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ABSTRACT

We study two types of S—unimodal one-dimensional asymmetric
maps. The asymmetries concern the amplitude and the exponent
of ~the map 1 - alxlz. In both cases the well known metric uni-
versality of the symmetric map is lost: the hehavior of the
scaling factors § and o« and of the multifractal function £, (a) is
oscillatory. WNevertheless, the road to chaos remains that of
doubling-period bifurcations, and:allli£5'topological properties

are preserved.

Key-words: Chaos; Dynamical systems; Asymmetric maps; Multi-

fractals.
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1 INTRODUCTION

The period-doubling road to chaos is nowadays very well
established from both theoretical and experimental points of
view. This rocad presents universal relations which have been
studied in many physical systems. The period-doubling phenome-
non was first observed in the logistic map, which, throwth & vari

able transformation, can be rewritten as

X, oy = Elx.) = I-—-axt2 (1)
However, the period doubling road appears in any map which
satisfies the following conditions L], (i) continuously dif-
ferentiable; (ii) to map the interval [El,l]_int§ itself, with
a single maximum at x =0, strictly decreasing on [0,l] and striet
ly increasing on [=1,0]; (iii) negative Bchwarzian. Such maps
are denominated S-unimodal maps.
As the parameter a in Eg. (1} is increased (starting from
a =0) the attractors {(or long time solutions) of the map show
a sequence of periodic orbits with period Zk(k = 0,1,2,...}sthe
k-th period appears at a, through a-éitchfork bifurcation of
the (k-1)-th attractor, and the sequence {ak} accumulates (k + «)
at a* v 1.401155, where the system enters into chaos. For eve-

ry k-th periodic orbit there is one value a_of the control'pa—

k
rameter for which the orbit includes the c#itical pecint (peak)
of the map. At this value of a the cycle is called superstable.

The scaling factor. defined through
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a  .-a
. k+l "k
5, =Lk (2)

k+2 Tkl

converges to 4.6692... in the k + » limit. The same ratio of

convergence is observed for the set {ak}. A second scaling fac-

tor can be associated with the set {'ék}, namely Qs defined
through
k~1
£2 (o)
ay
% T T (3)
£2° (o)
Brel

which oconverges, in the k + « limit, to 2.5029...

These universal metric constant were studied by Feigenbaum,
Coullet and Trésser[zl and others. After these papers, a great amount
of theoretical and experimental works have been dedicated to
this problem. In the litterature the period-doubling road to
chaos has been essentially associated with maps which are sym-
metrid about the maximum. In fact, all proofs concerning the
metric universality of this road are based on the symmetric lo-
gistic-like map.

A question aroused in recent'papers, namely what could hap-
pen to the metric universality of the logistic-like maps if an
asymmetry was introduced at the maximum of the map. Three types
of asymmetry were studied: (i) an asymmetry in the anplitudeE’SJ,
(i1) in the exponent %3], and (111) a discontinuityL>J. 1n
the two first cases the road to chaos still is through period-
doubling bifurcations, but the metric universality of the legistic -like
map is destwoyed. When the asymetry is a disconbiniity the road to chaos

is a completely new one (gdp road to chaos[:sj). Concerning
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the experimental standpoint, measurements in forced nonlinear
osclllators described by asymmetric maps were done by Octavio et
al |:6] . They confirmed theoretical predictions EA ' 5] .

It has been shown[:4] that if a map is globally asymmetric,
but witkh a maximum which is.locally symmetric, the dyhamical be-
havior of the map in the first bifurcations will be dominated
by the asymmetries, until the successive iterates of the map lo-
calize the symmetric maximum, where the Feigenbaum scenario  ap-
pears. In physical experiments only the first bifurcations are
actually observed, and these might'be dominated by the asymmetries
These remarks reinforce the importance of studying asymmetric
maps.

It the present paper we will study maps with an asymmetry in
the amplitude and in the exponént. In section 2 we study the
asymmetry in the amplitudef In this case the scaling factors oy
and Gk and the multifractal function fk(a) show an osc¢illatory
behavior. Moreover, at the accumulation point of the bifurca
tions there is a function h(x) satisfying a functional -equation
which is used to introduce a renormalization group. Section 3
is dedicated to show the oscillatory (divergent) behavior of

§ oy and fk(a) in maps with an asymmetry in the exponent. The

kl‘
conclusions are presented in the Section 4.
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2 AMPLITUDE ASYMMETRY

2.1 Numerical results

The asymmetric map we shall consider is given by

1- allxtl r X, 20
X = £x) = (4)

1 - azlx 1%, x, £ 0
with z » 1. For a, = a, we recover the logistic-like symmetric
map. In Fig. l{(a) we show f(x) vs. x for a typical case, -and

in Fig. 1(b) we show the finite attractor of the map as a func-
tion of'a'.1 for a, =a, + 0.2 and z =2. We observe that the road
‘to chaos is via periocd-doubling bifurcations, since this map is
S-unimodal. In Fig. 2 we show the critical lines 35(31) and
ag(al), which represent the accumulation point of the ~bifurca-
tions and the disappearance of the finite attractor, respectively.

If we denote by Ek the value of a, where the zk-cycle is super-
stable, 4or fixed a,, we verify that the scaling factor §, ~ de-

fined by Eq. (2) presents an oscillatory behavior £for increasing

k. In the limit k + « there is a convergence of.6k onto two.
constants-c1 and Cor respectively given by
a - a
2im 2k 2L - ) (5.a)
R I

and
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3, ., -4
pim o2kxl ~ T2k

ko 3

= C'2' (S-b)

2k+2 ~ 22k+l

In Pig. 3.a we show ¢y and c, as functions of a; for z =2. Ob-

serve that at 35 2.1.401155, c, =c2 = §, thus recovering the

universal scaling constant for the symmetric map. We find that

¢, z 3.3&2 and ¢, T/ag. Therefore, the product c.c is ap~

2 172

proximately constant and equal to 6% = 21.8014...
A similar oscillatory behavior is observed for the  scaling
factor o defined by Eq. (3). There are two limit values for

o, as k > =, regpectively given by

22kf2
£2 (0)
k-1 '
d, = £in —ft. (6.a)
R 1
f; £0)
2k .

and
2k-1 -
£2 (0)

a
d, = lin —3£ (6.b)
SR 227 ()

A2k ¥l

In Fig. 3(b) we show the asymptotic values dl and d2 as
functions of a’z". Observe that at ag e l-.401-155,_'d1 =.:d2 =Za, thus
recovering the universal scaling comstant of the symmetric map
for z =2. We'find-dl v 1.8a% and 4, & 3.5/a3. Therefore,
the product d,d, is approximately constant and equal to . o®=6.2645...
In Table I we show the values of a, s Gk, dkf 6k6k+1 apd a8
for a, = 1.316461.. For z #2 (z >1) the gualitative behavior of

these quantities is similar to the behavior for z=2.
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2.2 The limiting function

The scaling factors § and o are only two particular values
of a set of uniﬁersal quantities associated with the symmetric
map. One of the most relevant elements of this set is the Fei-
genbaum-Cvitanovic equation.

Feigenbaumlzzj showed that a S-unimodal function fa(x) with
a symmetric maximum of orderlz (z 51), when' .composed with itself
at the éuperstable.z-cycle, will'(roughly) reproduce itself re-
duced in scale by -a. This selfsimilar structure is also ob-
served for the successive 2k(k >1) superstable cycles. At the
accwsulation point.of the bifurcations (a=a*), we can verify the ‘fol-

lowing relation (called Feigenbaum-Cvitanovic equation):

g(x) = -ag?(-x/a) (7)
where
, Kk, 2K k
gix) =-Lim (-o) £~, (x/{-a)") (8)
koo
Equation (7) says nothing about absolute scales since it is

invariant under the transformation g(x) -+ uwg(x/u). Using thig
freedom one may set g{0) = 1, which leads to g(l) =-1/a. The
function g(x) is universal, i.e., it is the same for any S-uni
medal map with a maximum of order z.

When there is an asymmetry in the amplitude of the map (Eq.
{4)) relation t?) is not verified. However, in this case we ob-

serve that, at the accumulation point a;(al), the function £*(x)
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magnified by dfd2-= (k + »} is similar to f{x), for ®

% %%+l
small. This process of convergence will continue in the func-
tions £!%(x), £°“(x), etc., when magnified by the = appropriate
factor.

Now, let us define the function
22k

hk(x) = Pkfag (x/Pk) (k = 1,2,3..:) {9)

where P, = 0,0,...0,, , thd {ak} being given by Eq. (3). We can

rewrite Eg. (9) in the following form:

1 22k
5 hk(PkX) = fE* {x) {10)
k 2
Consequently we have
| | 2 (k+1)
1 2 1l .,
—— h (P x) = £ (x) = h! (P x) (1)
Pk+1 k+1 T k+l 35 . Pk' kK
hence, by replacing x by x/Pk+1’
Pk+1 Y
hk+l(x) = —51— hk(x/(Pk+1/Pk)) (12)
Since Pk+1/Pk = 0y 1%9ken? V@ find
= I 3
Bye1 ) = 1% 2P (/{011 %04 ) (13)

In the limit k + « we: observe that h, (x) converges and con

sequently we verify the following relation
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h(x) = Bh"(x/8) (14)

where B = didz (see also Kawai and Tye[3]). If we put hi(0}i=1 we
obtain B =1/h®(1l). Note by eq. 9 that the function h{x) depends on the

value of ag, which in tum depends on ¢;. Consequently h(x) is not universal.

2.3 Renormalization Group

The similarity shared by the functions f£(x), Bf"(x/B},
B2f!® (x/B%), etc.; at the accumulation point of the bifurcations
can be used to introduce a renormalization group. 1In a first
approximation let us consider the renormalization group which

| consists in making equal f(x) and alazfﬂk/(alﬁzj). We could im
prove this approximation by making equal alazfﬁ(k/(alaz)) . and
af32a3a4f15cx/(alazu3a4)), etc.

Within the first approximation, i.e., by imposing (for small

x}
= 4
£(x) = a0,£" (x/(a,0a,)) (15)
we find the following relations

zSaiag(l-aljz‘l(1-a§(1-al)z)z“1(1-a1(1—a5(1-a1)z)‘)"1 +1 =0

(16)

and
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= 1
taz . {17)

* z, %
1-a1(1—a2(1—a1)')

o

From Eq. (16) we cobtain the critical line a;{al). For z =2
the curve obtained through the renormalization group coincides,
within graphical resolutibn{with the exact (numerical) curve
(Pig. 2). 1In Fig. 4 we show agtal) for 2 =2 and z =4 obbained
from Eq. (16). The Eg. (17) provides a good approximation for
Q30,0 differing at most by 10% from the numerically exact value.

By using Eqg. (3) we can separately obtain a and o,. More

2
explicitely, we obtain
o, = —t— (18)
' (l—al)
and
(l-al)
az = (19)

. - —
l-a, (l-a}(1-a,}™) -

These expressions provide only rough approximations for the asymptotic

valees o, and o, , in spite of the fact that the product a

K+1 k%k+1

(BEg. (17)) is satisfactorily recovered.

2.4 The function f£(u) .

The attractor.of the symmetric map (a1 =a2)at the accumulation
point of the bifurcations is a complex object. This object has
different scale indices for different regions of the attractor

and for this reason it is called a multifractal.
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The formalism presented by Halsey et'.a];E?:[ o study the multi-
fractals consists in covering bhe attractor ﬁith boxes, in-
dexed by i, of size {;, and assume that the probability den-
sity scales like p, « z? in the limit £; > 0. The next step
is to define the normalized partition function.

_ v B
T(q,t) 2] — =1 (20)
i £,
i
which determines the function t(g) which in turn determines the

function f(a) (frequently called f{a)) through a Legendre trams

‘formation.
For a-2k—pyc1e and P; T p = —%:T-the partition function be
comes
k-1

. 2

] l q =T

k CkD m=1 k,m
where

d = |f

k-1 .
eon = 1E572 00y - £5 0 | (22)

4k k

In this expression, & represents the superstable 2k;cycle. For

k
the symmetric map (a; = a,}, the function fk(a) obtained by
Eg. (21) converges, for k large enough,to a universal function f(a).
The minimal and maximal values of a, which respectively chanag
terize the most ooncentrated and most rarefied regions of the

attractor, are given by
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a , =1in2 (23.a)
min £n az

and

£n 2
In o

(23.Db)

4 pax

where 2z i.s the order of the maximum. Consequently a. =24 . .
max mln

This relation is useful to determine the order of the maximum
of the map in physical experiments where f{a) can be determined.
For the asymmetric map (a.l # a2) the oscillatory behavior

0f the scaling factors Gk and o, is also present in the function

¢
-‘ffk(a). For k large enough, fk(a) oscillates between two limit
functions. In Fig. 5 we show the two limit functions f(&) for
a, = 2.411713 and z =2.

In spite of the fact that the unicity of £(a) does not hold any-
more, we verify that. a . /a n z in both limit curves of

min max —

Fig., 5. Therefore, this relation remains useful for detemining

the order z of the maximum, even in asymnmetric maps with
a, # a,.
3 EXPONENT ASYMMETRY

In this section we congider the S-unimodal asymmetric maps

= f(xt) = (24)
|72

\'
(=]

l-a]xt r X 0
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(z,,%; ). Wwhen z, =z, we recover the logistic-like .symmetric
map. As shown in Refs.[ 4] and [[5] the metric  universality
observed in the symmetric map is complétely modified when there
is an asymmetry in the exponent. 1In this case, the scaling
factors oy and Gk present an oscillatory behavior. 1In Table II

we display the values of a 8, (calculated both for the super-

K’
stable cycles and for the bifurcation points) and oy for the
case (zl,zz) = (4,2). Note that the oscillatory behavior is
present in both.ways used to.calculateaﬁk; however, the oscil
latory behavior is stronger for calculations based on the super
stable cycles than for those based on the bifurcation points.
The multifractal function fk(a) for this map also presents
an oscillatory behavior. In Fig. 6 we show fk(aJ for (z,4z,)=
(4,2) and k = 8,9,10 and 1l. For all the values of k we have
studied,we observe that a, ‘/a _ oscillates between the values
max min

1 and z,. ‘Therefore, oncemore we see that the dynamics of

asymmetric maps is alternatively dominated by the right and

Z

left sides of the map. The maximum of f (a) oscillates, but it
canwt be greater than 1, since the present map is one~-dimension-

nal.
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4 CONCLUSIONS

We studied the behavior of the scaling factors & and o and
of the multifractal function f(a) associated with two types of
S-unimodal asymmetric maps. The asymmetries were  intiroduced
at the maximum of the logistic-like map x' =1-&|x|?. The first
wcase we considered is an asymmetry in the amplitude (a1 # az)
and the second one an asymmetry:-.in the exponent (z1 #zz). In
the first case the scaling factors present an oscillatory be-
havior between two limit convergent values. The function fk(a)
presents the same behavior, having two limit convergent func
tions. At the accumulation point of the bifurcations there.is
a limit function h (x) which.satisfies the relation h(x):=8h"(x/B)

where £ = £im a o Therefore, we observe that this. asym-

i T

metry preserves the behavior of the symmetric map if we con=-
sider, in the bifurcation tree, subtrees wiﬁh k.even or odd.

Also in the case of the exponent asymmetry,.the metric simpli-
city of the symmetric map is destroyed. In this case both
scaling factors § and o as well as the function f(a) exhibit
an-oscillatory behavior (between two bfanches one of which di-

verges).



CBPF-NF-007/89
14—

CAPTION FOR FIGURES AND TABLES

Fig. 1 - (a) Asymwetric map with a1=l.8', A, = 2 and z = 2; (b)_al—

evolution of the attractor with a2==a1-+0.2.

Fig. 2 - Critical lines representing the aécumulationcxﬁ the bi-
furcations a%(al} and the disappearance of finite  at-
tractor aM(al), for z =2.

Fig. 3 - Scaling factors § . (a) and o (b) as function of a; for
z =2.

Fig. 4 - The critical lines a;(al) obtained through the renorma-
lization group for 2z =2 and z =4.

Fig, 5 - Asymptotic multifractal functions f{a) in the k +« 1imit
for a; = 2.411713 ané z = 2. The dashed line . cor-
responds to the symmetric case a, = a,.

Fig. 6 -~ Multifractal function fk(m)-for k =8,9,10 and 11 and

(zl,zz)-= (4,2).

Table I -~ Values of azk, Gk’ Qs 5k6k41 and %% for a, =
1.316461.

Table II -~ Values of Ek, S {calculated through the bifurcation
points and superstable cycles} and a, for (zl,zz) =

(4,2).
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FIG. 3(a)
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TABLE T
k 2, Sy % SxSke1 O+
1. | 1.000000000 0.51113 3.15994 2.32986 | 8.13026
2 | 1.282533305 4.55825 2.57291 15.3855 9,08135
3  1.835293608 | 3.37531 3.52960 . | 21.9198 | .6.32448
4 1.956559371 6.49417 1.79184 | -21.7948.. 6.42833
5 .1.992486639 3.35665 " 3.58756 22.1307 _6.30935
6 1.998018868 | 6.59427 .1. 75867 22,1190 6.30794
7 1.999667300 3.35427. 3.58989 22.1328 '6.30810
8 4 1.999917279 | 6.59839 1.75713 22,1315 - 6.,30784
9 } 1.999991805 | 3.35409 3.58998 - -
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TABLE IT
k a, 6, | S, a,
superst. bifurc.
1 1.000000000000 1.12375 3.643 5.30261
2| 1.188585861842 118,088 [ 6.625 0.51899
3 1.356403706313 _0.37241 7.588 29,0440
4 1.357824831910 800.653 6.548 0.00612 1
5 1.361640892733 _0.13862 18.01 204.042
6 1.361645658918 6337.59 6:202 0.01657
7 | 1.361680041889 0.05078 - 1980478
8 1.361680047315. 64367.1 - _0.00219
9 1.361680154136 [ 0.01699 - 28186.5
10 | 1.361680154137 - - 0.00020
11 | 1.361680154235. - - -
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