and operators ∆1−i
i will modify the solution (7) giving

a generalization for the Donaldson polynomials for a model described by (1,2,5). In

general, even though these extensions may not define interesting topological invariants,

they still contain the terms associated to the generators of Donaldson polynomials (see

eqs. (110-114)).

Second, we try to put our work into a general perspective by showing how an ap-

propriate choice of ladders and derivative d̃ allow us to describe several distinct models

e.g. Yang-Mills, TYMT, Chern-Simons, BF etc. In this respect, our model is a particu-

lar case of a superfield formalism which consists on accommodating gauge fields, ghosts,

antighosts etc. as component of certain ladders. Essentially, these models can be divided

in two categories: (I) those admitting ladders satisfying connection-curvature like equa-

tions (e.g. [2]-[10]); and (II) those where this requirement is absent (e.g. [11, 12, 13, 14]).

The ideas underlying the models in category (I) constitute a general approach for de-

termining the BRST transformations for a set of fields given that equations (3,4,5) are

satisfied for a certain choice of ladders W, F and derivative d̃. In these models, the

general derivative contains at least the BRST operator and the exterior derivative, while

the ladders may contain several others component fields. The combined use of extended

ladders and derivatives has found applications in many different models (see for example

the recent development of [10] for the sthocastic quantization of Yang-Mills theory in five
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dimensions, and [5, 7] for the description of TYMT and 4-dimensional Yang-Mills theory).

The main feature of our model lies on the existence of a (1,-1) derivation δ that al-

lows us to exhibit a particular solution for the descent equations (6) once we have solved

b ω4
0 = 0. Mathematically, δ converts a problem of determining the cohomology of b mod-

ulo d into a simple one, the cohomology of b alone. It was in this context that δ has

originally appeared in [15], and since then it has been successfully applied in the alge-

braic renormalization of several models [16, 17]. Formally, we define δ through equations

(26,27,28). In particular, from (28) we obtain the form of the operators ∆1−i
i as given in

(31), and condition d = [δ, b]. The δ operator is closely related to the so-called VSUSY

symmetry discovered in the quantization of Chern-Simons [18, 19] and BF topological

theories [20]. This symmetry is determined by an odd derivation δτ parametrized by a

vector field τ = τµ∂µ, and it satisfies an equation of the type
1 [δτ , b] = Lτ [21] with

Lτ the Lie derivative along τ . Another common aspect is that many VSUSY models

are formulated adopting a superfield formalism [19, 20, 21, 22], which resembles (3,4,5).

Nonetheless, in all these models the VSUSY operator δτ is not restricted by (26,27,28).

From a mathematical point of view, it is difficult to adopt the interpretation of [2, 3]

and consider the negative ghost number fields as components of a curvature and connection

on the G-bundle 2 ((P × C)/G,M × C/G). In addition, the operators ∆1−i
i can’t be

interpreted as components of a general derivative in this bundle. This lead us to look for

another description.

One possibility is to use the construction of BRST differential algebras as given by

M. Dubois-Violette [8, 9]. This treatment has been applied successfully in [5] for a model

containing only positive ghost number fields and the operators ∆1−i
i . Our task here is to

introduce in a consistent way negative ghost number fields into the approach of BRST

differential algebras used in [5, 8, 9]. We recall that, even before the formulation of

TQFT, the two lowest components c, A of W were already geometrically understood as

the Maurer-Cartan form on the group of gauge transformations [23] and a connection

1-form on a principal bundle. Therefore, since c is a field with ghost number one, it will

be considered here as a 1-form on the group of gauge transformations. We cannot think

of ϕ1−i
i (i ≥ 2) as a (i-1)-form on the same space. In fact, if ϕ1−i

i were a (i-1)-form on

the same space as c it would be natural to take the multiplication between them as the

1In the literature of VSUSY there are some modifications on the form assumed by [δτ , b].
2C and G denotes respectively the space of connections and the group of gauge transformations on a

principal fibre bundle P .
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exterior product of forms. Then, c ∧ ϕ1−i
i would be a i-form. Nonetheless, the additive

Z-graded structure (associated to the ghost number) of the space which they belong would

force c ∧ ϕ1−i
i to be a (i-2)-form. Therefore, we will have an ambiguity if we consider the

positive and negative ghost number fields belonging to the same space. The solution is

to define the negative ghost number field ϕ1−i
i as a (i-1)-form on the dual of the algebra

of the group of gauge transformations. A similar argument shows that the negative ghost

number fields η2−i
i should be defined as (i-2)-forms on this same space.

The other problem, on the meaning of d̃, is solved as a consequence of the first one,

e.g. once we know the space K(m,n) (m and n labeling respectively form degree and ghost

number) each of the fields in W and F belongs, we can define a space K = ⊕(m,n)K(m,n)

on which d̃ acts as a derivation. Indeed, we will see that K = ⊕(m,n)∈Z+×ZK(m,n) will have

the structure of a bigraded differential algebra with K(m,n) being the space of n-linear

antisymmetric maps on G or G∗, polynomial in C and with values in Ωm(P ), i.e K(m,n) =

F(C × Gn,Ωm(P )) � F(C,∧n G∗⊗Ωm(P )) if n > 0 and K(m,n) = F(C × G∗n,Ωm(P )) �
F(C,∧n G⊗Ωm(P )) if n < 0. Here, G denotes the Lie algebra of the group of gauge

transformations, Ω(P ) is the space of forms in P and C is the space of connections on P .
The ladders W and F will be elements of a subalgebra H ⊂ K that is generated by the

fields ϕ1−i
i , dϕ1−i

i , η2−i
i , dη2−i

i i ≥ 0.

Our work is organized as follows. In Section 2 we introduce two generalized ladders

W, F whose components will accommodate the fields of our model. We impose the lad-

ders satisfy a couple of connection-curvature like equations that will be related to the

BRST transformations of the fields. We adopt a step-by-step procedure for determining

the BRST transformations, we introduce the δ operator, determine ∆1−i
i and all con-

straints they satisfy. In Section 3 we discuss a 4-dimensional model with ladders of the

type W = c + A + ϕ−1
2 , F = φ + ψ + B and differential d̃ = b + d + ∆−1

2 + ∆−2
3 + ∆−3

4 .

We analyse how the expression for the Donaldson polynomials are modified by the pres-

ence of the fields ϕ−1
2 , B and the operators ∆−1

2 , ∆
−2
3 , ∆

−3
4 . In Section 4 we show how

the original zero-curvature models of [6, 7] are obtained as a particular case of imposing

F = 0. In Section 5 we give a mathematical interpretation of our model. We relate our

construction to the set up of BRST algebras following closely the approach developed in

[8, 9]. We review the concepts of gauge group and gauge algebra, and finally present an

explicit realization of our model in terms of the algebra of differential forms on a principal

fibre bundle P .
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2 Constructing the Model

Let G be a Lie group and G its Lie algebra whose generators we denote by {ea} (a =
1, .., dimG). We denote the product ea1 ...ean := γ

c
a1...an

ec with γ
c
a1...an

∈ K (K = R or C).

Let us consider a set of fields and its derivatives {ϕ1−i
i , dϕ1−i

i , η2−j
j , dη2−j

j }, 0 ≤ i, j ≤ D
with the upper and lower indices labeling respectively ghost number and form degree.

At this point, those fields are considered as Lie algebra valued maps defined on a generic

spacetimeM. We denote by V the space of local polynomials in the fields and their deriva-
tives. The total degree of a field is given by the sum of its form degree and ghost number.

We say that α ∈ V is an homogeneous element of bidegree (m,n) if it is written as a sum
of terms with form degree m and ghost number n. The total degree of an homogeneous

element of type (m,n) is then m + n. Given two homogeneous elements of bidegrees

(m,n), (p, q), αn
m, β

q
p ∈ V, we define the Lie-bracket: [α, β] .= αβ − (−1)(m+n)(p+q)βα.

2.1 The BRST transformations

Let W, F and d̃ be given by (1,2,5) and satisfying (3,4). Expanding (3,4) in terms with

same form degree we obtain (we adopt the convention ∆1
0 := b, ∆

0
1 := d)

bϕ1−k
k + dϕ2−k

k−1 +
k∑

i=2

∆1−i
i ϕ1−k+i

k−i +
1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ]− η2−k
k = 0, 0 ≤ k ≤ D (8)

bη2−k
k + dη3−k

k−1 +
k∑

i=2

∆1−i
i η2−k+i

k−i +
k∑

i=0

[ϕ1−i
i , η2−k+i

k−i ] = 0, 0 ≤ k ≤ D (9)

k∑
i=0

∆1−i
i ∆1−k+i

k−i = 0, 0 ≤ k ≤ D. (10)

Let us now suppose that it exists q, p ∈ N, 2 ≤ q ≤ D, 2 ≤ q ≤ D (the case q = 1 was

studied in [5]) such that

ϕ1−i
i =




0 if i > q

�= 0 if i ≤ q
and η2−j

j =




0 if j > p

�= 0 if j ≤ p .
Then (8, 9) break into:

bϕ1−k
k = −dϕ2−k

k−1 −
k∑

i=2

∆1−i
i ϕ1−k+i

k−i − 1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ] + η2−k
k , 0 ≤ k ≤ q (11)

q+1∑
i=2

∆1−i
i ϕ−q+i

q+1−i = −dϕ1−q
q − 1

2

q∑
i=1

[ϕ1−i
i , ϕ−q+i

q+1−i] + η
1−q
q+1 (12)
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k∑
i=k−q

∆1−i
i ϕ1−k+i

k−i = −1
2

q∑
i=k−q

[ϕ1−i
i , ϕ1−k+i

k−i ] + η2−k
k , k ≥ q + 2 (13)

bη2−k
k = −dη3−k

k−1 −
k∑

i=2

∆1−i
i η2−k+i

k−i −
k∑

i=0

[ϕ1−i
i , η2−k+i

k−i ], 0 ≤ k ≤ p (14)

p+1∑
i=2

∆1−i
i η−p+1+i

p+1−i = −dη2−p
p −

p+1∑
i=1

[ϕ1−i
i , η−p+1+i

p+1−i ] (15)

k∑
i=2

∆1−i
i η2−k+i

k−i = −
k∑

i=0

[ϕ1−i
i , η2−k+i

k−i ], k ≥ p+ 2 . (16)

Eqs. (11, 14) cannot be taken as the BRST tranformations of the fields unless we specify

the form of the operators ∆1−i
i (i ≥ 2) on their right hand side. One way of dealing with

this is to impose

k∑
i=2

∆1−i
i ϕ1−k+i

k−i = 0, 0 ≤ k ≤ q (17)

k∑
i=2

∆1−i
i η2−k+i

k−i = 0, 0 ≤ k ≤ p (18)

which then fix the BRST transformations as

bϕ1−k
k = −dϕ2−k

k−1 −
1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ] + η2−k
k , 0 ≤ k ≤ q (19)

bη2−k
k = −dη3−k

k−1 −
k∑

i=0

[ϕ1−i
i , η2−k+i

k−i ], 0 ≤ k ≤ p . (20)

2.2 Implementing the conditions [b, d] = 0 and b2 = 0

Let us now consider (10). Taking k = 0 and k = 1 we obtain b2 = 0 and [b, d] = 0. These

two conditions should be satisfied on the set {ϕ1−i
i , dϕ1−i

i , η2−j
j , dη2−j

j }, (0 ≤ i ≤ q, 0 ≤
j ≤ p). Implementing the condition [b, d] = 0 fixes the BRST transformation of the field
derivatives

bdϕ1−k
k =

k∑
i=0

[dϕ1−i
i , ϕ1−k+i

k−i ]− dη2−k
k , 0 ≤ k ≤ q (21)

bdη2−k
k =

k∑
i=0

[dϕ1−i
i , η2−k+i

k−i ]−
k∑

i=0

[ϕ1−i
i , dη2−k+i

k−i ], 0 ≤ k ≤ p . (22)

The nilpotency of b is satisfied on the fields ϕ1−i
i , 0 ≤ i ≤ q with no further restriction,

but over η2−i
i , 0 ≤ i ≤ p we obtain

b2η2−k
k =

1

2

ε(q,k)∑
i=0

i∑
r=0

[[ϕ1−r
r , ϕ1−i+r

i−r ], η2−k+i
k−i ]−

ε(q,k)∑
i=0

i∑
r=0

[ϕ1−k+i
k−i , [ϕ1−r

r , η2−i+r
i−r ]] +
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−
ε(q,k)∑
i=0

[η2−i
i , η2−k+i

k−i ], 0 ≤ k ≤ p (23)

with ε(q, k) ≡ min{q, k} being the minimum element between q and k. Since the fields

are independent, in order to obtain b2η2−k
k = 0 we should have

0 =
1

2

ε(q,k)∑
i=0

i∑
r=0

[[ϕ1−r
r , ϕ1−i+r

i−r ], η2−k+i
k−i ]−

ε(q,k)∑
i=0

i∑
r=0

[ϕ1−k+i
k−i , [ϕ1−r

r , η2−i+r
i−r ]] (24)

0 =
ε(q,k)∑
i=0

[η2−i
i , η2−k+i

k−i ] . (25)

The only way to vanish (25) without imposing any constraint on the fields η2−i
i is to take

ε(q, k) = k. With this choice, and using Jacobi identity, we have also satisfied (24).

Since the condition ε(q, k) = k must be verified for all values of k within 0 ≤ k ≤ p
we obtain the constraint p ≤ q.

2.3 Determination of ∆1−i
i , i ≥ 2

The operators ∆1−i
i are determined through the introduction of an operator δ of bidegree

(1,−1) such that

W = eδc (26)

F = eδφ (27)

d̃ = eδbe−δ . (28)

These equations are equivalent to

δϕ1−k
k = (k + 1)ϕ−k

k+1 , 0 ≤ k ≤ q (29)

δη2−k
k = (k + 1)η−k+1

k+1 , 0 ≤ k ≤ p (30)

∆1−k
k =

1

k!
[δ, [δ, .., [δ, b]..]], k-terms

=
1

k!

k−2∑
r=0

(−1)r (k − 2)!
(k − 2− r)!r!δ

k−2−r[δ, d]δr . (31)

Taking k = 1 in (31) gives d = [δ, b]. This condition should be implemented over each

field. Indeed, when applied over ϕ1−i
i , η2−j

j , 0 ≤ i ≤ q, 0 ≤ j ≤ p we obtain the

δ-transformation of dϕi−1
i , dη2−j

j , 0 ≤ i ≤ (q − 1), 0 ≤ j ≤ (p− 1) as

δdϕ1−k
k = (k + 1)dϕ−k

k+1, 0 ≤ k ≤ q − 2 (32)
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δdϕ2−q
q−1 = −dϕ1−q

q − (q + 1)

2

q∑
i=1

[ϕ1−i
i , ϕ−q+i

q+1−i] + (q + 1)η
−q+1
q+1 (33)

δdη2−k
k = (k + 1)dη−k+1

k+1 , 0 ≤ k ≤ p− 2 (34)

δdη3−p
p−1 = −dη2−p

p − (p+ 1)
p+1∑
i=1

[ϕ1−i
i , η−p+1−i

p+1−i ] . (35)

Acting d = [δ, b] on dϕ1−q
q and using p ≤ q we are let with

bδdϕ1−q
q = [δdϕ1−q

q , ϕ1
0]−δdη2−q

q +(q+1)
q−1∑
1=1

[dϕ1−i
i , ϕ−q+i

q+1−i]−
(q + 1)

2

q∑
i=1

[[ϕ1−i
i , ϕ−q+i

q+1−i], ϕ
0
1] .

(36)

In order to solve this equation we observe that δdϕ1−q
q is a field of bidegree (q + 2,−q),

therefore it can be written as δdϕ1−q
q = α

∑q
i=2[ϕ

1−i
i , ϕ−q−1+i

q+2−i ] which susbtituting on (36)

fixes α = − (q+1)
2

and reduces the last equation to

δdη2−q
q = (q + 1)

q∑
i=2

[η2−i
i , ϕ−q−1+i

q+2−i ] . (37)

If we suppose that p < q we have δdη2−q
q = 0 and this gives

∑q
i=2[η

2−i
i , ϕ−q−1+i

q+2−i ] = 0

which introduces an unwanted constraint on the fields. Therefore, we should consider

p = q. Eq.(37) then determines δdη2−q
q . It is straightforward to show that applying

d = [δ, b] on dη2−q
q we will obtain the same equation for δdη2−q

q . We can also avoid the

previous constraint by setting η2−i
i = 0, which corresponds to take p=0. These are the

zero curvature models of section 4.

Once we have determined the action of δ on the fields and their derivatives we have

fixed the form of the operators ∆1−i
i . It is straightforward to show that the consistency

equations for ∆1−i
i , i ≥ 2

k∑
i=2

∆1−i
i ϕ1−k+i

k−i = 0, 2 ≤ k ≤ q ≤ D (38)

k∑
i=2

∆1−i
i ϕ1−k+i

k−i = −dϕ2−k
k−1 −

1

2

k−1∑
i=1

[ϕ1−i
i , ϕ1−k+i

k−i ], k = q + 1 (39)

k∑
i=k−q

∆1−i
i ϕ1−k+i

k−i = −1
2

q∑
i=k−q

[ϕ1−i
i , ϕ1−k+i

k−i ], q + 2 ≤ k ≤ D (40)

k∑
i=2

∆1−i
i η2−k+i

k−i = 0, 2 ≤ k ≤ q ≤ D (41)

k∑
i=2

∆1−i
i η2−k+i

k−i = −dη3−k
k−1 −

k−1∑
i=1

[ϕ1−i
i , η2−k+i

k−i ], k = q + 1 (42)

k∑
i=k−q

∆1−i
i η2−k+i

k−i = −
q∑

i=k−q

[ϕ1−i
i , η2−k+i

k−i ], q + 2 ≤ k ≤ D (43)
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are satisfied for this choice of ∆1−i
i .

For convenience we collect below all transformations of our model (with p = q):

bϕ1−k
k = −dϕ2−k

k−1 −
1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ] + η2−k
k , 0 ≤ k ≤ q (44)

bη2−k
k = −dη3−k

k−1 −
k∑

i=0

[ϕ1−i
i , η2−k+i

k−i ] , 0 ≤ k ≤ q (45)

bdϕ1−k
k =

k∑
i=0

[dϕ1−i
i , ϕ1−k+i

k−i ]− dη2−k
k , 0 ≤ k ≤ q (46)

bdη2−k
k =

k∑
i=0

[dϕ1−i
i , η2−k+i

k−i ]−
k∑

i=0

[ϕ1−i
i , dη2−k+i

k−i ] , 0 ≤ k ≤ q (47)

δϕ1−k
k = (k + 1)ϕ−k

k+1, 0 ≤ k ≤ q (48)

δdϕ1−k
k = (k + 1)dϕ−k

k+1, 0 ≤ k ≤ q − 2 (49)

δdϕ2−q
q−1 = −dϕ1−q

q − (q + 1)

2

q∑
i=1

[ϕ1−i
i , ϕ−q+i

q+1−i] (50)

δdϕ1−q
q = −(q + 1)

2

q∑
i=2

[ϕ1−i
i , ϕ−q−1+i

q+2−i ] (51)

δη2−k
k = (k + 1)η−k+1

k+1 , 0 ≤ k ≤ q (52)

δdη2−k
k = (k + 1)dη−k

k+1, 0 ≤ k ≤ q − 2 (53)

δdη3−q
q−1 = −dη2−q

q − (q + 1)
q∑

i=1

[ϕ1−i
i , η−q+1−i

q+1−i ] (54)

δdη2−q
q = −(q + 1)

q∑
i=2

[ϕ1−i
i , η−q+i

q+2−i] . (55)

It is important to notice that in the case q = D, equations (50, 51, 54, 55) vanish trivially.

In this case, all δ transformations of the field derivatives are encoded on (49,53) that

essentially mean [δ, d] = 0. Then, from (31) we have ∆1−i
i = 0, i ≥ 2 and consequently

all consistency equations (38-43) will vanish.

3 A Model with q = 2, D = 4

Let

W = c+ A+ ϕ−1
2 (56)

F = φ+ ψ +B (57)

d̃ = b+ d+∆−1
2 +∆−2

3 +∆−3
4 . (58)
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The BRST transformations corresponding to the generalized connection and curvature

equations (3,4,5) are given by

bc = −c2 + φ (59)

bA = −dc− [c, A] + ψ (60)

bϕ−1
2 = −F − [c, ϕ−1

2 ] +B (61)

bφ = −[c, φ] (62)

bψ = −dφ− [c, ψ]− [A, φ] (63)

bB = −dψ − [c, B]− [A,ψ]− [ϕ−1
2 , φ] , (64)

the δ transformations have the form

δc = A, δdc = dA (65)

δA = 2ϕ−1
2 , δdA = −dϕ−1

2 − 3[A,ϕ−1
2 ] (66)

δϕ−1
2 = 0, δdϕ−1

2 = −3ϕ−1
2 ϕ

−1
2 (67)

δφ = ψ, δdφ = dψ (68)

δψ = 2B, δdψ = −dB − 3[A,B]− 3[ϕ−1
2 , ψ] (69)

δB = 0, δdB = −3[ϕ−1
2 , B] (70)

and the ∆ transformations are given by

∆−1
2 c = 0 (71)

∆−1
2 A = −3

2
dϕ−1

2 − 3

2
[A,ϕ−1

2 ] (72)

∆−1
2 ϕ

−1
2 = −3

2
ϕ−1

2 ϕ
−1
2 (73)

∆−1
2 φ = 0 (74)

∆−1
2 ψ = −3

2
dB − 3

2
[A,B]− 3

2
[ϕ−1

2 , ψ] (75)

∆−1
2 B = −3

2
[ϕ−1

2 , B] (76)

∆−1
2 dc = 0 (77)

∆−1
2 dA = −3

2
[ϕ−1

2 , dA]−
3

2
[A, dϕ−1

2 ] (78)

∆−1
2 dϕ

−1
2 = −3

2
[ϕ−1

2 , dϕ
−1
2 ] (79)

∆−1
2 dφ = 0 (80)

∆−1
2 dψ = −3

2
[B, dA]− 3

2
[A, dB]− 3

2
[ψ, dϕ−1

2 ]− 3

2
[ϕ−1

2 , dψ] (81)
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∆−1
2 dB = −3

2
[B, dϕ−1

2 ]−
3

2
[ϕ−1

2 , dB] (82)

∆−2
3 c =

1

2
dϕ−1

2 +
1

2
[A,ϕ−1

2 ] (83)

∆−2
3 A =

1

2
ϕ−1

2 ϕ
−1
2 (84)

∆−2
3 ϕ

−1
2 = 0 (85)

∆−2
3 φ =

1

2
dB +

1

2
[A,B] +

1

2
[ϕ−1

2 , ψ] (86)

∆−2
3 ψ =

1

2
[ϕ−1

2 , B] (87)

∆−2
3 B = 0 (88)

∆−2
3 dc =

1

2
[ϕ−1

2 , dA] +
1

2
[A, dϕ−1

2 ] (89)

∆−2
3 dA =

1

2
[ϕ−1

2 , dϕ
−1
2 ] (90)

∆−2
3 dϕ

−1
2 = 0 (91)

∆−2
3 dφ =

1

2
[B, dA] +

1

2
[A, dB] +

1

2
[ψ, dϕ−1

2 ] +
1

2
[ϕ−1

2 , dψ] (92)

∆−2
3 dψ =

1

2
[B, dϕ−1

2 ] +
1

2
[ϕ−1

2 , dB] (93)

∆−2
3 dB = 0 (94)

∆−3
4 ≡ 0 . (95)

Let us consider now the system of descent equations given in (6). We can rewrite it in the

form (b+d)ω̃ ≡ (d̃−∆)ω̃ = 0 with ω̃ .= ω4
0+ω

3
1+ω

2
2+ω

1
3+ω

0
4 and ∆

.
= ∆−1

2 +∆−2
3 +∆−3

4 .

A particular solution is given by

ω̃ = eδ(ω4
0 + Ω) (96)

with Ω
.
= Ω3

1 + Ω
2
2 + Ω

1
3 + Ω

0
4 satisfying

bΩ0
4 = ∆−1

2 Ω2
2 − 2∆−2

3 Ω3
1 + 3∆

−3
4 ω

4
0 (97)

bΩ1
3 = ∆−1

2 Ω3
1 − 2∆−2

3 ω
4
0 (98)

bΩ2
2 = ∆−1

2 ω
4
0 (99)

bΩ3
1 = 0 . (100)

In terms of these Ω′s we have

ω0
4 =

δ4

4!
ω4

0 +
δ3

3!
Ω3

1 +
δ2

2!
Ω2

2 + δΩ
1
3 + Ω

0
4 (101)
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ω1
3 =

δ3

3!
ω4

0 +
δ2

2!
Ω3

1 + δΩ
2
2 + Ω

1
3 (102)

ω2
2 =

δ2

2!
ω4

0 + δΩ
3
1 + Ω

2
2 (103)

ω3
1 = δω4

0 + Ω
3
1 . (104)

Here we notice that the cycles exhibited in (101-104) are obtained from Ω′s by the action

of δ. These Ω′s are solutions of the intermediate equations (97-100), which don’t involve

the exterior derivative. It is the combination of the δ-operator and these equations (97-

100) that allow us to transform a problem of cohomology of b modulo d (6) into a simple

one. In order to solve (101-104) we should first determine ω4
0, the solution of b ω

4
0 = 0.

Our intention is to analyse how the cocycle Tr 1
2
φ2 (which appears in [1, 3]) is modified

by the presence of the negative ghost number field ϕ−1
2 , the field B, and the operators

∆−1
2 , ∆

−2
3 , ∆

−3
4 . Therefore we take

ω4
0 = Tr

(1
2
φ2

)
. (105)

Then, we obtain Ω′s solving (97-100). Replacing them in (101-104) we obtain

ω3
1 = Tr

{
2

3
β1

(
c2ψ − c2dc+ c[A, φ]

)
+
2

3
(β2 − β4)

(
φψ − φdc

)
+
2

3
β3

(
− c2ψ + c2dc−

−φψ + φdc− c[A, φ]
)
+ σ

(
c2dc+ cdφ+ φdc

)
+
1

3
φψ +

2

3
φdc

}
(106)

ω2
2 = Tr

{
2

3
β1

(
2c2B − c2dA+ 2A2φ+ 2c[A,ψ]− c[A, dc] + 2c[ϕ−1

2 , φ]
)
+

+
2

3
(β2 − β4)

(
2φB − φdA+ ψ2 − ψdc

)
+
2

3
β3

(
− 2c2B + c2dA− 2A2φ−

−2φB + φdA− ψ2 + ψdc− 2c[A,ψ] + c[A, dc]− 2c[ϕ−1
2 , φ]

)
+

+α1

(
c2A2 − c2B + c2dA− c[ϕ−1

2 , φ]
)
+ α2

(
A2φ− φB + φdA

)
+

+α3

(
c2B + cdψ + φB + c[A,ψ] + c[ϕ−1

2 , φ]
)
+ α4

(
− c2dA− cdψ − φdA−

−c[A, dc]
)
+ α5

(
Adφ+

1

2
ψ2 + φB − φdA− 1

2
dcdc

)
+ α6

(
− 1

2
ψ2 + ψdc−

−φB + φdA− 1

2
dcdc

)
+ σ

(
c2dA+ cdψ + Adφ+ φdA+ ψdc+ c[A, dc]

)

−1
3
φB +

2

3
φdA− 1

6
ψ2 +

2

3
ψdc

}
(107)

ω1
3 = Tr

{
2β1

(2
3
c2dϕ−1

2 + A2ψ − 1

3
A2dc+ c2[A,ϕ−1

2 ] + c[A,B]− 1

3
c[A, dA] +

+c[ϕ−1
2 , ψ]−

1

3
c[ϕ−1

2 , dc] + A[ϕ
−1
2 , φ]

)
+ 2β2

(2
3
φdϕ−1

2 + ψB − 1

3
ψdA−
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−1
3
Bdc+ A[ϕ−1

2 , φ]
)
+ β3

(
− 1

3
c2dϕ−1

2 + cdB − 2A2ψ +
2

3
A2dc− 1

3
φdϕ−1

2 −

−2ψB + 2

3
ψdA+

2

3
Bdc− c2[A,ϕ−1

2 ]− c[A,B] + 2

3
c[A, dA]− c[ϕ−1

2 , ψ] +

+
2

3
c[ϕ−1

2 , dc]− 3A[ϕ−1
2 , φ]

)
+ β4

(
− 4

3
φdϕ−1

2 − ψB − 1

3
ψdA− 1

3
Bdc+

+dcdA− A[ϕ−1
2 , φ]

)
+ β5

(
c2ϕ−1

2 A + cA
3 + cϕ−1

2 ψ − cϕ−1
2 dc− cBA+

+cdAA−Aφϕ−1
2

)
+ β6

(
A2dc− ϕ−1

2 dφ− Bdc+ dcdA
)
+

+β7

(
A2ψ − ϕ−1

2 dφ−Bdc+ dcdA
)
+ β8

(
c2dϕ−1

2 + cdB + φdϕ−1
2 + c[A, dA] +

+c[ϕ−1
2 , dc]

)
+ β9

(
Adψ + 2ϕ−1

2 dφ+ ψdA+ 2Bdc− 3dcdA
)
+

+α1

(
− c2dϕ−1

2 − c2[A,ϕ−1
2 ]− c[A,B] + c[A, dA]− c[ϕ−1

2 , ψ]− A[ϕ−1
2 , φ]

)
+

+α2

(
A2ψ − φdϕ−1

2 − ψB + ψdA−A[ϕ−1
2 , φ]

)
+ α3

(
− cdB + 2A2ψ + Adψ +

+ψB + A[ϕ−1
2 , φ]

)
+ α4

(
c2dϕ−1

2 + cdB − 2A2dc− Adψ + φdϕ−1
2 − ψdA+

+3c2[A,ϕ−1
2 ] + 3c[A,B]− 2c[A, dA] + 3A[ϕ−1

2 , φ] + 3c[ϕ
−1
2 , ψ]− 2c[ϕ−1

2 , dc]
)
+

+α5

(
Adψ + 2ϕ−1

2 dφ+ φdϕ
−1
2 + 3ψB − ψdA− dcdA+ 3A[ϕ−1

2 , φ]
)
+

+α6

(
− φdϕ−1

2 − 3ψB + 2ψdA+ 2Bdc− dcdA− 3A[ϕ−1
2 , φ]

)
+

+σ
(
− 1

2
c2dϕ−1

2 − 1

2
cdB + A2dc+ Adψ + ϕ−1

2 dφ−
1

2
φdϕ−1

2 + ψdA+

+Bdc− 3

2
c2[A,ϕ−1

2 ]− 3

2
c[A,B] + c[A, dA]− 3

2
c[ϕ−1

2 , ψ] + c[ϕ
−1
2 , dc]−

−3
2
A[ϕ−1

2 , φ]
)
− 1

3
φdϕ−1

2 − ψB + 2

3
ψdA+

2

3
Bdc− A[ϕ−1

2 , φ]
}

(108)

ω0
4 = Tr

{
2β1

(
c2ϕ−1

2 ϕ
−1
2 +

4

3
A2B − 1

3
A2dA+ ϕ−1

2 ϕ
−1
2 φ+ c[A

2, ϕ−1
2 ] + c[A, dϕ−1

2 ] +

+c[ϕ−1
2 , B] +

4

3
A[ϕ−1

2 , ψ]−
1

3
A[ϕ−1

2 , dc]
)
+ 2β2

(4
3
ϕ−1

2 ϕ
−1
2 φ+ ψdϕ

−1
2 +

2

3
B2 −

−1
3
BdA− 1

3
dcdϕ−1

2 +
4

3
A[ϕ−1

2 , ψ]−
1

3
A[ϕ−1

2 , dc]
)
+ β3

(
− c2ϕ−1

2 ϕ
−1
2 − 2

3
A2B +

+
2

3
A2dA+ AdB − 11

3
ϕ−1

2 ϕ
−1
2 φ− ψdϕ−1

2 − 4

3
B2 +

2

3
BdA+

2

3
dcdϕ−1

2 −

−c[A2, ϕ−1
2 ]− c[A, dϕ−1

2 ]− c[ϕ−1
2 , B]−

10

3
A[ϕ−1

2 , ψ] +
4

3
A[ϕ−1

2 , dc]
)
+

+β4

(4
3
ϕ−1

2 ϕ
−1
2 φ− ψdϕ−1

2 +
2

3
B2 − 7

3
BdA− 1

3
dcdϕ−1

2 + dAdA+
4

3
A[ϕ−1

2 , ψ]−

−7
3
A[ϕ−1

2 , dc]
)
+ β5

(
2c2ϕ−1

2 ϕ
−1
2 − cϕ−1

2 dA+ 2cdAϕ
−1
2 − cdϕ−1

2 A+ A
4 + A2B −

−A2dA−Aϕ−1
2 dc+ 2ϕ

−1
2 ϕ

−1
2 φ+ 2c[A

2, ϕ−1
2 ] + 2c[ϕ−1

2 , B] + A[ϕ
−1
2 , ψ]

)
+

+β6

(
A2dA− ϕ−1

2 dψ − BdA− dcdϕ−1
2 + dAdA−A[ϕ−1

2 , dc]
)
+
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+β7

(
2A2B − ϕ−1

2 dψ − BdA− dcdϕ−1
2 + dAdA+ 2A[ϕ−1

2 , ψ]− 3A[ϕ−1
2 , dc]

)
+

+β8

(
− 3c2ϕ−1

2 ϕ
−1
2 + 2A2dA+ AdB − 3ϕ−1

2 ϕ
−1
2 φ+ ψdϕ

−1
2 − 3c[A2, ϕ−1

2 ]−
−3c[ϕ−1

2 , B] + 3c[ϕ
−1
2 , dA] + A[ϕ

−1
2 , dc]

)
+ β9

(
− 6A2B − AdB + 4ϕ−1

2 dψ −
−ψdϕ−1

2 + 4BdA+ 3dcdϕ−1
2 − 3dAdA− 6A[ϕ−1

2 , ψ] + 9A[ϕ
−1
2 , dc]

)
+

+α1

(
− 2c2ϕ−1

2 ϕ
−1
2 − A2B + A2dA− 2ϕ−1

2 ϕ
−1
2 φ− 2c[A2, ϕ−1

2 ]− c[A, dϕ−1
2 ]−

−2c[ϕ−1
2 , B] + c[ϕ

−1
2 , dA]− A[ϕ−1

2 , ψ]
)
+ α2

(
A2B − 2ϕ−1

2 ϕ
−1
2 φ− ψdϕ−1

2 − B2 +

+BdA−A[ϕ−1
2 , ψ]

)
+ α3

(
−A2B − AdB + 2ϕ−1

2 ϕ
−1
2 φ+ ϕ

−1
2 dψ +B

2 +

+A[ϕ−1
2 , ψ]

)
+ α4

(9
2
c2ϕ−1

2 ϕ
−1
2 + 6A2B − 3A2dA+ AdB +

9

2
ϕ−1

2 ϕ
−1
2 φ− ϕ−1

2 dψ +

+ψdϕ−1
2 −BdA+ 9

2
c[A2, ϕ−1

2 ] + 3c[A, dϕ−1
2 ] +

9

2
c[ϕ−1

2 , B]−
3

2
c[ϕ−1

2 , dA] +

+6A[ϕ−1
2 , ψ]− 3A[ϕ−1

2 , dc]
)
+ α5

(
− 3A2B − 1

2
AdB + 6ϕ−1

2 ϕ
−1
2 φ+ 2ϕ

−1
2 dψ +

+
5

2
ψdϕ−1

2 + 3B2 −BdA + 1

2
dcdϕ−1

2 − 1

2
dAdA+ 3A[ϕ−1

2 , ψ] +
3

2
A[ϕ−1

2 , dc]
)
+

+α6

(
− 6ϕ−1

2 ϕ
−1
2 φ− 3ψdϕ−1

2 − 3B2 + 3BdA+ 2dcdϕ−1
2 − 1

2
dAdA− 6A[ϕ−1

2 , ψ] +

+3A[ϕ−1
2 , dc]

)
+ γ1

(
c2ϕ−1

2 ϕ
−1
2 + ϕ−1

2 ϕ
−1
2 φ+ c[A

2, ϕ−1
2 ] + c[ϕ−1

2 , B]− c[ϕ−1
2 , dA]

)
+

+γ2

(
− A2B + A2dA− A[ϕ−1

2 , ψ] + A[ϕ
−1
2 , dc]

)
+ γ3

(
2A2B + AdB + ψdϕ−1

2 −
−dcdϕ−1

2 + 2A[ϕ−1
2 , ψ]− A[ϕ−1

2 , dc]
)
+ γ4

(
− A2B + 2ϕ−1

2 ϕ
−1
2 φ+ ϕ

−1
2 dψ +B

2 −
−BdA+ A[ϕ−1

2 , ψ]
)
+ γ5

(
A2B − ϕ−1

2 dψ − BdA+ dAdA+ A[ϕ−1
2 , ψ]− 2A[ϕ−1

2 , dc]
)
+

+σ
(
− 3

2
c2ϕ−1

2 ϕ
−1
2 − 3A2B + A2dA− 1

2
AdB − 3

2
ϕ−1

2 ϕ
−1
2 φ+ ϕ

−1
2 dψ −

1

2
ψdϕ−1

2

+BdA+ dcdϕ−1
2 − 3

2
c[A2, ϕ−1

2 ]− 3

2
c[A, dϕ−1

2 ]− 3

2
c[ϕ−1

2 , B]− 3A[ϕ−1
2 , ψ] +

+2A[ϕ−1
2 , dc]

)
− 5

3
ϕ−1

2 ϕ
−1
2 φ− ψdϕ−1

2 − 5

6
B2 +

2

3
BdA+

2

3
dcdϕ−1

2 − 5

3
A[ϕ−1

2 , ψ] +

+
2

3
A[ϕ−1

2 , dc]
}
. (109)

Considered in this form, this previous solution for ω1−i
i doesn’t relate to any familiar

model. Here, let us consider some specific cases. First, let us consider the two form

B decomposing as B = F + B̂ [5] with F the curvature of A. In this decomposition,

the two form B̂ should be introduced in order to maintain the nilpotency of the BRST

transformation of ϕ−1
2 . We have b2ϕ−1

2 = 0 ⇒ bB̂ = −[c, B̂] + [φ, ϕ−1
2 ]. Then, taking

β2 = 1 with all other parameters set to zero we obtain ω
1−i
i as

ω4
0 = Tr

(1
2
φ2

)
(110)
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ω3
1 = Tr

(
φψ

)
(111)

ω2
2 = Tr

(
φF +

1

2
ψ2 + φB̂

)
(112)

ω1
3 = Tr

(
ψF + φDAϕ

−1
2 + ψB̂

)
(113)

ω0
4 = Tr

(1
2
F 2 +

1

2
B̂2 + FB̂ + ϕ−1

2 ϕ
−1
2 φ+ ψDAϕ

−1
2

)
. (114)

We observe that the inclusion of additional fields ϕ−1
2 , B in the ladders, and of addi-

tional derivations ∆1−i
i in d̃ modify the previous solution (7) of the descent equations.

Nonetheless, (110-114) still contains the terms associated to the Donaldson polynomi-

als. A similar behaviour has been observed in [5] for the case ϕ−1
2 = 0, B �= F ,

which also generates a solution including additional terms to the Donaldson polyno-

mials. Now, if we look at our general solution (106-109) we see that they represent

a family of solutions parametrized by 21 parameters (β1, ..., σ) which writes as ω̃ =
1
2
(φ+ψ+F )2+ (1

2
B̂2+ φB̂ + ψB̂ + FB̂ + φDAϕ

−1
2 + ψDAϕ

−1
2 +ϕ−1

2 ϕ
−1
2 φ) +Θ(β1, ..., σ).

Here, there is no possibility to choose the parameters (β1, ..., σ) in such a way that ω̃

reduces to the Donaldson polynomials. From [5], it seems then that the only cases having

a complete agreement with (7) are ϕ−1
2 = 0, B = F that gives the same result as (7),

and ϕ−1
2 = 0, B = 0 that represents a family of solutions parametrized by points of R8

and such that to the origin we have associated (7), i.e. ω̃ = 1
2
(φ+ψ+F )2+Θ(α1, ..., α8)

with ω̃ |(α1,...,α8)=0=
1
2
(φ+ ψ + F )2. This solution is interesting because it shows Donald-

son generators as a particular case of a more general expression. Therefore, it may be

possible that other extended formulations may admit, as a limit case, other topological

invariants. Nonetheless, up to the analysis of this example, it is not known if a choice of

higher components ladders would generate a solution of this type.

The cycle ω0
4 is particularly important since it defines a BRST invariant action

S =
∫
Tr

(1
2
F 2 +

1

2
B̂2 + FB̂ + ϕ−1

2 ϕ
−1
2 φ+ ψDAϕ

−1
2

)
(115)

which can be taken as the starting point for a pertubative analysis of our model. This

action incorporates, from the begining, extra terms on ϕ−1
2 , B̂ in addition to the usual

non-gauge fixed TYMT action
∫
TrF 2. Thus, in much the same way as it was done in [24],

we may interpret the fields ϕ−1
2 , B̂ as part of the additional fields necessary to perform

the gauge fixing of the action
∫
TrF 2. If we want to proceed further on finding a fully

gauge fixed action, we will have to introduce other fields (antifields, antighosts) with total

degree different than 0 and 1, which will be accommodated as component fields of other

ladders.
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Another application of the model given by (56-58) is on the description of four-

dimensional BF model. In fact, consider the cycle ω0
4 (109). Let us take γ1 = 1, γ2 =

0, γ3 =
1
3
, γ4 = −1

2
, γ5 = −1

6
, β2 = 1 with all other parameters equal to zero. Then, we

obtain an invariant action given by 3

S =
∫
ω0

4 =
∫
Tr

(
BF + ψDAϕ

−1
2 + ϕ−1

2 ϕ
−1
2 φ+B[c, ϕ

−1
2 ] + c2ϕ−1

2 ϕ
−1
2 − c[ϕ−1

2 , F ]
)
(116)

which contains the usual term of the BF model. It is important to notice that this deriva-

tion of four-dimensional BF action is based on a pair of connection and curvature ladders

(56,57) with the assumption that B �= F . In contrast, the usual superfield formulation
of D-dimensional BF models [6, 25] employs a gauge ladder together with a matter lad-

der B having the two form B as its highest component field, i.e B|D = B. In section

4.2 we will obtain the equivalent of action (116) for the zero curvature formulation of

four-dimensional BF model.

4 The zero-curvature models

As we have seen, the model presented in section 2 is based on gauge and curvature ladders

W, F satisfying d̃W + 1
2
[W,W] = F , d̃F + [W,F ] = 0. As a limit case of this model

we can pose a zero curvature condition F = 0 that reduces the previous equations to

d̃W + 1
2
[W,W] = 0. Here, (44-55) become

bϕ1−k
k = −dϕ2−k

k−1 −
1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ], 0 ≤ k ≤ q (117)

bdϕ1−k
k =

k∑
i=0

[dϕ1−i
i , ϕ1−k+i

k−i ], 0 ≤ k ≤ q (118)

δϕ1−k
k = (k + 1)ϕ−k

k+1, 0 ≤ k ≤ q (119)

δdϕ1−k
k = (k + 1)dϕ−k

k+1, 0 ≤ k ≤ q − 2 (120)

δdϕ2−q
q−1 = −dϕ1−q

q − (q + 1)

2

q∑
i=1

[ϕ1−i
i , ϕ−q+i

q+1−i] (121)

δdϕ1−q
q = −(q + 1)

2

q∑
i=2

[ϕ1−i
i , ϕ−q−1+i

q+2−i ] (122)

that agree with the same equations obtained in the non-complete ladder case (i.e. with

q �= D) of [7]. In our approach we treat both cases q = D (refered in [6] as the complete

3Here, we may also interpret ϕ−1
2 as one of the fields necessary to perform the gauge fixing of the BF

action.
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ladder case) and q �= D in the same way, with the fundamental equations given as above.

Indeed, the equations for the complete ladder case are a particular case of (117-122)

when one takes q = D. Basically, what differs one and another situation is just the

definition of the generalized derivative that assumes the form d̃ = b + d when q = D

and d = b + d +
∑D

i=2∆
1−i
i when q �= D. The main role of the operators ∆1−i

i , i ≥ 2 is

to avoid possible constraints that would arise from the zero curvature condition in the

case of q �= D. For example, in the absence of ∆1−i
i we would have from (39,40) the two

constraints below

dϕ1−q
q = −1

2

q∑
i=1

[ϕ1−i
i , ϕ−q+i

q+1−i]

0 =
q∑

i=k−q

[ϕ1−i
i , ϕ1−k+i

k−i ], k ≥ q + 2 .

As we have pointed out at the end of section 2, q = D determines ∆1−i
i = 0 and this

explains why these operators are absent in the complete ladder case of [6].

Let us consider general descent equations of the type


bωG+i

D−i + dω
G+i+1
D−i−1 = 0, 0 ≤ i ≤ D − 1
bωG+D

0 = 0 .
(123)

This system of descent equations can be solved following the same procedure of section 3,

e.g. writing ω̃ ≡ ∑G+D
i=0 ωG+D

i and ∆ ≡ ∑D
i=2∆

1−i
i the descent equations assume the form

0 = (b+d)ω̃ = (d̃−∆)ω̃. A particular solution is ω̃ .= eδ(ωG+D
0 +Ω) with Ω ≡ ∑D

i=1Ω
G+D−i
i

satisfying

bΩG+D−k
k = (−1)k(k − 1)∆1−k

k ωG+D
0 +

k−1∑
i=2

(−1)i(i− 1)∆1−i
i ΩG+D−k+i

k−i 1 ≤ k ≤ D . (124)

We note that when q = D we have Ω = 0 and ∆ = 0, then ω̃ = eδωG+D
0 and d̃ = b + d.

When G+D = 4, (124) agrees with (97-100).

4.1 The Chern-Simons term

Consider a model with q = 3, D = 3 and F = 0. Let us take the cocyle ω0
3 such that

b
∫
ω0

3 = 0. This will be related to the Chern-Simons form. As it was shown in [6], ω
0
3 can

be obtained by expanding ω̃ = eδω3
0 = e

δ( 1
3!
Trc3) and taking the terms with form degree

equal to 3. This results on

S =
1

2

∫
Tr(AF − 1

3
A3)− 1

2
b

∫
Tr(cϕ−2

3 + Aϕ−1
2 ) . (125)
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Nonetheless, the presence of the field ϕ−1
2 allow us to consider a more general solution by

introducing on (125) the term

∫
(dcϕ−1

2 +
1

2
AdA) . (126)

Then, the action given by (125)+ (126) is also possible and represents a contribution due

to the extra field ϕ−1
2 .

4.2 BF system

The D-dimensional BF system can be formulated as a zero curvature system by introduc-

ing two complete ladders [6]

W =
D∑
i=0

ϕ1−i
i , B =

D∑
i=0

BD−2−j
j (127)

where W is a gauge ladder with total degree 1, which satisfies a zero curvature condition.

The other ladder B has total degree (D-2) and satisfies d̃B+[W,B] = 0. For the complete
ladder case, we have seen that d̃ = b+ d. Let us consider the case D=4. Here, the gauge

and the matter ladder B are taken as

W = c+ A + ϕ−1
2 + ϕ−2

3 + ϕ−3
4 (128)

B = φ+ ψ +B +B−1
3 +B−2

4 . (129)

The BRST transformations for the component fields follow from the equations satisfied

by W and B and are given by

bc = −c2 (130)

bA = −dc− [c, A] (131)

bϕ−1
2 = −F − [c, ϕ−1

2 ] (132)

bϕ−1
3 = −dϕ−1

2 − [c, ϕ−1
3 ]− [A,ϕ−1

2 ] (133)

bϕ−3
4 = −dϕ−1

3 − [c, ϕ−3
4 ]− [A,ϕ−2

3 ]− 1

2
[ϕ−1

2 , ϕ
−1
2 ] (134)

bφ = −[c, φ] (135)

bψ = −dφ− [c, ψ]− [A, φ] (136)

bB = −dψ − [c, B]− [A,ψ]− [ϕ−1
2 , φ] (137)

bB−1
3 = −dB − [c, B−1

3 ]− [A,B]− [ϕ−1
2 , ψ]− [ϕ−1

3 , φ] (138)

bB−2
4 = −dB−1

3 − [c, B−2
4 ]− [A,B−1

3 ]− [ϕ−1
2 , B]− [ϕ−2

3 , ψ]− [ϕ−3
4 , φ] . (139)
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The BRST transformations for φ, ψ, B agree with the ones given in (62,63,64). Nonethe-

less, since W is a connection with zero curvature, the BRST transformations for the

components c, A, ϕ−1
2 differ from (59,60,61).

From [6] we obtain an invariant action as

S =
∫
Tr B(dW +W2)|04 (140)

=
∫
Tr

(
BF + ψDAϕ

−1
2 + ϕ−1

2 ϕ
−1
2 φ+B[c, ϕ

−1
2 ] + φ[c, ϕ−3

4 ] + ψ[c, ϕ
−2
3 ] + φDAϕ

−2
3 +

+B−1
3 DAc+B

−2
4 c

2
)
. (141)

This previous action agrees with the one given in (116) except by the presence of higher

components fields ϕ−2
3 , ϕ

−3
4 , B

−1
3 , B

−2
4 that doesn’t enter in the ladders (56,57). Con-

versely, there are also the presence of terms on ϕ−1
2 in (116) that don’t appear in (141),

those terms being brought by the derivations ∆1−i
i , which are absent on the the generalized

derivative d̃ = b+d. Both approaches are entirely different since they are based on ladders

that satisfy different equations. As for the general formulation of BF models in dimen-

sions other than D=4, we emphasize that a matter ladder B, satisfying d̃B + [W,B] = 0,
should be used to accomodate the field B. It is a particular feature of 4 dimensions that

we can take the ladder B (57) as the generalized curvature of W (56).

5 Mathematical aspects

5.1 BRST G-operation

In this subsection we review some basic definitions concerning the structure of graded

commutative differential algebras and BRST G-operations. Although our approach is

based on the formalism exposed in [8, 9] we will adopt some definitions in a different

context.

A Z-graded supercommutative algebra is a structure defined by (A, ∗) such that: (1) (A, ∗)
is an algebra in the usual sense (we are considering algebras defined over a field K

that can be R or C), (2) the graded structure is defined by a direct sum decomposi-

tion A = ⊕m∈ZAm such that Am ∗ An ⊂ Am+n and the supercommutativity stands for

α ∗ β = (−1)mnβ ∗ α, ∀α ∈ Am, ∀β ∈ An. From now on we will use the term commu-

tative as meaning supercommutative. All graded (bigraded) structure to be considered

here will be defined either over Z or Z+ .
= N ∪ {0}.
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A superderivation on A of degree k is a linear map Ψ : A• → A•+k such that Ψ(αβ) =

(Ψα)β+(−1)kmαΨβ, ∀α ∈ Am. We denote the set of k-superderivations on A as Dk(A).
Defining a product between two superderivations on A as the composition map we have

that D(A) ≡ ∑
k∈Z Dk(A) together with this product becomes a graded algebra.

A graded commutative differential algebra is a structure defined by (A, ∗, d) with
(1) (A, ∗) a graded commutative algebra and (2) d a superderivation on A of degree 1

such that d2 = 0.

A G-operation is defined by (A, ∗, d, I, L) with (1) (A, ∗, d) a graded commutative
differential algebra and (2) I : G → D−1(A), X → IX and L : G → D0(A), X →
LX

.
= [d, IX ] such that I[X,Y ] = LXIY − IY LX and L[X,Y ] = LXLY − LY LX , ∀X, Y ∈

G. We extend these two operations to G⊗A as IX(Y⊗α) .= Y⊗IXα, LX(Y⊗α) .=
Y⊗LXα, ∀X, Y ∈ G, ∀α ∈ A.

Given a G-operation over a graded algebra A we define an algebraic connection on A
as an element ω ∈ G⊗A1 such that IXω = X⊗1 � X, LXω = [ω,X], ∀X ∈ G. Given a
G-operation we denote its set of algebraic connections by C.

The curvature of an algebraic connection is an element 3 ∈ G⊗A2 that satisfies dω +
1
2
[ω, ω] = 3 . In particular this condition implies d3 + [ω, 3] = 0, IX3 = 0, LX3 =

[3,X], ∀X ∈ G.
Given ωi ≡ ∑

{ai} eai
⊗ωai

i ∈ G⊗A1, i ∈ N , we define ω1...ωn
.
=

∑
{ai} ea1 ...ean⊗ωa1

1 ...ω
an
n =∑

c ec⊗(ω1...ωn)
c ∈ G⊗An with (ω1...ωn)

c ≡ ∑
{ai} γ

c
a1...an

ωa1
1 ...ω

an
n .

Now, let us consider bigraded algebras. The definitions will be immediate extensions

from the graded case.

A bigraded commutative algebra is a pair (Υ, ∗) such that Υ is an algebra that admits

a direct sum decomposition of the type Υ = ⊕(m,n)∈Z×ZΥ
(m,n) and the product ∗ satisfies

Υ(m,n)∗Υ(r,s) ⊂ Υ(m+r,n+s), with commutativity meaning α∗β = (−1)(m+n)(r+s)β∗α, ∀α ∈
A(m,n), ∀β ∈ A(r,s). Given a bigraded algebra, Υr ≡ ⊕m∈ZΥ(m,r−m) defines a graded

structure on Υ, i.e. Υ = ⊕r∈ZΥr.

We also have the same concept of superderivation on Υ: a (r, s)-superderivation is a

linear map Ψ : Υ(m,n) → Υ(m+r,n+s) with Ψ(αβ) = (Ψα)β + (−1)(r+s)(m+n)αΨβ, ∀α ∈
Υ(m,n). We denote D(Υ) ≡ ⊕(m,n)∈Z×ZD(m,n)(Υ) = ⊕r∈ZDr(Υ) where the total degree of

a superderivation is given by the sum of its bidegree indices.

A bigraded commutative differential algebra is defined as (Υ, ∗, d̃) with (1) (Υ, ∗) a bi-
graded commutative algebra and (2) d̃ a superderivation of total degree 1, d̃ = ⊕m∈Z d̃(m,1−m).
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A bigraded G-operation is defined as (Υ, ∗, d̃, Ĩ , L̃) with (1) (Υ, ∗, d̃) a bigraded com-
mutative differential algebra and (2) Ĩ : G → D−1(Υ) with ĨX ≡ ∑

m∈Z Ĩ
(m,−1−m)
X , and

L̃ : G → D0(Υ) with [d̃, ĨX ] = L̃X ≡ ∑
m∈Z L̃

(m,−m)
X .

An algebraic connection on a bigraded G-operation Υ is an element ω̃ ∈ G⊗Υ1, ω̃
.
=∑D

k=0 ω̃
1−k
k satisfying ĨX ω̃ = X⊗1, L̃X ω̃ = [ω̃, X].

The curvature of the algebraic connection ω̃ is an element 3̃ ∈ G⊗Υ2, 3̃
.
=

∑D
i=0 3̃

2−i
i

such that d̃ω̃ + 1
2
[ω̃, ω̃] = 3̃ .

This previous definition of bigraded G-operation is too general. In the next definition
we will restrict it in order to fit our purposes.

Definition 1 (BRST G-operation) A BRST G-operation is the structure determined
by (Υ, ∗, d̃, Ĩ , L̃, ω̃, ρ̃) where (1) (Υ, ∗, d̃, Ĩ, L̃) is a G-operation with

(i) Υ(m,n) = {0} if m < 0 or m > D with D ∈ N

(ii) d̃ ≡ ∑
m∈Z+

d̃(m,1−m) .= b+ d+
D∑
i=2

∆1−i
i , d̃2 = 0 (142)

(iii) ĨX ≡ ∑
m∈Z

Ĩ
(m,−1−m)
X

.
= Ĩ

(−1,0)
X (143)

(iv) L̃X ≡ ∑
m∈Z

L̃
(m,−m)
X

.
= L̃

(0,0)
X with L̃ = [d̃, Ĩ] (144)

and (2) ω̃ is an algebraic connection on Υ with curvature ρ̃.

Theorem 1 For a BRST G-operation we have

ĨXd+ dĨX = L̃X (145)

ĨXb+ bĨX = 0 (146)

ĨX∆
1−i
i +∆1−i

i ĨX = 0, ∀i ≥ 2 . (147)

ĨXω̃
1−i
i = 0, i �= 1 (148)

ĨX ω̃
0
1 = X⊗1 (149)

L̃X ω̃
1−i
i = [ω̃1−i

i , X], 0 ≤ i ≤ D (150)

ĨX 3̃
2−i
i = 0, 0 ≤ i ≤ D (151)

L̃X 3̃
2−i
i = [3̃2−i

i , X], 0 ≤ i ≤ D . (152)

Proof: This follows immediately from definition 1.

We extend ĨX , L̃X to G⊗Υ in the same way as we did for the graded case. Note that

our definition of BRST G-operation is an extension of that one adopted in [8] in which
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we allow the differential d̃ to have components ∆1−k
k other than d̃(0,1) = b and d̃(1,0) = d.

We also allow the algebraic connection and curvature to contain other component fields

in addition to ω̃1
0, ω̃

0
1, 3̃

2
0, 3̃

1
1, 3̃

0
2.

Finally, we consider aut0(A) = {ξ ∈ G⊗A0 | LXξ = [ξ,X], ∀X ∈ G} that will
correspond later on to the concept of the infinitesimal gauge transformations, and aut∗0(A)
its dual. In terms of the generators of G we write ξ = ∑

a ea⊗ξa with ξa ∈ A0. Here, the

space A0 is a subalgebra of A, therefore it has a structure of a K-vector space. The space
A∗0 is then understood as the space of K-linear mappings on A0. Given ξ ∈ aut0(A) we
define

Iξ : A → A
α→ Iξα

.
=

∑
a ξ

aIaα

Lξ : A → A
α→ Lξα

.
=

∑
a((dξ

a)Iaα+ ξ
aLaα)

and we extend them to G⊗A as Iξ(X⊗α) = X⊗Iξα, Lξ(X⊗α) = X⊗Lξα. In particular,

they act on the space of algebraic connections C ⊂ G⊗A1 giving

Lξ(ω) = dξ + [ω, ξ] (153)

Iξ(ω) = ξ . (154)

It is immediate to check that

IXLξω = 0 (155)

LXLξω = [Lξω,X] (156)

therefore Lξω is not an algebraic connection. We obtain an algebraic connection through

the combination ω+Lξω. Here Lξω is interpreted as the infinitesimal gauge transformation

of ω. Given an algebraic connection ω we also define

Dω : G⊗A → G⊗A
Dω = d+ [ω, ...] (157)

and we have Lξω = Dωξ. It is straightforward to derive the following properties:

DωLξω = [ρ, ξ] (158)

IXDωLξω = 0, LXDωLξω = [DωLξω,X] . (159)
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5.2 An example of bigraded algebra: (K, ∗)
Let us denote K(0,0) ≡ {1 : C → A0, 1(ω) = 1 ∈ A0, ∀ω ∈ C}

K(m,n) =



F(C × (aut0(A))n,Am) � F(C,∧n(aut0∗(A))⊗Am) if n ≥ 0

F(C × (aut0∗(A))n,Am) � F(C,∧n(aut0(A))⊗Am) if n < 0
(160)

andK .
= ⊕(m,n)∈Z+×ZK(m,n). Here, F(C×(aut0(A))n,Am) denotes the space of n-linear an-

tisymmetric maps in aut0(A) with values in Am, and analogously F(C× (aut0∗(A))n,Am)

denotes the space of n-linear antisymmetric maps in aut0∗(A) with values in Am.

We write τnm ≡ ∑
{τ̂ ,ω} τ̂n⊗wm with τ̂n : C → ∧n(aut0∗(A)) if n > 0 or τ̂n : C →∧n(aut0(A)) if n < 0 and wm : C → Am. The last sum is done over decomposable

elements {τ̂n, wm}. Let us introduce a product among elements of F(C,∧n(aut0∗(A))) ∪
F(C,∧n′

(aut0(A))),

Definition 2 Let n, n′ ∈ N . Given τ̂n, τ̂n′
, τ̂−n, τ̂−n′ ∈ F(C,∧n(aut0∗(A)))∪F(C,∧n(aut0(A)))

we define

τ̂n : τ̂n
′
(ω; ξ1, ..., ξn+n′)

.
=

1

(n+ n′)!

∑
σ∈Pn+n′

εσ τ̂
n(ω; ξσ1, ..., ξσn)τ̂

n′
(ω; ξσn+1, ..., ξσn+n′ ) (161)

τ̂−n : τ̂−n′
(ω; ξ∗1, ..., ξ

∗
n+n′)

.
=

1

(n + n′)!

∑
σ∈Pn+n′

εσ τ̂
−n(ω; ξ∗σ1

, ..., ξ∗σn
)τ̂−n′

(ω; ξ∗σn+1
, ..., ξ∗σn+n′ ) (162)

τ̂−n′
: τ̂n(ω; ξ∗1, ..., ξ

∗
n′−n)

.
= τ̂−n′

(ω; ξ∗1, ..., ξ
∗
n′−n, τ̂

n(ω))

τ̂n : τ̂−n′ .
= (−1)nn′

τ̂−n′
: τ̂n


 for n′ > n (163)

τ̂n : τ̂−n′
(ω; ξ1, ..., ξn−n′)

.
= τ̂n(ω; ξ1, ..., ξn−n′, τ̂−n′

(ω))

τ̂−n′
: τ̂n

.
= (−1)nn′

τ̂n : τ̂−n′


 for n > n′ . (164)

Notice that fixing (n’-n) elements ξ∗1, ...ξ
∗
n′−n on the right-hand side of (163) we have τ̂

−n′

as a n-linear antisymmetric map on (aut∗0(A)). For simplicity let us consider τ̂n(ω) as
a decomposable element θ∗1 ∧ ... ∧ θ∗n. Using the isomorphism Flinear(

∧n(aut∗0(A)), K) �
F(aut∗0(A)×...×aut∗0(A), K) (the rhs denoting the space of n-linear antisymmetric maps
in aut0∗(A)) we interpret τ̂−n′

(ω; ξ∗1, ..., ξ
∗
n′−n, τ̂

n(ω)) = τ̂−n′
(ω; ξ∗1, ..., ξ

∗
n′−n, θ

∗
1, ..., θ

∗
n) that

is the exact meaning to the rhs of (163).

Definition 3 We define a product in K as

∗ : K(m,n) ×K(m′,n′) → K(m+m′,n+n′)

(τnm, τ
n′
m′) → τnm ∗ τn

′
m′
.
= τ̂n : τ̂n

′⊗(−1)mn′
wm ∧ wm′ . (165)
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Theorem 2 (K, ∗) is a bigraded commutative algebra.
Proof: The product ∗ satisfies K(m,n)∗K(m′,n′) ∈ K(m+m′,n+n′) which makesK .

= ⊕(m,n)∈Z+×ZK(m,n)

a graded algebra. The product : satisfies τ̂n : τ̂n
′
= (−1)nn′

τ̂n
′
: τ̂n, and we have

τnm ∗ τn′
m′ = (−1)(n+m)(n′+m′)τn

′
m′ ∗ τnm, i.e. ∗ is commutative.

5.2.1 Extending (K, ∗) to a bigraded G-operation

Let (A, ·, d, I, L) be a Z+-graded G-operation. Define on K the maps d, ĨX , L̃X , ∀X ∈ G
as

d : K(m,n) → K(m+1,n)

(dαn
m)(ω; ζ1, · · · , ζn) .= d(αn

m(ω; ζ1, · · · , ζn)) (166)

ĨX : K(m,n) → K(m−1,n)

(ĨXα
n
m)(ω; ζ1, · · · , ζn) .= IX(αn

m(ω; ζ1, · · · , ζn)) (167)

L̃X : K(m,n) → K(m,n)

(L̃Xα
n
m)(ω; ζ1, · · · , ζn)) .= LX(α

n
m(ω; ζ1, · · · , ζn)) (168)

∀αn
m ∈ K(m,n) and with ζi, i = 1, · · · , n denoting elements of either aut0(A) or aut0∗(A).

Ĩ and L̃ satisfy

Ĩ[X,Y ] = L̃X ĨY − ĨY L̃X (169)

L̃[X,Y ] = L̃XL̃Y − L̃Y L̃X , ∀X, Y ∈ G (170)

and this makes (K, ∗, d, Ĩ, L̃) a bigraded G-operation.

5.3 A particular example of a BRST G-operation: H
Let us define the following elements of G⊗K

• ϕ̃1
0
.
= c̃ ≡ ∑

a

ea⊗c̃a ∈ G⊗F(C × aut0(A),A0)

c̃a(ω; ξ)
.
= ξa +

N∑
i=1

θ∗i(ξ)(Iθi
ω)a = ξa +

N∑
i=1

θ∗i(ξ)θai (171)

• ϕ̃0
1
.
= Ã ≡ ∑

a

ea⊗Ãa ∈ G⊗F(C,A1)

Ãa(ω)
.
= ωa +

N∑
i=1

Ai(Lθi
ω)a, Ai ∈ K (172)
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• ϕ̃1−k
k ≡ ∑

a

ea⊗ϕ̃a,1−k
k ∈ G⊗F(C × (aut0∗(A))k−1;Ak) k ≥ 2

ϕ̃a,1−k
k (ω, ξ∗1, .., ξ

∗
k−1) =

∑
{i1,...,ik−1}⊂{1,...,N}

θi1 ∧ ... ∧ θik−1
(ξ∗1 ...ξ

∗
k−1)⊗(Dω(Lθi1

ω...Lθik−1
ω))a

(173)

• η̃2
0
.
= φ̃ ≡ ∑

a

ea⊗φ̃a ∈ G⊗F(C × (aut0(A))2,A0)

φ̃a(ω, ξ1, ξ2) =
∑

{i1,i2}⊂{1,...,N}
θ∗i1 ∧ θ∗i2(ξ1, ξ2)⊗[θi1 , θi2 ]a (174)

• η̃1
1
.
= ψ̃ ≡ ∑

a

ea⊗ψ̃a ∈ G⊗F(C × (aut0(A))1,A1)

ψ̃a(ω; ξ) =
N∑
i=1

θ∗i(ξ)⊗(Lθi
ω)a (175)

• η̃0
2
.
= B̃ ≡ ∑

a

ea⊗B̃a ∈ G⊗F(C,A2)

B̃a(ω) = F̃ a(ω) +
N∑

i,j=1

Bij(Lθi
ωLθj

ω)a with F̃ = d+
1

2
[Ã, Ã], Bij ∈ K (176)

• η̃2−k
k ≡ ∑

a

ea⊗η̃a,2−k
k ∈ G⊗F(C × (aut0∗(A))k−2,Ak), k ≥ 3

η̃a,2−k
k (ω; ξ∗1, ..., ξ

∗
k−2) =

∑
{i1,...,ik−2}⊂{1,...,N}

θi1 ∧ ... ∧ θik−2
(ξ∗1 , ..., ξ

∗
k−2)⊗(Lθi1

ω...Lθik−2
ωρ)a

(177)

∀ξk ∈ aut0(A), ∀ξ∗k ∈ aut0∗(A) and for θi ∈ aut0(A) and θ∗i ∈ aut0∗(A), i = 1, · · · , N .
The integer N may denote any number of elements of aut0(A) and its dual. In this sense,
to any choice of N pairs (θi, θ

∗i) we have a specific form for ϕ̃1−i
i , η̃2−i

i given by (171-177).

In addition, given a certain field ϕ̃1−i
i or η̃2−i

i we have associated a finite sequence of fields

c̃ → Ã → · · · ϕ̃1−k
k → · · · ϕ̃1−N

N

↓↑
φ̃ → ψ̃ → · · · η̃2−k

k → · · · η̃2−N
N

(178)

each of them defined by (171-177) in terms of the same N pairs (θi, θ
∗i) that appear in

ϕ̃1−i
i or η̃2−i

i .

From (153,156) we notice that they also satisfy

ĨXϕ̃
1−i
i = 0, i �= 1 (179)

ĨXϕ̃
0
1 = X⊗1 (180)

L̃Xϕ̃
1−i
i = [ϕ̃1−i

i , X], 0 ≤ i ≤ D (181)

ĨX η̃
2−i
i = 0, 0 ≤ i ≤ D (182)

L̃X η̃
2−i
i = [η̃2−i

i , X], 0 ≤ i ≤ D . (183)
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Once again, let (A, ·, d, I, L) be a G-operation and C ⊂ G⊗A1 be the space of algebraic

connections on A. We introduce a particular BRST G-operation as follows

Definition 4 (H, ∗, d̃, Ĩ, L̃, ω̃, ρ̃) is a BRST G-operation with (1) (H, ∗, d̃, Ĩ, L̃) a G-operation
such that

(i)H is the subalgebra of K generated by {ϕ̃1−i
i , dϕ̃1−i

i , η̃2−i
i , dη̃2−i

i }i=1,···N . The graded

structure ofH is obtained from the graded structure ofK and we writeH = ⊕(m,n)∈Z+×ZH(m,n)

with H(m,n) = K(m,n) ∩H.
(ii) The product in H is defined by the same product in K as given in (165).

(iii)The differential in H is a map d̃ : H(m,n) →Hm+n+1 .= ⊕r∈Z+H(r,m+n+1−r),

d̃ ≡ ∑D
i=0∆

1−i
i

.
= b + d +

∑D
i=2∆

1−i
i with d̃2 = 0 and d a superderivation of degree (1,0)

defined as (166). The BRST operator is a superderivation of bidegree (0,1), b : H(m,n) →
H(m,n+1) defined by (44-47), and ∆1−i

i : H(m,n) → H(m+i,n−i+1) is a superderivation of

degree (i,1-i) defined as in (31) with δ given as in (48-55) 4.

(iv) The interior product Ĩ is given by (167) and the Lie derivative L̃ is given by (168).

(2) The algebraic connection and curvature are defined as ω̃ =
∑N

i=0 ϕ̃
1−i
i and 3̃ =∑N

i=0 η̃
2−i
i . From (179-183) we obtain that ĨXω̃ = X⊗1, L̃X ω̃ = [ω̃, X], ĨX 3̃ = 0, L̃X 3̃ =

[3̃, X].

The zero curvature limit is a particular case of the previous construction when H is

generated by {ϕ̃1−i
i , dϕ̃1−i

i }i=1,···,N and the algebraic connection satisfies d̃ω̃ + 1
2
[ω̃, ω̃] = 0.

6 The gauge group and the gauge algebra

In this section we review the concepts of gauge group and gauge algebra. Our main

purpose is to set up our notations and give an intuitive development of these concepts.

Let π : P → M be a principal fibre bundle with structure group G. Let us denote

G the Lie algebra of G and R̃ = P × G → P, R̃g : P → P the right action of G on P .

For X ∈ G we have associated a X̃ ∈ F (1,0)
fund(P ), with F (1,0)

fund(P ) the space of fundamental

vector fields on P . Given f ∈ F(P,R), X̃ ∈ F (1,0)
fund(P ) we define (f · X̃)(p) = f(p)X̃(p).

This turns F (1,0)
fund(P ) into a F(P,R)-module that we denote as ℵfund(P ). We have the

isomorphisms F(P,G) � F(P,R)⊗G � ℵfund(P ) where the second isomorphism is defined

as F(P,R)⊗G ( f⊗X ↔ f · X̃ ∈ ℵfund(P ).

4Here d replaces d in the expressions for b,∆, δ given in (44-55).
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The gauge group of P is denoted by G and can be identified in three equivalent ways:

G = Autv(P ) � Feq(P,G) � Γ(AdP ) [23, 26]. Here, f ∈ Autv(P ) ⊂ Diff(P ) is

such that π ◦ f = π, R̃g ◦ f = f ◦ R̃g, ∀g ∈ G. The group structure of Autv(P )

is defined by the composition of maps. Next, f̃ ∈ Feq(P,G) is a map f̃ : P → G

such that f̃(pg) = Ad(g−1)f̃(p). The group structure of Feq(P,G) is given by pointwise

multiplication, (f̃ · f̃ ′)(p) = f̃(p)f̃ ′(p). Finally, Γ(AdP ) denotes the space of C∞ sections

on the adjoint bundle AdP ≡ P ×Ad G with Ad the adjoint map on G [23, 26]. In this

work we will consider just the first two identifications.

The 1-1 map between Autv(P ) and Feq(P,G) is defined as follows. Given f ∈ Autv(P )
we can define f̃ ∈ Feq(P,G) [8, 23, 26] such that f(p) = pf̃(p), ∀p ∈ P . Conversely, given
f̃ ∈ Feq(P,G) we define f ∈ Autv(P ), f = R̃ ◦ (id, f̃) with id the identity map on P .
Those two maps allow us to identify Autv(P ) � Feq(P,G).

The concept of tangent space on a space of maps [27] can be used to define the tangent

space of Autv(P ) at f . This will give a definition for the gauge algebra in the same way

as one defines the Lie algebra of a Lie group as the tangent space to the identity. We

define Xf ∈ Tf(Autv(P )) as a map Xf : P → Tf(P ) such that Xf(p) ∈ Tf(p)(P ) with

Xf ≡ d

dt
φt|t=0 (184)

and

• φt ∈ Autv(P ) (i.e, π ◦ φt = π, R̃g ◦ φt = φt ◦ R̃g, φ0 ≡ f)
• φp : R→ P is a differentiable curve in P such that φp(t) = φt(p)

Then we have

π∗Xf (p) =
d

dt
π ◦ φt(p)|t=0 =

d

dt
π(p)|t=0 = 0

i.e. Xf(p) ∈ Vf(p) ≡ Tf(p)(π
−1(x)), (π(p) = π(f(p)) = x). Also

R̃g∗Xf (p) =
d

dt
R̃g ◦ φt(p)|t=0 =

d

dt
φt(p.g)|t=0 = Xf(p.g)

i.e. R̃g∗Xf = Xf .

Now, since f is a 1-1 map we note that p �= p′ ⇒ Xf(p) ∈ Tf(p) �= Tf(p′) ( Xf(p
′), therefore

it is possible to choose a vector field X̃ ∈ F (1,0)(P ) such that ∀p ∈ P,Xf(p) ≡ ε̃f(p)X̃(f(p))

(ε̃f(p) ∈ R), or Xf ≡ (ε̃ · X̃) ◦ f with ε̃ ∈ F(P,R), i.e. Xf ∈ ℵ(P ). The first condition
restricts X̃ ∈ F (1,0)

fund(P ) and consequently Xf = (ε̃ · X̃) ◦ f ∈ ℵfund(P ). The second
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condition gives ε̃(f(p))R̃g∗X̃f(p) = ε̃(f(pg))X̃f(pg). Let {ẽi, i = 1, ..., dimG} be a basis
for F (1,0)

fund(P ). Then X̃ = λiẽi and Xf ≡ (ε̃ · X̃) ◦ f = (ε̃i · ẽi) ◦ f with ε̃i = λiε̃. We have
then characterized

• Tf(Autv(P )) = {(ε̃i · ẽi) ◦ f | ε̃i ∈ F(P,R), ẽi ∈ F (1,0)
fund(P )} with

ε̃i(f(p))R̃g∗ẽi(f(p)) = ε̃i(f(pg))ẽi(f(pg)) . (185)

Let us now consider the tangent space on the identity map I ∈ Autv(P ). From the

previous development we obtain that XI ∈ TI(Autv(P )) has the form XI = ε̃iẽi and

should satisfy ε̃i(p)R̃g∗ẽi(p) = ε̃i(pg)ẽi(pg). We then have

ε̃i(p)R̃g∗ẽi(p) = ε̃i(p)R̃g∗R̃p∗ei(e) = ε̃i(p)R̃p∗Rg∗ei(e) = R̃p∗(ε̃i(p)Rg∗ei(e)) (186)

ε̃i(pg)ẽi(pg) = ε̃
i(pg)R̃pg∗ei(e) = ε̃i(pg)R̃p∗Lg∗ei(e) = R̃p∗(ε̃i(pg)Lg∗ei(e)) . (187)

Since the action of G on P is free we obtain, ε̃i(p)Rg∗ei(e) = ε̃i(pg)Lg∗ei(e) and then

ad(g−1)(ε̃i(p)ei(e)) = ε̃
i(pg)ei(e). We then define Feq(P,G) as the set of elements of this

type, i.e. Feq(P,G) = {ε̃ = ε̃i⊗ei | ε̃(pg) = ad(g−1)ε̃(p), ε̃i ∈ F(P,R), ei ∈ G}. This
result defines an isomorphism TI(Autv(P )) � Feq(P,G) that provides another description
for the gauge algebra G.

Here, for the case of TI(Autv(P )) let us find an explicit form for the diffeomorphisms

φt (184). Consider XI = ε̃iẽi ≡ d
dt
φt|t=0. Let us take local charts (Uα, ψα) of G and

(Vβ, χβ) of P in terms of which we can write R̃r
p(x) ≡ χr ◦ R̃p ◦ ψ−1(x). We denote

ψ(g) = x ≡ (x1, · · · , xn), ψi(g) = xi and χ(p) = y ≡ (y1, · · · , ym), χr(p) = yr. We can
write ẽi(p) ≡ R̃p∗ei(e) =

∂R̃r
p(x)

∂xi |ψ(e)
∂

∂yr |χ(p) and ε̃
i(p) = d

dt
ψi ◦ exp(tε̃(p))|t=0 then

XI(p) = ε̃
i(p)ẽi(p) =

d

dt
ψi ◦ exp(tε̃(p))|t=0

∂R̃r
p(x)

∂xi
|ψ(e)

∂

∂yr
|χ(p)

=
d

dt
R̃r

p(exp(tε̃(p)))|t=0
∂

∂yr
|χ(p) =

d

dt
R̃p(exp(tε̃(p)))|t=0 (188)

that suggest us to define φt = R̃exp(tε̃) with φt(p)
.
= R̃(p, (exp(tε̃(p)))) = R̃p(exp(tε̃(p))).

(188) agrees with the same expression given in Schmid [26] for the elements Zε̃ of the

gauge algebra.

7 An explicit realization for H
Let P (M, G) be a principal fibre bundle with structure group G. We define A .

= Ω(P ) =

⊕r∈Z+Ωr(P ) ≡ ⊕r∈Z+Ar. Considering the interior product and Lie derivative on Ω(P )
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we define ∀X (with G ( X ↔ X̃ ∈ F (1,0)
fund(P ))

IX
.
= IX̃ , LX

.
= LX̃

that satisfies conditions I[X,Y ] = LXIY − IYLX , L[X,Y ] = LXLY − LY LX , ∀X, Y ∈ G.
Therefore, taking the multiplication on Ω(P ) as the exterior product and the differential

as the exterior derivative it is straightforward to see that (Ω(P ),∧, d, I, L) becomes a
G-operation.

A connection on P is an element ω ∈ G⊗Ω1(P ) that satisfies R̃∗
gω = ad(g−1) ·

ω, ω(X̃) = X with ad(g) = Lg∗Rg−1∗. These conditions imply

LXω = [ω,X], IXω = X⊗1 .

With the choice Ar .= Ωr(P ) we have that aut0(A) is the gauge algebra, i.e. aut0(A) ≡
Feq(P,G). Indeed, let ξ ∈ Feq(P,G). Since F(P,G) � G⊗Ω0(P ) we can write ξ =∑

a ea⊗ξa. Then ∀X ∈ G, LXξ = [ξ,X] (see [5]). We have analogue expressions for

Lξ : Ω(P )→ Ω(P ) (153) and Dω : G⊗Ω(P )→ G⊗Ω(P ) (157).
The components of the algebraic conection and the curvature will depend on the as-

signement of at least N=D linearly independent elements of aut0(P ) and its dual aut∗0(P ).

Their definition follow the same procedure given in (171-177) and they are functions

(0 ≤ i ≤ q ≤ D, with q ∈ Z and D the spacetime dimension):

c̃a
.
= ϕ̃a,1

0 ∈ H(0,1) ⊂ F(C × G,Ω0(P ))

Ãa .= ϕ̃a,0
1 ∈ H(1,0) ⊂ F(C,Ω1(P ))

ϕ̃a,1−i
i ∈ H(i,1−i) ⊂ F(C × G∗i−1,Ωi(P ))

φ̃a
.
= η̃a,20 ∈ H(0,2) ⊂ F(C × G2,Ω0(P ))

ψ̃a .= η̃a,11 ∈ H(1,1) ⊂ F(C × G1,Ω1(P ))

B̃a .= η̃a,02 ∈ H(2,0) ⊂ F(C,Ω2(P ))

η̃a,2−i
i ∈ H(i,2−i) ⊂ F(C × G∗i−2,Ωi(P ))

and they generate a bigraded differential algebra H = ⊕(m,n)∈Z+×ZH(m,n). The algebraic

connection and its curvature are elements

ω̃ ∈ G⊗H1 .= G⊗
(
H(0,1)⊕H(1,0)⊕...⊕H(q,1−q)

)

3̃ ∈ G⊗H2 .= G⊗
(
H(0,2)⊕H(1,1)⊕H(2,0)⊕...⊕H(q,2−q)

)
.
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The δ operator is a (1,−1)-bigraded derivation on H and eδ defines homomorphisms

eδ : G⊗H(0,1) → G⊗H1 ,

c̃→ eδ c̃ = ω̃

eδ : G⊗H(0,2) → G⊗H2

φ̃→ eδφ̃ = 3̃

which transforms

bc̃ +
1

2
[c̃, c̃] = φ̃

eδ−→ d̃ω̃ +
1

2
[ω̃, ω̃] = 3̃

bφ̃+ [c̃, φ̃] = 0
eδ−→ d̃3̃+ [ω̃, 3̃] = 0 .

8 Concluding remarks

(1) Our model extends the original TYMT defined for positive ghost number fields to

more general models containing negative ghost number fields as well. The main ideas

behind one and another formulation is to accommodate the fields either as components of

a connection with total degree 1 or as components of a curvature which has total degree

2. Nonetheless, in the process of obtaining Witten’s action for TYMT as the gauge fixing

of the symmetries of the classical action
∫
TrF ∧ F [2, 24] we have to introduce other

fields with total degree other than 1 or 2 that cannot be components of W or F . We
can, however, define other ladders in order to accommodate those fields in the same way

as it was done in [6]. For example, for fields with total degrees -1 and 0 it is possible

to introduce two ladders B =
∑

i θ
−1−i
i , Ψ =

∑
i λ

−i
i and impose BRST transformations

from d̃B+ [W,B] = Ψ. Then, we can develop our model following the same procedure of
section 2. Other choices of ladders and transformations are possible and will depend on

what type of model one intends to build.

(2) A parallel development that is close to ours, and that presents an equivalent form of

equations (26,27), was proposed in [13] in the study of two and four dimensional topolog-

ical matter. In fact, the operators δ and b satisfying [δ, b] = d and [b, d] = 0 suggest that

they are related to the odd generators Gµ and Q of the topological algebra. Here, iden-

tifying δ = δµ⊗dxµ ↔ G = Gµ⊗dxµ and −b ↔ Q we obtain that [G,Q] = d, [Q, d] = 0.

In addition to these relations, we may have models with either [δ, d] = 0 or [δ, d] �= 0

which would correspond to [G, d] = 0 or [G, d] �= 0. This last possibility, however, doesn’t
appear in the topological algebras of [13]. Since [δ, d] = ∆−1

2 , it may be possible to have

topological algebras with extra generators ∆1−k
k = 1

k!
[δ,∆2−k

k−1], k = 2, · · ·D. The existence
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in [13] of a set of descendents fields given by φ(n)
µ1µ2...µn

(x) = 1
n!
[Gµ1 , [Gµ2 ...[Gµn , φ(x)]...]] is

equivalent to the imposition of (26,27). A quite similar approach was presented in [14] in

the study of balanced topological field theory. Despite these analogies, the details behind

one and another formulation are completely different. In a forthcoming paper [28] we

will show how to construct topological algebras for models defined by ladders (1,2) and

derivative d̃ = b + d. In particular, by taking the case of two dimensions we also show

how the δ operator induces a supersymmetry algebra.

(3) It may be possible to interpret our model in terms of equivariant cohomology. First,

we introduce the Weil algebra W (G) .= S(G∗)⊗∧
(G∗) where we assume ca as the odd

generators of degree 1, and φa as the even generators of degree 2. The differential in

W (G) is defined as dW ca = −fabccbcc+ φa, dWφ
a = −fabccbφc. In the construction of [29],

TYMT is understood in terms of the BRST model for equivariant cohomology, i.e. as a

differential algebra (B, dB) with B = (W (G)⊗Ω(M))basic the subalgebra of W (G)⊗Ω(M)
invariant by the action of Ia⊗1 + 1⊗Ia and La⊗1 + 1⊗La (we denote by Ia⊗1 and La⊗1
the action of the interior derivative and the Lie derivative on W (G), and 1⊗Ia and 1⊗La

the respective action on Ω(M)). The differential is dB = dW⊗1+1⊗dM + ca⊗La−φa⊗Ia.
Since the generators of B contain only the positive ghost number fields ca and φa there

is no possibility to introduce negative ghost number fields in B. A solution would be to

replace Ω(M) by an appropriate G-algebra B such thatW (G)⊗B would accommodate the
negative ghost number fields. In this approach, the BRST operator is considered as the

differential in the algebra B = W (G)⊗B [29, 31]. The problem then reduces to find an

appropriate differential for B so that it gives the correct transformations for all the fields.

The increasing complexity of the transformations of negative ghost number fields make

this program difficult to be implemented.

(4) We have seen that b TrφN = 0
eδ−→ d̃ T rFN = 0 ⇀↽ (b + d)TrFN + ∆TrFN = 0.

TrFN is the N-th Chern class with F given by (2). In the problem of cohomology of

b (modulo d) (b + d)Ω̂(2N) = 0, the solution Ω̂(2N) doesn’t coincide with TrFN (unless

∆ = 0). This is a major difference from the results of [1, 2, 3] where the Chern class TrFN

(being a solution of descent equations) also belonged to the cohomology of b modulo d. In

our model, when [δ, d] �= 0, Ω̂(2N) and TrFN will not agree. A direct consequence of this

was observed in the model of section 3, as it is explicitly seen in the differences between
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(110-114) and (7).
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