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Abstract

Density functional self-consistent spin-polarized calculations with the Discrete Variational
method were performed to obtain the electronic structure of the paramagnetic complexes
[Co(CN)5}3~, [Rh(CN)s]*>~ and [Ir(CN)s)*~ of square-pyramidal geometry. All electrons
were kept in the variational space. Electric field gradients and magnetic hyperfine pa-
rameters at the metal site were computed with the molecular charge and spin densities
obtained and compared with experimental values derived by Electron Paramagnetic Res-
onance. It was found that the Fermi interaction is critically dependent on the angle
between the axial and equatorial CN ligands.

Key-words: Hyperfine parameters; Transition metal complexes.
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1 Introduction

The diamagnetic complex ions [M(CN)g]"~, where M is a transition metal, may be inserted
in crystalline hosts such as NaCl, KCl, etc; after irradiation with X-rays or 2MeV electrons,
several reduced paramagnetic species may be obtained, some in unusual geometries and/or
oxidation states of the metal [1]. Such is the case of [M(CN);]*~(M=Co, Rh and Ir), where
M has formal charge +2, obtained in solid matrices by irradiation of the diamagnetic
complexes [M({CN)¢]*~ of octahedral symmetry, which lose one ligand in the process. The
pentacoordinated species are covalent paramagnetic complexes and their investigation by
Electron Paramagnetic Resonance (EPR) allows the examination of the metal-CN bond
with this technique.

The study of EPR spectra, with the aid of the effective spin Hamiltonian, may give
valuable insight on the geometry and chemical bond of a given molecule or ion. However,
the microscopic origin of the spin Hamiltonian parameters obtained from the fit to the
spectra may only be fully understood with the aid of accurate quantum chemical calcu-
lations. With this purpose, we have performed electronic structure calculations for the
complex ions [Co{CN)s]*, [Rh(CN)s}*~ and [Ir(CN)s]*~. The hyperfine parameters of
the spin Hamiltonian were obtained, with the use of second-order perturbation theory
[2, 3] and compared to experimental results when available. The calculated values were
analysed in terms of the electronic charge and spin distributions.

The method employed was the Discrete Variational (DV) [4], in the framework of
Density Functional Theory [5]. Methods based in this theory have been proved useful in
deriving properties of transition metal molecules and complex ions [6]; in spite of being
less demanding computationally, they often give results that are more accurate than
those obtained with Hartree-Fock-based methods. Moreover, electron correlation effects
are included, while retaining the simplicity of a single-particle description.

This report is organized as follows: in section II the theoretical method is briefly
described; in section III are given details of the electronic structure; in section IV the
results for the electric field gradients are presented; in section V the magnetic hyperfine
parameters are derived, and in section VI we summarize our conclusions.

2 Theoretical Method

The DV method has been described in detail elsewhere [4]; here we give a summary of its
main aspects and specific features pertaining to the present calculations. With the DV
method one solves the set of one-electron Kohn-Sham equations [7] of density functional
theory [5] in the local-density approximation (in hartree atomic units):

[~1/2V? + Ve(7) + Voo Mo (7) = £i(F). (1)
In eqs. (1), the Coulomb potential V. includes electron-nucleus and electron-electron
interactions, and V7, is the exchange-correlation potential of spin 5. We employed V7,
as derived by von Barth and Hedin [8]. In the present spin-polarized calculations, the
molecular orbitals ¢;, are allowed to be different for each spin ¢. The molecular potentials
are functions of the electron density p, of spin o.

po(7) = 3 i () @)
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where n;, is the occupation of molecular orbital ¢;,. These latter are expanded as linear
combinations of numerical atomic orbitals x,

bia () = Z#: xu(F)Ciq (3)

obtained by atomic self-consistent-field local density calculations. By minimization of the
error functionals associated with each orbital ¢, in a three-dimensional grid of points,
the secular equations are obtained

mio) = ESC] )

in which the matrix elements are summations over the 3-dimensional grid of points. These
equations, in which [H] is the hamiltonian matrix and [S] the overlap matrix, are solved
self-consistently until a desired criterion is met. Here the convergence was carried up to
a difference of < 10~2 in the charge and spin densities.

To facilitate the computation of the electron-electron repulsion integrals, the molecular
charge density was fitted to a multipolar expansion [9] with variational coefficients d;:

p(¥) = 3 dipi(F) (5)

where

pi(F) = 3. 3 CinRn(r. )Y (7)) (6)

In Eq. (6), j are atoms of a set I equivalent by symmetry, Ry are radial functions
centered at atoms v, and X is a basis function associated to a particular value of £. The
prime in the first sunmation indicates the restriction to atoms in the set 1. In the present
calculations, partial waves up to £ = 2 were included for all atoms, giving a maximum
least-squares error in the fit of p of 0.03.

The basis set employed here includes the valence nd, (n+1)s and (n+1)p orbitals of
the transition element; all core orbitals of all atoms were kept in the variational space,
i.e., no “frozen core” approximation was employed. The basis functions were improved,
after convergence with a given set, obtaining a new basis by performing calculations for
atoms with the configuration obtained in the molecular complexes. The atomic configu-
rations were derived by a Mulliken-type population analysis {10, 11] in which the overlap
population is divided proportional to the coefficient of the atom in the molecular orbital.

The 3-dimensional grid employed was divided in two regions. Around the nucieus of
the transition metal is placed a sphere, where a precise polinomial integration is performed
over a regular grid [12]; outside this sphere, the points are generated by the psendo-random
Diophantine method [4]. The number of points employed in the present calculations were
4000 inside the sphere and 6500 for the rest of the molecular complex volume. This
scheme assures the necessary numerical precision, in particular at the core region of the
transition element where the wave functions oscilate severely.
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3 Electronic Structure

It has been determined experimentally that the pentacyano complexes studied here have
square-pyramidal geometries, with point group Cq, [1]. In Fig. 1 is depicted [Co{CN);]*~;
{Rh(CN);]>~ and [Ir(CN);]®~ are expected to have similar structures. The fact that the
metal lies above the equatorial plane is evidenced by EPR measurements of the super-
hyperfine interaction on the equatorial nitrogens [13]. Furthermore, X-rays diffraction of
single crystals of [NEty(i-Pr)z]s [Co(CN)s] [14] and [Cr(NHj;)e][Ni(CN)s).2H,0 [15] gives
for the (CN)sz-M-(CN),, angle © (see Fig. 1) the values 97.7° and 100.2°, respectively.
We have thus performed calculations for three angles, 95%, 97.7° and 1019, for all three
complexes. In all calculations the C-N interatomic distance considered was 1.15A4. The
Co-C distances were made equal to the experimental values [14]: Co-C,;=2.014 and Co-
C.,=1.89A. The interatomic distances Rh-C,,=Rh-C,,=1.984 and Ir-C,,=Ir-C,=2.004,
not experimentally available, were estimated by extrapolating values determined for hex-
acyano complexes [16].

In Fig. 2 are depicted the one-electron valence energy levels (eigenvalues ;5 of Eq. 1)
for the three complexes studied. Although these energies may not strictly be compared
to molecular orbital energies in the sense of Hartree-Fock, since in local density theory
Koopman'’s theorem does not hold [17], this may be done approximatly. The strongly
covalent nature of the M-CN bond assures a low-spin configuration, with the unpaired
electron occupying orbitals of a; symmetry. The 2A,; ground state found for all three com-
plexes is in accord with EPR measurements. The “crystal field” levels, i.e., antibonding
orbitals strongly localized on the metal, are 2b,, 1le, 17a; (occupied) and 7b; (virtual)
for [Co{CN);s]*~. These levels have a large contribution from Co(3d) and are derived from
the o levels e, (a; and by) and the 7 levels ty, (ba and e) of octahedral symmetry. The
fact that the antibonding a; orbital has a much lower energy than its by counterpart in
all three cases derives from the absence of the sixth ligand (see Fig. 1}, that weakens the
bond along the z axis involving the orbitals of a; symmetry. All the valence levels of lower
energy are mainly localized on N(2p), C(2s) and C(2p). The molecular orbitals derived
from N(2s), of deeper energies, are not shown in the figure.

The valence molecular orbital schemes for [Rh{CN)s}*~ and [Ir(CN)s]>~ have a similar
structure. Some differences are noticed, however. First, the admixture of the ligand
functions with the metal in the bonding orbitals is higher than in [Co(CN)s]?~, particularly
in the orbitals 5b;-9e of [Rh(CN);]3~, and 19a;-13e of [Ir(CN)s]*>~. The occupied “crystal
field” levels of [Rh(CN)sJ3~ i.e., levels with large contribution from Rh(4d), are 3b;, 13e
and 20a;, analogous to [Co(CN);]*~. However, unlike [Co(CN)s]*~, the 4d character in
the virtual orbitals is distributed among 8b; (~30% 4d) and 9b, (~20% 4d). This feature
is even more pronounced in [Ir(CN)s]*~: the occupied “crystal field” levels are 5b,, 17e
and 24a,, but the 5d participation in the lowest-energy level of b; symmetry (10b,) is
only ~4%, whereas 11b, has ~42% Ir(5d) character.

The order of the crystal field levels ba<e found in all three cases has been obtained in
a semiempirical calculation for [Co(CN)s]>~ [18], and is a consequence of the metal being
above the equatorial plane of the ligands.

Another noticeable feature in the molecular orbitals schemes of the three complexes is
the much smaller energy difference between the crystal field levels (2by, 11€) and 17a,, as
well as between 17a; and 7b; in [Co(CN);]*~, as compared to the corresponding energy
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differences in the Rh and Ir complexes. In other words, a larger “crystal field splitting”
occurs for the heavier metals. This is coherent with the optical spectra of the hexacyano
complexes [Rh(CN)g]3>~ and [Ir(CN)g]*~, that show d—d transitions occurring at higher
energies than [Co(CN)g]*~, being obscured by charge-transfer bands of high intensity
[19, 20]. The proximity of the 17a; orbital containing the unpaired electron in {Co(CN)5]3~
to the other occupied levels explains the larger spin-splittings observed as compared to
the Rh and Ir complexes.

In Table I are displayed the charges, Mulliken-type populations, magnetic moments
and distribution of the unpaired electron in the HOMO (17a;7 in [Co(CN)s)]*~, 20a;T in
[Rh(CN)s]*~ and 24a,1 in [Ir(CN)sJ37), for © = 97.7°. Magnetic moments are defined as
the difference between spin up and spin down populations. The calculations for the other
values of © (95% and 101°) show very small differences from the values for 97.7°; however,
in some cases these small differences have a large effect in the hyperfine interactions, as
shall be seen futher on.

From Table 1 it is verified that the charge on the transition metal is much smaller
than the formal value +2. The 5d population is somewhat smaller in [Ir(CN)s]*>~, and so
the Ir charge is larger. The negative charge on the CN ligands is polarized towards the
nitrogens.

The total magnetic moments are constituted mainly of metal nd. The axial C, however,
shows a significant contribution and the axial N a small antiferromagnetic coupling. The
magnetic moments on the equatorial C and N atoms are very small. Thus we conclude that
the spin of the molecular complexes is distributed mainly along the z axis. In comparing
the three complexes, one notices a significant reduction of the nd contribution to the total
magnetic moments in the order Co>Rh>Ir, followed by an increase in (n+1)p and in the
ligands participation. Therefore, the spin is more delocalized for the heavier transition
metal complexes.

The total magnetic moment may be divided in two contributions: that from the
unpaired electron in the HOMQ, and that which arises from the polarization of the closed
shells by the unpaired electron. Comparison of the total magnetic moments with the
distribution of the unpaired electron in the HOMO shows that the total contribution of the
metal arises almost solely from the unpaired electron in {Rh(CN)s}*~ and [Ir(CN)s)*"; in
contrast, for [Co(CN)s|®~ the total moment on Co is significantly higher than the HOMO
contribution, evidencing a larger spin-polarization of the doubly-filled orbitals. This is
coherent with the larger spin-splitting of the energy levels (Fig. 1) in [Co(CN);]*~, as
described earlier.

The nd character of the unpaired electron decreases in the order Co>Rh>1Ir; this is
followed by an increase in (n+1)p in the same order, such that the total metal contribution
is almost constant, and by an increase in the contribution of the ligands.
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4 Electric Field Gradients

The contribution of the electric quadrupole interaction to the spin Hamiltonian is [2]

Hg=1PI (7)
where I is the nuclear spin and P the quadrupolar tensor with components given by
e@
P w = mv;w (8)

where ) is the quadrupole moment of the nucleus and V,, a component of the electric
field gradient tensor. For the present complexes of axial symmetry, the tensor is diagonal,

with V,; = —2V;4(,) denominated the electric field gradient by convention. This is given
by, taking into account Eq. (2) [21],
Voo = = [ p(7)(35% = r*)/rid7 + T Z,(322 — r2)/r} 9)
q

The first term in Eq. (9) is the electronic contribution, calculated in the DV method as
a sum over the 3-dimensional grid, and the second is the point-charge contribution of the
surrounding C and N nuclei. _

In Table II are given the calculated values of V;, for @ = 97.7°. In the first column
are displayed the values for the “shallow core” of the transition metal (molecular orbitals
with large contributions of Co(3s,3p), Rh(4s,4p) or Ir(5s,5p)). The contributions of the
deeper core of the metals were also calculated, but were seen to be negligible due to
the sphericity of these orbitals. The “shallow core” contributions are much smaller than
the valence, and have opposite sign. They represent the distortion of the inner shells in
reaction to the valence, which is often treated in an “ad hoc” manner with the use of
atomic Sternheimer shielding factors [22]. In all three cases, the valence component is
the largest. Calculations were also performed for the angles © = 95° and 101°, but the
results differ insignificantly from © = 97.7%. It may be seen in Table II that the total V;,
is positive and increases strongly in the order Co<Rh<lIr.

Experimental values for comparison are only available for [Ir(CN);s]*~; these were
obtained from EPR measurements of the component P,, in Eq. (8), in solid NaCl, KCl and
Rb(l, and the sign was not determined [23]. The quadrupolar interaction may be observed
experimentally in this case due to the large quadrupole moments of the ground states of
1931t (or 'Ir), both with I=3/2. On the other hand, the isotope '®*Rh employed in EPR
experiments has [=1/2 and thus no quadrupole moment in the ground state, making the
determination of V;, by EPR unviable. Our predicted value could be tested with the use
of other techniques, possibly Time Differential Perturbed Angular Correlation (TDPAC)
with the isotope ®Rh. As for [Co(CN)s}>~, our predicted value for V,, is very small; in
fact, in spite of the significant value of ) of the ground state of **Co (+0.42b) [24], no
quadrupole interaction is observed in EPR. measurements [1, 25]. The experimental values
of V,, for [Ir(CN);s]*~ vary considerably with the host lattice; these do not contribute to
Viz due to their cubic symmetry. Since no such variation is observed theoretically when
changing the angle @, we may only speculate that it must be the consequence of local
lattice distortions and/or defect formation, which may be different in the different host
crystals.
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To investigate the mechanisms responsible for the sign and magnitude of the electric
field gradient, we plotted in Table III the contributions to the valence V,, of the molecular
orbitals pertaining to the irreducible representations of the Cy, group. The results of two
types of calculations are displayed: the calculations with all electrons in the variational
space, and calculations in which all core orbitals were kept “frozen” in the metal, so that
only nd, (n+1)s and (n+1)p were included in the SCF procedure. We observe significant
differences between the results of the two procedures. Due to a small admixture of the
“shallow core” p orbitals (Co{3p), Rh(4p) and Ir(5p)) in the valence MOs, the contribu-
tions of the irreducible representations a; and e (containing p, and p,y), respectively) are
quite different in the two procedures. The effect of the “shallow core” orbitals mixture in
the valence is amplified by their much larger values of < r~? >, as may be observed in
Table 1V.

The values for the b, and b, symmetries almost do not change in the “frozen core”
calculations, since they do not contain p orbitals; for a;, the negative values are enhanced
in the all-electron calculations, due to the negative contribution of the p, orlbitals of the
core. For the e symmetry, d,(,) contribute negatively and p,) positively [22]. When
the core is relaxed, the py(,) participation is enhanced, and the value becomes positive, or
less negative; the effect is more pronounced than for a;. The overall result of relaxing the
core is much larger, positive values for V,,. This is merely a reflexion of the “contraction”
of the orbitals around the metal, due to the Pauli exclusion principle: this will be larger
for the orbitals in the equatorial plane, with four ligands attached, than in the z axis,
where a ligand is missing. The mixture with core orbitals will describe this contraction
in the MO picture; a similar mechanism was observed in calculating V;, for [Au(CN).]*~
[26].

As for the increase in the total Vi, value in the order [Co(CN)s]?~
<[Rh(CN)s}>~<[Ir{(CN)s]3, it may be largely ascribed to increased values of < r=3 >
of the atomic orbitals of the metals along the series Co<Rh<lIr, as may be seen in Table
1V. In fact, by considering the b, and b, irreducible representations where only nd orbitals
are present and no ambiguity is possible we obtain V,,(b;)(Co)/V,.(b;)}(Rh)=< r~2 >(Co
3d)/< r=3 >(Rh 4d) and V,,(b;)(Rh)/V,.(b1)(Ir)x< r—2 >(Rh 4d)/< r~3 >(Ir 5d).

5 Magnetic Hyperfine Interactions
In the spin Hamiltonian the magnetic hyperfine interactions are described by [2, 3}:

Hy=1.AS8 (10)

In the case of the present complexes, S=1/2. With the use of perturbation theory, we

obtain the first-order components of the A tensor, which are the Fermi (or contact) term
Ar and dipolar terms A and AT. A is defined as

Ar = S gousgninlp(0) = py(0) (11)

where we made use of Eq. (2). ¢. and gy are the electronic and nuclear spectroscopic
factors, respectively, up the Bohr magneton and py the nuclear magneton. In the present
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C4 symmetry, we have

AV = AL =g.usgnpn / [1(7) = pu(M)(32" — r*) [r*dF (12)
AL = Ay = —4y/2

In Eq. (12), the integral is calculated with the DV method as a sum over the 3-dimensional
grid. For the 2A; ground state, the orbital contribution is zero in first order.

In the second order terms, only one—center terms centered on the metal were retained,
due to the presence in the operators of r3;. Furthermore, terms centered on C and N
may be neglected due to the small spin-orbit constant of these atoms. Thus we have

AP = AD = ()gupanin Y. (Bo — En)'[2 < g, [6(r)de, >< @, I6/r°l¢, > +
n
+i < g [E(r)lp, >< @, Byz/r’lp, > ~i < g l(rle, >< ¢, [322/r%|g >] (13)

where the prime on the second summation stands for restriction to the same spin in the
excited states as in the ground state and all operators are centered on the transition
metal. Only transitions from the occupied orbitals of e symmetry to the a; | (i |}
(-sign) and from a;T (¢ 1) to virtual levels of e symmetry (+sign) contribute, since the
second-order perturbation involves mixture of excited states of A; and E symmetries with
the ground state A;. However, A, states were neglected since the a; orbitals do not
have components on the metal. An analogous expression to Eq. (13) is employed for
A(f)(=Au(yy)). Spin-orbit constants were obtained by relativistic local-density atomic
calculations [27], since &, = 2A(p)/3 for p orbitals, where A(p) is the energy splitting of
the p12 and ps/ levels; analogously, £z = 2A(d)/5 and {; = 2A(f)/7. Energy differences
in Eq. (13) were obtained with transition state calculations [17] for the corresponding
electronic transitions.
We have then for the total magnetic hyperfine tensor:

Ay = Ap+AD+ AP
AL = Ar+ AE + Aff) (14)

We may also recombine the terms in Eq. (14) such as to have isotropic (Azso) and
anisotropic (Aan1so) components:

Aiso = (A“+2AJ_)/3
Aaniso = (A—AL)/3 (15)

The Fermi contribution is present only in Arso and the dipolar contribution only in
Aaniso.

In the calculation of Ar (Eq. (11)), the molecular orbitals were employed only for the
valence electrons. For the core electrons, atomic local-density calculations were performed,
for metal atoms in the same configuration as in the complex. This is due to the difficulty
in polarizing the core with the LCAQ basis functions employed. In non-relativistic theory,
only molecular orbitals pertaining to the totally symmetric a; representation, containing
ns functions, contribute to Ag.



~-8- , CBPF-NF-007/94

In Table V are displayed the calculated components and total values of the magnetic
hyperfine tensor at the Co site, for [Co(CN);]*>~. Experimental values obtained by EPR in
several host crystals {25, 28] are given for comparison. We may see from the Table that the
calculated values are critically dependent on the angle ©. This dependence derives mainly
from the Ar component, and from the positive contribution of the unpaired electron on
the last occupied orbital of a; symmetry. In fact, as the angle © is increased, the 4s
population in this orbital decreases and 3d,: increases, as may be seen in Fig. 3. This
behavior of the populations in the HOMO is common to all three complexes, and may
be understood as follows: as © increases, the Coulomb repulsion between the electronic
charge in the diffuse 4s orbital and the equatorial CN ligands increases. Consequently, 4s
charge is transferred into the more compact 3d,2 orbital.

This dependence of Ar with © derived from the calculations explaing the large vari-
ation observed in the measured values of Argo in different hosts (see Table V), and the
relative insensitivity of Asnrso to the environment. Different host crystals may induce
small differences in ©, and this will be reflected in Ap. As mentioned earlier, only Asso
contains Ag.

In Table VI are shown the different contributions to [p3(0) — p;(0)} in Eq. (11},
at the transition metal site, for [Co(CN);s}3~ and [Rh{CN)s}>~. The core and valence
contributions have different signs and almost cancel each other; the latter is almost entirely
constituted of the HOMO a;T component, with a small contribution from the polarization
of the valence closed shells.

It may be seen Table V that the theoretical values for [Co(CN);]>~ for compare well
with experiment, for © between 97.7° and 101°.

In Table VII are displayed results for [Rh(CN);s]*~. A similar dependence with ©
is observed, due to the large sensitivity of Ar. As for experimental values, the only
available data, obtained by EPR in NaCl host crystal, is A;< 5(10~%em™1) [29]; this is in
accord with the theoretical values, particularly for @ between 97.7° and 101°. The much
smaller magnitudes and reversed signs of all components of [Rh(CN);s]*>~ as compared to
[Co(CN)s]*~ are due to the gy factors: gn(**Co)=+1.326 {30} and gn{(***Rh)=—0.176
[30). Actually, the electronic components of Ay and A; are larger for [Rh(CN)s]3~.

As for [IL(CN)s|3~, it was verified that the present perturbative treatment for A is no
longer accurate, due to the large spin-orbit constants of Ir. A relativistic theory of the
hyperfine interactions would be indicated in this case, to obtain meaningful results.

6 Conclusions

Employing self-consistent spin-polarized density functional DV calculations for the para-
magnetic complex ions [Co{(CN)s]?~, [Rh(CN);s]*>~ and [Ir(CN);s]*~ of square-pyramidal
geometry, we have obtained the molecular orbitals levels schemes and charge and spin
distributions. The unpaired electron in the HOMO is considerably delocalized towards
the ligands, and the degree of delocalization increases in the order Co<Rh<Ir. The split-
ting of the “crystal field” levels is appreciably larger for the Rh and Ir complexes.

The analysis of the contributions to the calculated electric field gradients shows that
V.. is determined by contractions of the molecular wave functions around the metal. These
contractions are achieved by small admixtures of “shallow core” p orbitals in the valence
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molecular orbitals. This effect is amplified by the higher core values of < r~2 >, and
increases in the order Co<Rh<Ir. The calculated value of V;, for [Irf(CN)s]>~ compares
well with the experimental value derived from EPR, measurements. '

A good accord between theoretical and experimentally-obtained magnetic hyperfine
parameters Asso and Agnrso was obtained for {Co(CN)s]*~. For [Rk(CN)s]*~, the small
value computed for A, is consistent with the upper hrmt determined by EPR spectroscopy.
For both complexes, the large second-order term AW 1’ is of the same order of magnitude,
but opposite sign, to the first-order dipolar term A?. This explains the small total values
of A, found. On the other hand, the second-order term Al(lz) is almost negligible. We found
a critical dependence of the Fermi (Ar) contribution on the angle © between the axial
and equatorial CN ligands. This is a consequence of the (n+1)s—nd,s charge transfer
which occurs as O is increased.
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Figure Captions
Figure 1 - Square-pyramidal [Co(CN)s]3~; the complexes [Rh(CN)s]*~ and [Ir(CN)s)*~

have similar structures.

Figure 2 - Molecular orbitals energy levels of [Co(CN)s]a“, [Rh(CN)5]3 and [Ir(CN) .
Arrow denotes unpaired electron in HOMO.

Figure 3 - Populations of transition metal in HOMO for [Co(CN);]*~ (17a,1), [Rh(CN)s}*~
(20a;7) and [Ic(CN)s]*~ (24a11), for different values of ©
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Table Captions

Table I -Populations, charges and magnetic moments of [Co(CN)s}>~, [Rh(CN);]*~ and
[Ix(CN)s}?—, for © = 97.7°.

Table IT - Electric field gradients V,, at the site of the transition metal for [Co(CN)s}*~,
[Rh(CN)s}3~ and [Ir(CN)s]*>~, for © = 97.7°. _
a) From reference [23]; Q(*%3Ir)=+0.78b [24].

Table III - Analysis by irreducible representa.tlons of the Cy, point group of the valence
contribution to V,,. Values in ag°; © = 97.7°. :

Table IV - Values of < r~® > calculated with atomic radial functions for Co, Rh and Ir,

. =3(a)

in ag

a) Atomic calculations performed for the configurations obtained for the complexes,
at 97.7°.

Table V - Values of the components of the hyperfine tensor A at the Co site for [Co(CN);]*~
(in 10~%em™1).
a} gn(%*Co)=+1.326 [30].
b) From reference [25] (T=77K; dispersion is +2 x 10~*em™").
¢) From reference [28]. T=77K.

Table VI - Contributions to [p1(0)—p;(0)] at the transition metal nucleus for [Co(CN);}*~
and [Rh(CN);s]3-, in ap?; © = 97.7°.

Table VII - Values of the components of the magnetic hyperfine tensor A at the Rh site
for [Rh(CN)s]*~ (in 10~*em™1).
a) gn(1%®*Rh)=-0.176 [30].
b) From reference [29].
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Table 11
Contributions to V..(ag>) Total V,, | Experimental(®
Shallow core | Valence | Nuclear | (10'"V/em?) | [V,,}(10'"V /em?)
[Co(CN)s*~ |  -0.06 +0.43 | -0.35 +0.2
[RR(CN)*- |  -027 | +1.39 | -0.26 +8.4
Tr(CN)sJ2- -0.60 +2.93 | -0.26 +20.1 NaCl:|25.1|+0.3
| | KCl:(21.3|+0.3
RbCL:[13.0|2:0.3
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Table 111

8-1(p,,d,2) bl(dz’—y’) b2(dsy) e(Ps.mdss,y:) Total Valence
[Co(CN)J- | -504 4254 4573 280  +0.43

(all electrons)

[Rh(CN)sJ*~ | -8.06 +3.03 +6.59 -0.17 +1.39
(all electrons)

(CN)- | -1415  +476  +10.39  +1.93  +2.93
(all eletrons)
[Co(CN)sJ*~ | -461 4257 +570  -3.68  -0.02

(frozen core)

[Rh(CN)s>~ | -6.23 +3.12  +6.57 -3.39  +0.07

(frozen core)

[B(CN)sJ>- | -10.10 +4.88 41035 508  +0.10

(frozen core)
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Table IV

<r 35, <r 350y <r >y

65.8 3.0 5.7
79.2 5.1 6.8
130.2 10.1 11.0

S-S
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Table VI

[Co(CN)s]*~  [RB(CN)sf*~

Core -0.147
2, T(HOMO) +0.110
Total Valence +0.134

Total -0.013

-0.142

+0.196
+0.224
+0.082

' CBPF-NF-007/94
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Table VII
© Ar AP AY Al(f) AP Ay AL Arso Aaniso
Calculated®) | 95° -83 -19.3 +9.7 +23 -82 -25.3 6.8 -13.0 -6.2
97.7° -3.8 -19.4 49.7 +23 -83 -209 24 -8.6 -6.2
101° +40.5 -19.5 +9.8 +1.8 -83 -17.2 +2.0 4.4 -6.4
Experimental{®) — —

NaCli<5 —
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