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ABSTRACT

The gravitational coupling of scalar fields and spin-1/2
fermions to matter vorticity is examined; in the context of
Einstein's theory of gravitation and for technical simplicity
we have considered the GBdel model as the gravitational back-
ground whose matter content has a non-null vorticity. Scalar
field equation and Dirac equation are solved by separation of
the field amplitudes into invariant angular-momentum and energy
modes. For each case (scalar or Dirac field) these modes provide
two distinct complete bases of solutions, which are bases for
two representations of the algebra of the total "angular
momentum' of the system (one finite dimensional and the other
infinite-dimensional). The presence of a vorticity field of
matter generates, via gravitation, microscopic asymmetries in
the physics of fermions. The "angular-momentum' vector space
appears to be polarized along the direction determined by the
local vorticity q . Microscopic currents are asymmetric along
the direction determined by the vorticity field: fermions
(antifermions) currents are larger along the direction anti-
parallel (parallel) to the vorticity field. This current
asymmetry as well other parity violating effects (for example,
a split of mass for fermions) can in principle be used in
devising experiments to detect the presence of a cosmological
rotation of the universe, its direction and intensity. In case

of production of pairs under CP violation a net number

asymmetry may be generated between fermions and antifermions.



I. INTRODUCTION

Our purpose in the present paper is to describe the
effect of matter vorticity in the physics of spin-1/2 fermions,
the coupling of fermions to the vorticity field being realized
obviously through gravitation. The problem is not purely academic
because the observed anisotropy of the 3°K background radiation
can possibly be due to a large scale primordial vorticity of the
universe [1,2]. This fact and the present observed rotation of
galaxies and nebulae could be an indication that the rotation of
matter was a remarkable feature of earlier eras, playing an
important role in the dynamics of the primordial universe. In this
sense the results of our investigation could have some interesting
applications in the realm of cosmology and theoretical astro-
physics. The present paper continues a program [3,4] in which we
have examined microscopic asymmetries (generated by matter
vorticity) in neutrino physics.

In the context of the Einstein theory of gravitation
and for technical simplicity, we take the G8del universe [5] as
the gravitational background. It is the simplest known solution
of Einstein field equations with rotating incoherent matter. The
vorticity field of matter is connected to the property that |
matter rotates with non-zero angular velocity, in the local
inertial frames of its comoving observers. The model admits a
global time-like Killing vector, a fact that is crucial for
construction of invariant energy modes of the scalar and fermion field:
Spin-1/2 fermions are introduced as test fields over the background

gravitational field, and are described by spinorial fields which

satisfy Dirac's equation on the curved gravitational background.



The plan of the paper is the following. In section II
we characterize the GUYdel universe as the simply connected Lie
group H3XR with a left-invariant metric,defined on it. This
garantees that all vector fields over HSXR exist globally, and
that the hyperbolic excitation modes in which we decompose the
fields — are invariantly and globally defined over the manifold.
In section III we solve the scalar field coupled to the rotating
gravitational background . by separating the scalar wave equation
into invariant angular momentum modes. The scalar wave equation
reduces then to an eigenvalue equation for the total angular-
-momentum of the scalar field. Two complete basis of solutions
are obtained, one finite-dimensional and the other infinite-
~dimensional representation basis for the algebra of the angular-
-momentum. In sections IV and V the local dynamics of fermions and
constants of motion are obtained with basis on Dirac's equation
over the curved background. Two complete bases of fermion solutions
are obtained, which are eigenstates of energy, total angular
momentum, projection of the angular momentum along the axis
determined locally by the vorticity fieid, and also eigenstates of
a new constant of motion. They satisfy boundary and regularity
conditions related to the test field character of the wave-functions
A suitable scalar product is defined over the Hilbert space of
solutions and we construct the Fourier space associated to the
above bases. In section VI we discuss the local microscopic
asymmetry of neutrino emission which appears in the presence of
a vorticity field; we also discuss the asymmetry between fermion
‘and antifermion amplitudes which could appear due to CP violation
and could produce a net asymmetry between the number of fermions

and antifermions.



II. GLOBAL STRUCTURE OF THE GUDEL UNIVERSE AND THE EXCITATION

MODES OF FERMION FIELDS

The GBdel universe is characterized here as the simply
connected Lie group HOxR modulo identification of points, with a
left-invariant metric introduced on H°xR and which is a solution
of Einstein field equations for a perfect fluid. Since the
invariant vector fields and forms are globally defined over the
Lie group HSXR, they are used to construct the invariant modes in
which we expand spin-1/2 wave functions yielding a complete basis
of solutions which exist globally. The methods used in this section
are borrowed from Ozsvath and Schﬁking[ﬁj, and are present here
concisely for completeness.

Let E, be the four-dimensional Euclidean space with
Cartesian coordinates a = (ao,al,az,as). We definéH3 as the set
of points of E4 which satisfy

2 2.2

2 2
0 Yo @t -1 . (2.1)

@hH° + @h® - (@

For any a = (ao,a ,a ,a”) and b (bO,bl,bZ,bz) € H3 we define

il

the multiplication law [7]

1.1

ab = (aob0 - ab 3

+ azbz + a3b ,

aob1 + alb0 - azb3 + a3b2 R
aob2 + azb0 - alb3 + a3b1 ,
a3+ 230 - 2%l L Q12 (2.2)

Under (2.2) H3 becomes a group, acting on itself by left multi-
plication; namely for a given v € H> a left motion of H3 into

itself is expressed by



a' = va (2.3)

and from (2.2) we have a' € HS; for all a € HS. H3 is simply

transitive since for each a # 0 there exists only one left motion

v from a € HY to a given a' e 3.

H3 acting on itself by left multiplication (2.3) is a

Lie group, with the three independent left invariant vector

fields [8] on H3:

eg(a) = (-a~, a , a~, -a”)
eg(a) = ( az, as, aO, al) (2.4)
eg(a) = ( 33,—a2,-a1, ao)

They are obtained by an arbitrary left motion a of the three
independent unit vectors (0,1,0,0), (0,0,1,0) and (0,0,0,1),
which define the infinitesimal tangent space of HY at the identity
‘(1,0,0,0).

We have the analogous picture for right-motions of the

Lie group H> into itself, namely (cf. (2.3))

a' = av (2.5)

with the corresponding independent right-invariant vectors fields

on H3

fy(a) - (-al, &%, -a®, a%
£h(a) = (a’,-a”, a’,-ah) (2.6)
fg(a) = ( 33’ az, al, ao)

We obviously have [9]



-5 -

g, £51 =0 (2.7)

Bases (2.4) and (2.6) expressed as

Xg = - 7€ giﬁ > Xy = - % ey giﬁ , X, = - g e gzﬁ (2.8)
yield the representations of the algebra of H3

[XO,Xl] = XZ , [XI’XZ] = —XO s [XZ,XO] = X1 (2.10)
[Yy,Yq] =-Y, , IYL,Y,1 = Y, , [Y,,Y,] =Yy (2.11)

We introduce on H3 the coordinate system (t,r,¢) by the substi-

tutions
aO = coshr cos %; t
a1 = coshr sin é? t
(2.12)
a® -_sinhr cos (%? t-4)
a3 = sinhr sin (%? t-9¢)

V2

where 0 < - t, ¢ < 2n, 0 < v < », and the left-invariant vector

fields (2.8) become

9
XO = /2 3T
_ sinhr 3 . ) cos(V2 t-¢) 9
Xy = V2 cos(V2 t-¢) coshr 3t ~ sin(VZ t-¢) 3t ¥ Sinhr cCoshr 99
_ . .y sinhr 3 9, sin(vZ t-¢) 3
X, ==VZ sin(v2 t-9) ooqg 57 * €052 t-0) 57+ ShT coshy 30

(2.13)
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with dual invariant 1-forms

GO ='%; (dt + V2 sinhzr d¢)
ot =-sin(vZ t-¢) dr + cos(VZ t-¢) sinhr coshr d¢ (2.14)
ot - cos (V2 t-¢) dr + sin(¥2 t-¢) sinhr coshr d¢

Taking on the one-dimensional manifold R the coordinate xs, with

3. 3

vector field X, = 8/3x3 and dual 1-form o~ = dx”, the group

3
H3xR can be characterized by the left-invariant vector fields

(Xg, X X X3) which satisfy (2.10) and

1> 722

[X;,X;1 =0 , i=0,1,2 (2.15)

and which are a basis for the vector fields on HSXR; correspondingl

the invariant dual one-forms (00, 01, 02, 03) are a basis for the

one-forms on HSXR. The manifold H3

xR is the covering group of the
algebra (2.10), (2.15).
The GYdel universe is obtained by introducing on HSXR

the left-invariant metric [10]

2 2 2 '
as? « 4 [z O - @b’ - 0B’ - (o*)] (2.16)
w

where w is a positive constant. (2.16) is a solution of Einstein
field equations [11,12] with cosmological constant A and incoherent

matter whose density p must satisfy

kp = W = —ZA . (2-17)

The four velocity of matter is 93/3t. The model is stationary

because (Z.16) admits a timelike Killing vector. The velocity



field of matter has zero expansion and shear but has a non-null

vorticity
Q=vZw 2y . (2.18)
X

We remark that GBdel universe is locally isometric to (2.16) but
concerning connectivity-in-the-large the above model is obtained
from the GHdel model by identification of the points

(%; t + 2nm, r,¢,x3), n = integer. In the GYdel universe any
geodesic of the congruence determined by 3/9t 1is time-like and
open.

From (2.7) and (2.16) it is obvious that GHdel's model

admits the five Killing vectors

Mg s ¥ Yy s 50 50 - (2.19)
X

All these vector fields are globally defined on the group
manifold{13] . In the coordinate system (t,r,¢) on HS, introduced

by (2.12) the vector fields YO’ Yy, Y, are expressed

V2 3 3
Yo = (7 5% + 59
) . . 2 2
V2 . sinhr 9 cos¢p 3 - sin¢é sinh”r + cosh®r 3
Y, =7 SIN¢ ToShr 3T © 2 3T Y 2 sinhr coshr 3¢ (2.20)
Y. - - V2 cosd sinhr 3  sin¢ 3  cos¢ sinh®r + cosh’r 3
2 - 2 coshr ot 2  or 2 sinhr coshr 3¢
We then select the Killing vector fields
3 3 3 V2 3
(Sf , 5;3 i YO - > §f) (2.21)

to construct the invariant modes ¢(i) globally defined by [14]
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0y = ks £ 9y = -imb,y  (2.2D)
and

£ ) = -1€¢ (2.23)
3rat (0 (0)

: 3
-1k3x _imé

with respective solutions ¢(3) nvoe , ¢(2) voe and

¢(0) N e'igt. 3/3t 1is a globally defined timelike Killing vector
generating time translations and we interpret (2.23) as the
definition of invariant energy modes; 9d/3t actually defines

the Hamiltonian operator which describes the local dynamics of

the field. We use the invariant modes ¢(i) to separate field

amplitudes in the modes (g, m, k3).

ITIT. SCALAR FIILD COUPLED TO MATTER VORTICITY: HYPERBOLIC
HARMONIC MODES

The equation for the scalar field ¢ coupled minimally

to the gravitational background gaB(x) is given by

1

2
5 (/=g g%P5.6) + ufe =0 . (3.1)
/g B

o

For the GHdel geometry (2.16), which can be expressed as

2
ds? = az{dtz—drz-(dxs) + (sinh?r-sinh®r)de%+2v/Z sinh’r dt d¢} ,
(3.2)
equation (3.1) reduces to
_ 2 2 |
- 4L2¢ + {uzaz - 83 v 0 ) }¢ =0 (3.3)
(3x™) ot
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where
R S L S U A 1 2% .
2cosh2r atz 2 coshzr 9ot 45inh2r coshzr a¢2
L1 sinh’r+cosh’r 2,1 a2 (3.4)
4 sinhr coshr or 4 r2 ’

L2 can be interpreted as the square of the total angular-momentum
operator of the field. To see this let us start from the Killing

vectors (2.20) and define the operators

L3 = 1 Y0
L1 = - Y1 (3.5)
L2 = Y2

From (2.11) we can see that the (La, a =1,2,3) satisfy the rule

L (3.6)

[L,,Ly] = 1 €abc “c

which is the algebra of the angular-momentum operators. From (3.5)
we can see that the algebra of H3 isometries and the algebra of the
angular-momentum are related by the Complexification of the generat
YO. This implies that the positive-definite scalar product in the
vector space of angular-momentum algebra has its correspondent as
an indefinite product in the vector space of the algebra of H3
isometries, with the consequent definitions of the square of the

->
total angular momentum L.

Indeed a straightforward calculation shows that L2
is the square of the total angular-momentum f,
R o | (3.7)

where
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2

> >
L.L = (Ll)

2 2 2 2 2
+ (Lz) + (LS) = (Yl) + (YZ) - (YO) . (3.8)
Further properties of these operators will be examined later in
this section.

To separate equation (3.1) we consider scalar wave
functions which belong to the globally and invariantly defined
set of modes (¢, m, k3)

-ik x3

-im¢ 3 -iet

¢ = ¢o(r) e e e . (3.9)

The field equation (3.3) reduces then to the eigenvalue equation

12y - 7 wha’ . k32 + €26 = ko . (3.10)

Introducing ths variable x = cosh2r and for the set of modes

(3.9), equatioca (3.10) results

2

(-1 o)+ 20t () ¢ X - B D000 - ko() = 0 (3.11)
X -

where 4 Q = 82 + Y2 me. We have denoted ¢‘ = d¢/dx. By making

the substitution ¢(x) = (xz—l)m/z(x+1)Ag(x) we reduce equation
(3.11) to

25 on P 2 .2
(1-x7)g" + {2A{1-x)-2(m-1)x}g"' + {k-m-m“+A"-Q}g = O (3.12)

where the parazeter A must satisfy 2A2+ZmA-Q = 0. Without 1loss
of generality, we choose the root A = %; €. Equation (3.12) has

then as first solution

g(x) = F(a, b, c; 55 (3.13)

where F(a,b,c; 155) is the hypergeometric function [15,16] with
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argument (1-x)/2 and parameters

a=m + 4;.6 + % i‘%
2 1 _n
b=m+—2——€+—2—+—2~ (3.14)
c =m+ 1 ,
and where
n? = kel = e 4 k7 s ufa’ w1 (3.15)
The scalar field solutions have the form
. 3
-ik,x
_ 3 -imé —1et
¢e,m = ¢€’m(x) e e , (3.16)
V2

b, (X) = (x 2™ (x+1)T € Fla,b,e;55) L (3.17)

We remark that the other root A = -m-v2Z ¢ yields a solution

oL o which is linearly dependent of (3.16) and related to it by
] - -m"‘\/? €

¢em = 2 ¢em'

On the space of solutions (3.16), (3.17) we introduce

the operators

Lo A2 401/23 . 128 1/2 3
L, = Ly+iL, =e"{(x"-1) = - XX -1) 3% T 'jr (x+1) at
(3.18)
o e 2 01/28 .o 2..-1/2 3 VZ x-1,1/2 3
L= Lj-ily = e {(x"-1)77 w0 ix(x"-1) %t 7?'(x+1) ra 3.

They satisfy, from (3.5) and (3.6)

[L,,L_1 =2 Lg

[L,,L;) = - L, | (3.19)

[L_,L;) = L_



and their effect on the set of solutions (3.16) is [17]

ab .
Ly % = 7 2c Ye,mir (3.20)
L 6g o= 2m 6 oy (3.21)

From the commutation relation (3.19) we have that if ¢€ m

is a solution — which is eigenstate of L3 with eigenvalue
V2 . .
m+ > € — then L, ¢e,m is also a solution of the set (3.16)
which is eigenstate of Lg with eigenvalue m+l+ 4? €. Also
L_ ¢, p is a solution of the set (3.16) which is eigenstate of
- ’
L, with eigenvalue m-1+ %; €. So given oc it 1is possible
2

to construct a sequence of solutions extending indefinitely in

both directions or terminating if L+ ¢€ or L ¢E - vanishes
- ’

,M
for some value of m.

We can now discuss the orthogonality and normalization
of the set of scalar solutions (3.16). Before defining a scalar
product on the set of functions (3.18) we must examine regularity
and boundary conditions such that the functions ¢€;mﬁx) be
square-integrable over the whole domain 1 < x < =, in fact,
contrary to the case of the spherical harmonics it is not possible
in the present case to use the properties of the operators L+; L
and L, to set bounds on the range of m because L and L are not
Hermitian with respect to any suitable scalar product defined for
the set (3.19).

To proceed we impose boundary and regularity conditions
connected to the character of test fields of the scalar solutions

(3.16), namely that the scalar field solutions are finite

perturbations at any space-time point. We assume [18]
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> 2 2 2 2 2 2

L= D+ L%+ L7 = (D7 + (Y07 - (Y . (3.8)
Further properties of these operators will be examined later in
this section.

To separate equation (3.1) we consider scalar wave
functions which belong to the globally and invariantly defined
set of modes (e, m, k3)

ikgxS

im¢ 3 -iet

¢ = ¢(r) e e e . (3.9)

The field equation (3.3) reduces then to the eigenvalue equation

124 = i (ula? k32 v e84 = ko . (3.10)

Introducing the variable x = cosh2r and for the set of modes

(3.9), equation (3.10) results

2

(xP-1) 0" () v 2x0' () ¢ Y - 7000 - ket = 0 (3.11)

where Q = 82 + ¥2 me. We have denoted ¢' = d¢/dx. By making

the substitution ¢(x) = (xz-l)m/z(x+1)Ag(x) we reduce equation
(3.11) to

25 n : . 2 .2
(1-x“)g" + {2A(1-x)-2(m+1)x}g' + {k-m-m"+A°-A-Ql}g = 0 (3.12)

where the parameter A must satisfy 2A2+2mA—Q = 0. Without 1loss

of generality, we choose the root A = %? €. Equation (3.12) has
then as first solution
1-x
g(x) = F(a, b, c; —7—) (3.13)

where F(a,b,c; l%i) is the hypergeometric function [15,16] with
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argument (1-x)/2 and parameters

V2 , I
a=m+-—2—€+—2'—-2-
V2 _n
b=m+T€+—2‘+—2‘ (3.14)
c=m+1 >
and where
n? - akel = e e kS e a1 (3.15)
The scalar field solutions have the form
. 3
-ik,x
_ 3 -im¢ —1et
beom = P n(X) € e , (3.16)
V2
_ 2 m/2 € J1-x
LX) = (x7-1) (x+1) 2 F(a,b,c;—>=) . (3.17)
We remark that the other root A = -m—%?:e yields a solution
¢é which is linearly dependent of (3.16) and related to it by
5 =M= V2 €
bem = Sem:

On the space of solutions (3.16), (3.17) we introduce

the operators

_ oAb 02 1\1/2 9 - -1/2 o . V2 x-1.1/2 3
L, = L1+1L2 =e {x"-1) ~ - 1x(x -1) 5 77'(x+1) 5 }
(3.18)
1 i L Wit 2 31/28 0 L2 00-1/23 /2 1/2 3
L_=1y-iL, = e {(x"-1) x * ixT-1) 55 1 (X 1) = 1 -
They satisfy, from (3.5) and (3.6)
[L,,L_1 =2 Ls
[L,,Lz] = - L, (3.19)
[L_,Lg] = L_
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The corresponding negative-energy solutions are obtained by
taking the complex-conjugate solution ¢*. Contrary to type I
solutions, type II positive-energy solutions are associated to

the negative exponential e'1m¢A(cf. Ref. [22]). The eigenvalue

of Ly for this case is * (m + é? |e|) for positive/negative
energy.
For both cases I and II, the eigenvalue of 1% is
given by
k = (& - 4? i) - é? le; + 1) (3.33)

which is always positive.

The basic difference between type I and type II
solutions is that for type I solutions the values of m are bounded
for a given & (cf. (3.39)) while for type II solutions the range
m > 0 1is completely independent of the value of &. In other
words, for a given & = positive integer or zero type (I) solutions
provide a finite-dimensional (dim = & + 1) representation basis
for the algebra of angular-momentum, while type II solutions
provide an infinite-dimensional representation basis for the
algebra of angular-momentum [23]. These functions are denoted
hyperbolic harmonics of type I and type II, with general

expression

Type I basis

I 2 . .m/2 - e 1-x, im¢ ikgx® 5o
¢e2mk3 = (x7-1) (x+1) F(a,b,c;=5>)e e e TIEI
(3.34a)

where

a = m-¢

b = m+$l--/—2_!€i+1

c = m+l

0 <m < %



Type II basis

II 2 . \m/2,_- l%giel © o 1-xy -imd _ikSXS -ilelt
¢e£mk3 = (x"-1) (x+1) F(a,b,c;—i—)e e e
(3.34b)
where
a = m-2+v/2 €]
b = m+2+1
c = m+l
0 <m< o, 0 < 2 < (m and & independent).

These two sets of functions (3.34) are not only bases of re-
presentation of the algebra of the angular-momentum of the system,
and of the isometry algebra of the space-time, but also they
provide two irreducible representations of the Lie group HSXR
(GHdel's manifold itself, cf. Sec. II). In particular type I
solutions (3.34a) correspond to a finite dimensional irreducible

representation of H3

xR. Remarking that: (i) the functions (3.34)
are eigenfunctions  of the operator 12 with eigenvalues
characterized by the positiVeﬁinteger or zero ¢ (cf. (3.10)A;nd
(3.33)), and 12 commutes with all elements of the algebra of

the isometry group HSXR; (11) H3xR is a simply transitive group
acting on itself by left-multiplication — we have that the
eigenfunctions (3.34) for a given & can in principle be given

as a linear combination of the matrix elements of the represent-
ation characterized by ¢. Therefore [24] they constitute a complete
basis for representing continuous functions defined over the Lie
group H3 x R (GBdel's manifold) and which satisfy the

prescribed regularity conditions (3.22), (3.23). In other words,

any continuous function defined over the simply transitive Lie



group HSXR and satisfying (3.22), (3.23) can be expressed as
the 1imit of a series constructed with the functions (3.34a) or
(3.34b).

They have the important property that under the parity

operator P: (r » r; z > -z; ¢ + ¢+m), they transforms as

P¢

€gmk3(t’r’¢’z)=¢

m
T S T S T A

We now discuss the orthogonality and normalization of
the set of scalar functions (3.34). For this set of solutions we
define the scalar product

<P, 0> = l% J y-g d4x o' o (3.35)

w

where the integration is taken over the whole GBdel manifold.
The normalization (3.34) is taken instead of the usual conserved
normalization on a t = const. hypersurface because such hyper-
surfaces are not globally space-like (actually GBdel's universe
does not admit any globéi spéce—like hypersurface). In cases
when t = const. is a global space-like hypersurface the normali-
zation defined in (3.34) is equivalent to the usual one for
solutions which are eigenstates of the Hamiltonian of the
system. Using the explicit expressions of L, , and the regu-
larity and boundary conditions (3.22) and (3.23)7we can

demonstrate the adjointness properties

<L,o',¢>

It

-<¢',L ¢> (3.36)

<L_¢';¢> = -<¢',L ¢> . (3.37)



It then follows that L. and L

1 , are anti-Hermitian with respect

to {3.34), namely

<Lyo',¢> <¢',L 9> (3.38)

<Lyb',¢>

<¢',L,0> (3.39)

L, and 1% are obviously Hermitian with respect to (3.35). We
then see that the angular-momentum vector space associated to
the complete basis (3.34) has a preferred direction determined
by L;. This corresponds to the physical fact that the vorticity
field of matter & polarizes the. angular-momentum vector space
along the direction determined by ) , and the allowed physical
"rotations' in this space are the ones which maintain L. parallel
to & . The same result will show up for fermions, as we shall
see later.

The scalar product defined above and the adjointness
properties of the angular-momentum operators (3.36)-(3.39) will
be helpful in the normalization of the hyperbolic harmonics

(3.34). In fact starting from a given normalizable solution

¢i 4o for positive m we obtain for instance
. ; k-(VZ/2 || -m) 2+ (V2/2| €| -m)

<é | ¢ > = <ol I >
e, 2,m-1'""¢,%,m-1 (Zm)l ¢e,2,ml¢e,2,m

(3.40)

where we have also used (3.19) and (3.21).
By using the adjointness properties (3.38) and (3.39)
of Ly and L, with respect to the scalar product (3.35) we can

understand how the two distinct sets of solutions (I) and (II)

2 2 2

~appear. From the definition fz = L1 + L2 + L3 , we have

v 2 : 2
> = <¢eILmILl ¢e£m> * <¢52m!L2 ¢ezm>

< |
¢a,£,m! 3 l¢e,SL,m
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or
{(nifl)—(m +.4;€)2}<¢52ml¢82m>'= - ezm\L Ccom” ¥
B <L2¢ezmlL2¢szm>
Since <¢€2ml¢€2m> and <L. ¢€£ml iPcqp” MUSt be finite, by

hypothesié,and positive definite, it then follows

—7 - (m + %;e)z <0
or

2 ez n2—1

m* + VZime + 5 - —— >0 . (3.41)

The sign > which appears in (3.41) (and therefore (3.41) does not
impose bounds in the range of m) is a consequence of the fact
that actually the square of the total angular-momentum fz is
not positive definite (cf. (3.8)) although its eigenvalue 1is
always positive definite or equivalently, of the anti-Hermiticity
’of L1 and L2

Equation (3:.41) imposes that the domain of m lies in

the two disconnected intervals A = (m < mp = - é; g - %—Vg;ﬂ1a2+k3
, !

and B = (m > m, = - é; £ + % Vé2+pzaz+kz ). We remark that for

normalizable solutions we have m > 0 and also m,-my > 1. The

latter condition imposes that we cannot pass from A to B or from
B to A by applying respectively L, or L_. We then have the two

distinct possibilities:

(1) m, > 0: The "point" m = 0 is contained in B and A is excluded.

This is the case of type (II) solutions.
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(ii) my > 0: The interval B is excluded, and starting from the
lower bound m = 0 and by successive application of L we
must reach a value m = £ < my for which L+ ¢€2 = 0. This

is the case of type (I) solutions.

To proceed with the normalization we consider first

type I solutions; which can be expressed in the form [25]

. - k y2
I _ -1im¢ Tky2 1 e|t
¢€2’mk3 = ¢€5Lmk3(x) e e l l
where
V2
£ -2 le| 2-m

o (-1)"m! 2 2. 14 2 d 2,8 -2 el

¢€2mk3(x) = Zz-m Iy (x"-1) “(x+1) E;E:ﬁ {(1-x")"(1-x) | }
(3.42)

with 0 <m < 2. From (3.35) we have the normalization [26]

(1) (I) (1) Y 1
¢e 9! m'k'|¢azmk = Nezmk3 622' mm' 6(k -k )S(IEI_IE D
(3.43)
where
(D) - (1)2
€ka3 = Jl dx ¢€2mk (x) . (3.44)

To calculate this integral we start from the case & = m. By using

the expression (3.42) we obtain straightforwardly N

_IT(VZjef-2) g1 228+1-vVZ|e]
r(v2|e|-22-1)

operator L_ and from its Hermiticity properties with respect to

622k3
By successive applications of the

the normalization integral, we finally have

(1) _ ()% (e-m) ! I'(V2{e|-2-m)
Nelmk - L! ’
: r(vZiel|-22-1)

22m—/7|€{+1

(3.45)



As for type (II) solutions we can express them as

. 3
-1k ,x . -1
¢ omk ='¢€2mk (x) e 3 e”1m¢ e—l'Elt (3.46)
3 3
where [15]
‘ V72| €|
oy 24m omev2]e| -2 _ m+
(-1) 2" _ I'(m+1) 2 2
¢e£mk3(x) = T(m+2+1) (x-1) (x+1) .
L
. g C -t (L) rm-vZlel (3.47)
dx '

with &,m = positive integers or zero, without any relation

between them. We have the § normalization

(ID) D, an

! 1
<¢€'£'m'ké eSZ,mk3 - ezmk3 ,G(ks—ké)S(,el-le 1) (3.48)

Ql'émm

[o0}

where N(II) = ¢(II)2(x)dx We first calculate this integral
eslmk3 - eSLmk3 . g

1
for the case & = 0. Then by successive application of L and from
its Hermiticity properties with respect to the normalization

integral we obtain

I1 X 2/7]€|+2m+1

_ r?(ms1) | 1 r(/Zle|-2)
Ekas - T(m+2+1)

(VZ]e|-22-1) T(V2]e|-2+m)

(3.49)

The set of solutions (3.42) or (3.43) constitute two
distinct complete bases for the space of normalizable scalar
field solutions, respectively finite- and infinite-dimensional
representation basis spaces fdr the angular-momentum of the

system. The lowest energy modes occur for £ = 0 = k3, with
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corresponding l|e| = \/pzaz;

In the case of conformally invariant scalar fields

3. (V=g ga838¢) + (pz + %)¢ =0 |,

o

Al

the complete bases of solutions are obtained from the above ones
by the trivial substitution uz -> pz + % since the Ricci curvature
scalar R is constant for GHdel's geometry.

The mathematical properties of the scalar field

solutions discussed in this section will be helpful in

¢ezmk3
describing the complete solutions of Dirac's equation in G8del's

universe, for energy and total angular-momentum modes.

IV. LOCAL DYNAMICS OF FERMIONS, CONSTANTS OF MOTION AND THE
SOLUTIONS OF DIRAC'S EQUATION

Spin-1/2 particles in interaction with gravitation are
described by spinorial fields in the curved space-time. For a
general review of spinors on a Riemannian space-time, see
Ref. [27]. Here we use four component spinors from the point of
view of the tetrad formalism. We choose a tetrad field eéA)(x)
such that the line element is expressed [28] as

A.B

ds? oe (4.1)

= TAB

BA ='e(A) dx%.
o

where The definition of a fermion wave function
¥ 1in a curved space-time involves two group structures. Its

spinor character is defined with respect to the local Lorentz
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structure (4.1), that is, it provides a spinorial representation

of the local Lorentz group

A

o' A LAB(X)GB (4.2)

with

A B

L D(x)nAB L°p = Npp - (4.3)
These transformations, which can be made independently at each
space-time point, leave (4.1) invariant. Under (4.2) and (4.3)

the spinors ¢ transform as

Pr(x) = Sx)y(x) (4.4)

where 4x4 matrix S(x) must satisfy [29]

1

@ hHAmy? = seovt st . (4.5)

On the other hand spinors ¢ transform as scalar functions with
respect to general coordinate transformations of the space-time,
and thus provide a scalar representation of the isometry group
of the space-time.

The Lagrangean for fermions 1is

LV Y - Y L 4e)

In the above formalism v ='w+y0 where YO is the constant Dirac

matrix. The spinor covariant derivatives are given by

<

.
=
!

8
= e(A)8a¢ - FAw

(4.7)
o —_ —_
Vav = e(A)aaw + ¢TA
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where the Fock-Ivanenko coefficients FA have the form

r

1 B.C
A= " F YBca¥ Y y (4.8)

The Ricci rotation coefficients Yapc aTe defined by

. o R
YaBc = - e(A)HB 4 ()€ (C) (4.9)

and Dirac equation for spin-1/2 fermions coupled to gravitation

is expressed as

Gylv, - My =0 . (4.10)

For (2.16) we choose

60 = a (dt + V2 sinhzr do)

91 = a dr

2 (4.11)
8 = a sinhr coshr d¢

63 = a dz

where a = 2/w. With this choice the Fock-Ivanenko coefficients

(4.8) have the expression

LT 12

0= Za Y Y
L YZ 0.2

1"“2—aYY

) 2 2 (4.12)

r. = vZ 0.1 1 ‘cosh™r+sinh™r 21

27 T 72a Y Y * 74 Coshr sinhr Y

T3 = 0

For a fermion field in invariant energy excitation medes (2.23),
using (4.11) and (4.12), Dirac equation (4.10) in GBdel's back-

ground can be expressed in the form
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[ 1/4 :] _ 5T 0y[on /4 41 . 4.13)
eL(—g) ¥ o= (v Z-ﬂ+p¥)l_( g) uj (

’ 3
Here we use the notation A.B = y AkBk, u = aM. T is the spin

+ , k=1
matrix (8 %), g is the determinant of the metric and T is the

generalized local momentum operator

T-iad%_ o« 0, (4.14)

where w ='(0;0; %? w) is the vorticity of matter in the local

Lorentz frame (4.11). Explicitly [30]

1 - i 9 ol V2 sinhr 3 1 g_)
-7 oT ’ - coshr 3t sinhr coshr 3¢
(4.15)
3.5 9 5 /2
ST P33T 2
X

Expression (4.14) is analogous to the case of the anomalous
magnetic moment interaction of a charged spin-1/2 particle.
The operator YSE.% + pYO acts on the Hilbert space

1/4 ¥} and determines the

of fermion wave functions [31] {(-g)
time development of any operator acting on this Hilbert space
via the commutator rule. From (4.13) we have that

H = st.

T o+ pyo : (4.16)
is the Hamiltonian of the system (expressed in terms of objects
defined in the local frame (4.11)).
For u # 0; contrary to the flat space case, we have
_)

> .
that f.m and H do not commute; it is not even possible to

define another momentum 7' (by properly subtracting terms in
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(4.14)) such that f.%' commute with the Hamiltonian. Therefore

a stationary state of the system cannot have helicity as a
good quantum number.

There is however a constant of motion of the system
which in the limit of high momenta can be interpreted as the
helicity. Let us express (4.16) as

H ='Y5 (Zlﬂl + Zzﬂz) + 23(8 + %?) (4.17)

where

3.5 .5 e(3)oc3

S = uy Ty~ + iy . (4.18)

o

We have that

[%;%J =0 . (4.19)

—ik3x3-ist

For fermion fields in the modes e , the constant of

motion (4.1Sj becomes

S = uySyd - k3Y5 . ; (4.200

5

We shall then select a complete basis of simultaneous eigen-
states of H and S ; for large k3, S 1is proportional to YS
and these stationary states tend to eigenstates of f.%/e.
From S we can define a conserved projection operator into states
which are left- or right-polarized in the large xs-momentum
limit.

For neutrinos (p = 0) the helicity f.%/e is a constant

of motion, and eigenstates of S are also eigenstates of T.7/e.

For this complete set of neutrino helicity eigenfunctions (note

that ysw = L , L2 = 1) the motion of the local momentum T is
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calculated T o= i [?,Lf.ﬁ] and we have

.
-5
m

=VZ el T AQ (4.21)
where L is the helicity of neutrinos. Since I.T is conserved
we have from (4.21) that (for a given sign of € ) the spin 3
precesses about the direction determined by ) (xs—direction)
V2 €
w

with angular velocity proportional to | % and independent

of the sign of L; that is, independent of being neutrino or
antineutrino.

To separate Dirac equation (4.13) for a massive
fermion in GHBdel's background we consider fermion wave functions
which belong to the globally defined set of modes (e,ks,m,m')

described by

-im¢
¢(r) e ~ikxd-det
. s !
n(r) e tM'¢
and eigenstates of (4.20), namely
_ 3 . 5 o/
Sy = (uy YS = kBYs)l[} = -€ 1_12+k32 Y (4.23)
1000
where e = + 1. The unitary matrix A = 8 g é 8 has the role
0001

of interchanging the second and third
components of the four-spinor in (4.22). Using (4.22) and

(4.23), Dirac equation (4.13) reduces to
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2 . .2
fintn? « Jsimbreahnhy e s o Dol
(4.24)
. L2 2
. : : . V2
(ivin? o} siabircostn) | 5o, 7 - 0T Dol
or explicitly
. L , L2 2 —
do VI sinhr N m _ 1 sinh"r+cosh™r o =
dr | 7 coshr sinhr coshr 2 sinhr coshr
e B I A A e (4.24a)
r—' - » 2 2
dn N /T sinhr . m' . 1 sinh“r+cosh™r
dr L; coshr sinhr coshr 2 sinhr coshr |
- i (- e T2 VTt ol (4.24b)

satisfied by the two component spinors ¢ and n . By using a
constant Foldy-Wouthuysen transformation we shall discuss later
that our choice of the above set of solutions (4.22), (4.23)
corresponds to a hybrid representation which mixes the advantages
of the usual Foldy-Wouthuysen representation of Dirac solutions
(which has a good non-relativistic limit), and of the Cini-
-Toushek representation which is most convenient for large
momenta (or massless) particles.

Introducing the variable x = coshZr, Dirac equation

1

(4.13) does not change in form, with 7~ and wz given now by

e -2i Pt/ L
| | (4.157)
2 . ox-1,1/2 3 2 3
moo= 3 {/7 S R+l e v i AT

(x"-1)
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The second-order equations resulting from (4.24) take the eigen-

value equation form

sz = ky (4.25)
where
42 _ .
J2=(X2-1)%;Z+ 2X + m' - %+Gi_17 ‘}2+-‘{2—Z€(m'+m)+
(m-1/2)(m'-1/2)1 0
m'+m+v/2 e 3 1
(x"-1) 0 (mel/2) (m'+1/2)1

(4.26)

is the square of the total angular-momentum operator of the

system, as we shall show, with eigenvalue

k = 7 {52 s eVttt 1} : (4.27)

2

Equations (4.25) are completely decoupled for each component;
the condition (4.23) however requires that ¢ and n must have

the form

o(x) = f(x)(Yl) LN = g(x)(yl) (4.28)

+ -

where

Y, = 1 : (4.29)

For consistency; taking a solution ¢ of the form (4.28), the
corresponding solution n is obtained by using (4.24a); conversely

taking a solution n (4.28) the corresponding solution ¢ is
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obtained by using (4.24b). The second-order equations (4.25)
can be solved by substitutions analogous as done to the scalar

field in Section III. We distinguish the set of solutions

™ e-1m¢ 3
—.' 3
| Be im’¢ -1k3x3 _iet
v (e,kg,m,m') = im e e (4.30)
Ay4a e ¢
_'l
Y nie
where
m'-m m+m'-1 ‘£Z€+l
x+1, b 2 2 22 1-x
o = (m+m'+1)(x_1) (x“-1) (x+1) F(a,b,c;—f—) (4.31)
m'-m m+m'+1 /7€ 1
x+1 4 2 4 72 I-x
B = (x-l) (x“-1) (x+1) F(a,b,c+1;—7—) (4.32)
T JZ -1
A=-1\_k3+ (e-—2—-+p)yJ . (4.33)
F(a,b,c;l%i) is the hypergeometric function [15,16] with argument
| l%E and parameters
]
m+m'’ VZ 1 _n N
b: 2 T€+—2—+’2‘ (4'34)
m+rh"l
with

1

n = J4k¥1 =\/gz + (Vu +k3 - e /-2_/2)2 . (4.35)
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Analogous to the case of scalar solutions, we now

define on the space of solutions (4.30) the operators

J =L + 8 (4.36)

J =L + S (4.37)

where L+ and L  are the operators (3.18) of the algebra of angular

momentum associated to the scalar field, and

S = ei? {9 1 + —(ox-1) 23} (4.38)
- 2 (X2_1)1/2 2()(2_1)1/2
S = e-1¢ {9 1 - (ox-1) 23} . (4.39)
+ 2 (x2_1)1/2 2(}(2_1)1/2
We have denoted
m' =m+ O . (4.40)

We define J3 by the relation [J+,J_] = 2J3 and obtain

. 9 Y2 3
J3=l(w+—2——a—t-)+

ja
™~

(4.41)

The effect of the operators (4.36), (4.37) and (4.41) on the set

of solutions (4.30) is

J_vmm) =2 B yymo1,nr-1) (4.42)
I, vmm) = - 2% ynal,me1) (4.43)
Jg p(m,m') = (m + %? e + %) ¥(m,m") (4.44)

From the definition of J3 and from the relations
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[J+,J3] = -J, (4.45)
[J_;J3] = J_ (4.46)
we see that J_, J_ and J. generate the algebra of angular mo-

mentum. Actually introducing J1 = J++J_/2 and J, = J+-J_/Zi

it results [Ji;Jk] =vi€iijk’ and a straightforward calculation
gives
2 2 2 o 2 T '
(J1 +J2 +J3 Jm,m') = J° y(m,m') = k¢ (m,m") (4.26)

as we have mentioned earlier; where k is given in (4.27).

In a procedure analogous to the scalar field case
discussed in Section 3, by using (4.42)-(4.44) and the commutation
relations (4.45) and (4.46); we start from a given solution
Y(m,m') to construct a sequence of solutions — by successive
applications of J,orJ_-— which are eigenstates of JS’ for
increasing or decreasing values of (m,m'). The sequence extends
indefinitely in both directions or terminates if J; Yy (m,m') or
J_ ¢y (m,m') vanishes for some value of m+m'/2.

Also in the present case of spin-1/2 Dirac fields
it is not possible to use the properties of the operators Jl’
J2 and J3 to set bounds on the range of m+0/2 because J1 and
Js lack any hermiticity property -(for o # 0) with respect to
the normalization scalar product to be defined in Section V
for the functions (4.30). For o = 0, J1 and J, are anti Hermitian.
Jz in all cases is obviously Hermitian, as in the scalar case.
Angular momentum space has thus a preferred direction defined

locally by the vorticity vector @ . This is characterized by

the fact that the projection of J along @ is Hermitian while



- 33 -

any of its components along a direction orthogonal to ¢ is not.
The allowed "rotations' in this space maintain the direction &
invariant.

To proceed we shall then make use of regularity and
boundary conditions on the wave functions; and obtain two
distinct sets of solutions; one infinite dimensional and the
other finite dimensional representation basis of the algebra of
angular momentum. On the set of solutions (4.30) we now impose
boundary and regularity conditions; namely that Dirac fields
(which are test fields and do not contribute to the curvature
of the cosmological background) are finite perturbations at

any space-time point. We impose similarly to (3.22), (3.23),that

lim ¢ty = finite (4.47)
x~>1
lim v-g ¢ty = 0 . (4.48)
X->o0

The quantity y+y is the component of the Dirac current Ty
along the four-velocity of the matter content of the model.
By using (4.31) and (4.32), the regularity condition (4.47)

implies
m> -1/2 . (4.49)

The 1lower bound m = - 1/2 is not in contradiction with
the regularity condition (4;47)vbecause we have [33]

1im/2 o = finite for all x. So starting from a given regular
m>-1

solution Y(m,m') and by successively applying J we

(-)
necessarily arrive at a solution which does not satisfy (4.49)
unless J ¥ =0 for some value (m,m'). From (4.42) we have that

the sequence finishes on the left for m+m'/2 = -1/2, and we must
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then have

oy .
m+m s

Ln > -1/2 (4.50)

that is, m+m'/2 takes half-integer values greater or equal to
-1/2. On the right the sequence could in principle extend to
infinite values of m+m'/2 by successive application of J,-
Condition (4.48) will nevertheless impose an upper bound on the
values of m%m'/Z.

From (4.48) two distinct possibilities arise [20,21].

Either (cf. the scalar field case)

(I) a = negative integer or zero (4.51)
or
(I;) c-b = negative integer or zero (4.52)
with

.om! 2o, 1,1 (4.53)

for both cases (I) and (II) and we obtain the two distinct sets

of solutions:

Type I solutions

We denote any negative integer or zero by m«m'/2 - j,
with j = half-integer > m+m'/2, that is,

m+m'

- 1/2 < 5 <

i (4.55)
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) V2 )
From (4.51) and (4.53) we then have j + 7; € + % + % = 0 which

implies

€ = - [?7(2j+1) 4\/12j41)2 ¥ (vp2+k32-e/7/2)2:} . (4.56)

The corresponding positive-energy solutions of type (I) are
obtained from the symmetry ¢ - iyzw* of Dirac equation (4.10),

where = denotes complex-conjugation. We remark that the eigen-

values of J3 and Jz for this case are given by eigenv (JS) =
=m + %—+ %; e and
eigenv(J%) = (j « %;e)(j . 4? e+1) ,  (4.57)

respectively. Also from (4.43) we obviously have

as expected.

Type I1 solutions -

We here denote any negative integer or zero by

-(j + 1/2), where

j = half-integer > -1/2 . (4.58)

\l

From (4.52) énd (4.54) we have j - 2 € + % + = 0 which

S o]

implies

[
€ = V2 (2j+1) + V<2j+1)2 + (V@2+k32_e/7/2)2 . (4.59)

The corresponding negative-energy states of type II are obtained



- 36 -

from the symmetry ¢ - iyzw* of Dirac equation (4.10).

1
We note that for type I solutions the values of mzm

are bounded for a given j (ct. (4.55)); and for type II solutions
the range E%El i -1/2 1is completely independent of the value
of j. In other words; for a given j = half-integer > -1/2 type I
solutions provide a finite-dimensional (dim = j + %) represent-
ation basis for the algebra of angular momentum, while type (II)
solutions provide an infinite-dimensional representation basis
for the algebra of angular momentum. In the above discussion

we have discarded normalizable solutions which could not cons-
titute a basis of representation for the algebra of angular-
-momentum [32]. We should mention that some of these solutions
have interesting features as zero energy and eigenvalue of Iz
equal to an integer.

We finally remark that (similar to the scalar field
solutions) the above two sets of continuous spinor solutions
provide two bases of irreducible representations of the simply
transitive Lie group HSXR (G8del's manifold), the representation
associated to type I Solutions being finite dimensional (dim =
= j + %). By arguments analogous to the scalar field case we
have that these bases are two complete bases, for continuous
spinorial functions defined over the group manifold HxR and
which satisfy the prescribed regularity conditions (4.47) and

(4.48).

V. COMPLETE SET OF SOLUTIONS AND NORMALIZATION OF FERMION
AMPLITUDES

We restrict ourselves to the complete basis of type
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(I) solutions for two reasons. Firstly the use of type I basis
is physically more satisfactory because it corresponds to a
finite-dimensional representation of the angular momentum algebra

of the system, that is, for a fixed energy |e| and for a given

value of the total angular momentum \/25 - %?Iel)(j - z%|x—:1+1)',
where j = half-integer i -1/2, we have j + % eigenstates of the
angular momentum projection on the local axis 5; secondly for
simplicity; because all the following results are analogous to the
ones obtained if we considered also type II basis. Without loss of
generality in what follows we consider only the case o = 0.

If we examine carefully expressions (4.29) and (4.30)—
—(4.33) we observe that we have a problem in the low-momentum limit
k3 +~ 0. The constants Y, and y_ which appear multiplicatively in the
solutions have a different behaviour at this limit for distinct
values of e; namely for k, » 0

3

(5.1)

We remark that Y,Y_ = 1. In order that the solutions are bounded
for all values of the momeétum k3, they must be normalized
differently for different values of e, that is, they must differ
by a factor linear in Y, Or Y_ for different values of e. A

suitable choice for the complete basis of solutions is

positive energy solution, e = +1

( 'Y_B 3

-Y+Aa im¢
Yis),e=+1 = . e e

-1k x ;
3 it (5.2)

~Aa

/



positive energy solution, e = -1
2 .03
-y 7 Ao . ik xT Ly
Y(+),e=-1 7 ! AR (5.3)
b4 - .Y B
+
(=Y, ho
negative energy solution, e = +1
r Ao N
3
8 . ik x" .,
Y(),e=s1 = o7t o3 elielt (5.4)
yTT Y Ao
<+
LY. B )
negative energy solution, e = -1
s 3
Y+Aa
. 3
. Y B 3 —1k X . |
V) eno1 = ; gmime T3 Jileft (5.5)
= h 3 v Ao .
-+
. B )

where A = _i[k3 + (-le]- %? + p)y+]_1. For all cases o and B

are given by (cf. eqs. (4.31) and (4.32))

2m-1 _ /TIE =
o = Cmel) (x2-1) 4 xe1) 22 F(a,b,c;15%) (5.6)
2m+1 _ ‘/Zlel“l‘
g = x2-1) Y x+1) 2 % E(a,b,cel; £5 (5.7)
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where
a=m-j (5.8)
b=ma+j~vZ|el+l ‘ (5.9)
c=m+ 1/2 (5.10)
-1/2 <m<j , j =half-integer > -1/2 (5.11)
and
2 . ST 2
le] = vVZ (2j+1) +\/(2j+1) +( k3 +u - ev/2/2)
(5.12)
We remark that the lower bound m = -1/2 in (5.11) is not in

contradiction with the regularity condition (4.47) because we
have [{33] 1im o = finite for all x. The positive-energy
m>-1/2
solutions are orthogonal to all negative energy ones by
¢~-integration only (cf. Ref. [22] for the scalar field case),
except for m;m' =+ 1/2. In this case they are orthogonal
either by (r;xs) integration only or by t integration.
We finally note that from the first order equations

(4.24) we obtain the useful differential relation between the

functions a and B

’

.1 2 X } . V2 2 2
in™ + w + Aa = —1([8{ - — + eVuT+k ) v B
{ — eVt ty v

(5.13)
ol - 0" PRy p fe--idel » F - eVl Py ne
x“-1)
2 x-1.1/2 Zm
where here ©° = - /Z|e| (=) -
x+1 (X2-1)172

We now examine two important limiting cases of the

above set of solutions. The first is the low-momentum limit
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k, - 0 which gave origin to the necessity of the distinct

3

normalization for each value of e. Having in mind (5.1) we

obtain

for e = +1:

11)(+),e=+1 =

Yoy, e=+1 =

and for e

w("‘) ,e=_1

V(-),e=-1 =

( 0 )

i(fe] 5w
B

\ 0 J
- 0 N\

-0

i(lei+é§—u]

0
0

o

L i(lei+%;+u) J

é \

~Q

i(§€|+%;+u)

oimo e—i[e[t

(5.143a)
e—im¢ ei]slt
o imo e—iie[t ’
oM ljejt (5.14b)
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This set of states (5.14) has the symmetry y(-e,u) = st(e,-p).
In other words, for k3 = 0 the mass reversal substitution
symmetry [34] of Dirac equation (y(u) ~ st(-p)) corresponds
to a change in the sign of e.

An interesting class of solutions are the lowest-
—energy modes j = m = -1/2 with corresponding |e| = lu-evZ/2]
and square of the total angular momentum J2 - % (w - V2 e). For
this case a = 0. The non-relativistic Minkowski limit is obtained
here by considering v2/2 infinitesimal —~ the energy is then
the rest mass of the particle and the sign of the energy is

given by the eigenvalue of-ZS, namely

_ _ ~ifelt _ ~ileft
Vi), e=+1 = k(x) © <l ’ ¢(+)’e=_1 T X) €

O OO
OO OH

(5.15)

. i t ijlejt
V(o),e=s1 = KOO etlelt V() ema1 * ellel

OO KO
—
o oo

L )

VZ]e|+1

Besides the trivial solution ¢ = 0, two zero-energy modes

where k) = (x+1)~

occur for e = +1 and p = v2/2:

0 0
1 1 -i¢/2 1 [ 0 ip/2
N ——— e and " - e
e /20 (x-1)172 l :

which go to the solution ¢y = 0 in the 1limit x » «». If we require
that solutions must have J2 always greater or equal to zero —

like the scalar field solutions have — asymmetry with respect to

e occurs because for e = +1 only solutions with ¢ > V2 are
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allowed, and the zero-energy modes must be excluded.

[}

Also the modes j = m = -1/2 are eigenstates of 23 and

J; with respective eigenvalues * 1 and i'(liiglgl), for positi?e/
/negative energy solutions. In the special case u = 0; the lowest
energy and angular momentum modes j = m = -1/2 have the total
angular-momentum projection J3 = + 1 for positive/negative energy
solutions. Thus due to the gravitational coupling to matter
vorticity these massless fermions are converted to bosons polarized
along the direction Q. This latter case and the case j=m=-1/2,
u = vV2/2 are the only ones in which the eigenvalues of the total
angular momentum Jz are definitely integer or half-integer.

We finally remark that in the 1limit k; > 0 there is a

representation — defined by the unitary transformation

l
|
j

OO O
DO O
M OOO

0
0
1
0
— where the operator S (cf. (4.20) and (4.23)) can be interpreted
as the projection of the spin b along the local direction
determined by ¢. Indeed in this representation (y' = Ay) the

eigenfunctions (5.14) of S are eigenfunctions of-Z3 with eigen-

value e, as can be easily verified [35].

Neutrino Amplitudes

The other important limit of the complete basis

(5.2)—-(5.5) is the high-momentum limit k32 >> pz. In this case

all mass terms are neglected as compared to k3 and the solutions

assume the form of neutrino solutions [4], which correspond in

(5.2)—-(5.5) to take p = 0. Denoting s(kz) = sign of k3 and
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having in mind that y, = e S(k3) for v = 0 we obtain [36]

from (5.2)—(5.5)

A ' 3
(L,k,) - -ik.x .
Vo (Lokg) = {¢(+) | } eimd o3 o-ileft (5.16)
where
g -
¢(+)(L,k3) = (5.17)
iL
o
(Lks—[el—/f/Z)
and
¢, y(L,k,) U3
(=) . -ik.x o
w(_)(L’kS) = e—lmfb e 3 ellelt (5-18)
(Lo (_y (L,k3)
where
-1i
— o
Lks-lel—/Z/Z ]
by Lskg) = o . (5.19)
LB :

In the above expressions a and B are given by (5.6)—(5.11),

]
le| = vZ (2j+1) + V<2j+1)2 + (kg - %? % . (.

We have made the identification

L =e s(kg) = v, .

u=0

with

20)

21)

where L is the helicity (or chiralty) of the neutrino amplitude.
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We remark the invariant character of (5.21) since s(ks) is in-
variantly defined (with respect to coordinate and local Lorentz
transformations) in (2.22) through the use of the global Killing
vector field 8/3x3 and the left-invariant tetrad component
6%3) ='5§.

Solutions (5.16) and (5.18) are related by

' .o 5.2 %
w(+)(L,k3) = -iLy~y w(_) (_L’_kS) . (5.22)

Foldy-Wouthuysen and Cini-Toushek Representations of the Solutions

As we have mentioned already, the set of solutions
characterized by (4.22) and (4.23) corresponds to a hybrid repre-
sentation which mixes the advantages of the Foldy-Wouthuysen (FW)
representation [37] of Dirac solutions (with its good non-relati-
vistic 1imit) and the Cini-Toushek (CT) representation [38] which
is very convenient for large momenta (or massless) particles. To
see this let us start from the original Hamiltonian

V2

> (plyt s+ L5, (4.17)

H=v" (" 5

+ Zzﬂz) + X

where S = pysys—ksys (cf. (4.20)) and ﬂl and'n2 are given by

(4.15'), and make the following unitary transformations character-

ized by a unitary matrix of the form

3
U= &9 (5.23)

where ¢ 1s a real parameter to be specified for each case:
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(i) FK transformation corresponding to a generalized Lorentz
rotation in the plane (y,ks), or equivalently in the plane

(YO,YOYS) (cf. Ref. [39]1), which makes the new components of

0.3

ZSS along the axis y y~ (or the axis kS) equal to zero. This is

acomplished by taking the parameter ¢ in (5.23) determined by
cos2o = p/Vu2+k32, sin2o = —k3 Vp2+k32_.The transformed Hamiltonia:

is given by

g' = AUl 2 p 4+ 40 (Vp2+k32 . é? v953) (5.24a)

or equivalently

B' =P + 1° (Vu2+k32 v053 %?) (5.24b)

where we have denoted P ='Y5(Zlﬂ1 + Zzﬂz). By the above trans-

formation the constant of motion S is diagonalized, namely

st - ysyu~l =N/p2+k32 v053 (5.25)

and (4.23) implies that

YOs3yr -2 eyt (5.26)

where y' = Uyp. Since YO or 23 anticommute with P and y023 is a

constant of motion, by a further FW transformation we can reduce

the Hamiltonians (5.24a,b) to the following ones

' l
B - \/Pz . (Vh2+k32 L Y2 05342 00 (5.27a)
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i o Vp? s V% 40 ThE 5B (5.27b)

where P2 ='(ﬂ1)2 + ('nz)2 - izs[ﬂl,ﬂz]. We remark that the constant
of motion (5.23) commutes with the latter FW transformations.

We than have from (5.27a;b) and (5.26) the Hamiltonian equations

1 f
'Y = V/fz + (V@ +k." - e %?)2 yow" = ey (5.28a)
d ~ I —~
" = v/pz * (Vu2+k32 - e %?)2 D3 = ey - (5.28b)

For (5.28a) the sign of the energy is given by the eigenvalue
of YO, as usual, and for (5.28b) the sign of the energy is given

3 (¢cf. the NR limit (5.15)).

by the eigenvalues of =%
Representations (5.28a) and (5.28b) are equivalent by the unitary

~constant transformation

OO
Ok OO
OO CO
HOOO

(ii) CT transformation which corresponds to a generalized Lorent:z
rotation in the plane (u,k;), or equivalently in the plane
(YO,YOYS) (cf. Ref. [39]), and which brings'ZSS to the axis YOY3
(or the axis kS)' This is acomplished by the unitary matrix (5.23)
with the parameter o given by sin20 = s(ks)p/Vp2+k32 s

CO0S20 = s(ks)ks/\/p2+k32 , Wwhere s(k3) stands for the sign of

k3. It then results that
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@) = urdsu! - Ssa) Vit v0e? (5.29)
and from (4.17) we have the transformed Hamiltonian

' = UHU'-1 =P + 23(—5(1(3) U +k3 Y.5>+i22) . (5.30)
In the new representation ys is a constant of motion, and we
choose ¢' = Uy such that
5 1 . ' : .
y>u' = Ly , L = 1 (5.31)
where L is the chirality of y' (CT or chiral representation).
The operator YS corresponds in the old representation to

. =s(k,)
vl o 37 g

Vu©+k

3

, (5.32)

and from (5.31), (5.32) and (4.23) we derive

L =c¢e s(ks) y ’ (5.21)

which is a result we have obtained already for the high momenta
(k32 >> uz), or neutrino (u = 0) amplitudes.
Since-23 anticommutes with P, by a further CT trans-

formation we can reduce (5.30) to

" = \/Pz + (=s(ks) Vi +k32 ys + iz__Z_)Z £ . (5.33)

We remark that the constant of motion YS (cf. (5.31) and (5.32))

commutes with the latter CT transformation. We then have from
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(5.31) the Hamiltonian equation

1
By =-v/;2+(vm2+k32 _e vzt oy (5.54)

where we have used (5.21).

We finally note that for the solutions in the repre-
sentations (5.27a;b) and (5.34); obtained from our solutions
(5.2)—(5.5) by unitary FW or CT transformations; the operator

P2 has eigenvalue

PP - a( P 2lef-j-

We now discuss the normalization of the set of modes
(j,m,e,k3,e)_defined in (5.2)—-(5.5). Let us consider the 1local

classical Dirac current

i gty - eO(LA) x) YO (5.35)

The component j(o) = w+w of (5.35) is the local number density
. (0)

of fermions. As expected j transforms as the zeroth component

of a Lorentz vector with respect to local Lorentz transformations
(4.2) and it is a scalar function with respect to coordinate
transformations (and/or point transformations) of the space-

-time. The local number V-g d4x is thus a scalar and in-

tegrated over a given volume of the manifold

J./?E §Oa% = <yl (5.36)

yields a positive definite quantity which is coordinate invariant.
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Ferrions amplitudes are normalized according to the
integral (5.22) taken over the whole GYdel manifold [40], and

for the set (5.2)—(5.5) we hgve the § normali;ation [411]
<y (j',m',ks,e',e")|v ('-m-k 7€.e)> = (Zﬂ)3 Nz(e)
(1) J > 1 Kz,87, (s) J,m,K4,€, = .

S

I jj,émm,é(]e|—|s'l)é(ks—k%)dee, , (5.37)

where r,s = +,- corresponding respectively to positive (5.2),

(5.3) and negeative (5.4); (5.5) energy solutions, and

N2 (e) = Béfl.§}1+yf).J 82 (x)dx + (1+yf) Nk J az(x)diw
w L. 1 1 -

where P(e=1) = 1; P(e=-1) = YE . Using expressions (5.6) and

(5.7) for o and B we calculate

w = | Poos » 0w e et Ge
1 (VZ|e]-2j-1) G+1/DIVZ]e]-3-3/DY | (5 3gy
<B> = J Sz(x)dx = 1 <> (5.39)
1 4(j+1/2) (VZlel-3-1/2)
and we have the result
2 2<0> |e] T -urVusk ’
- I : - 3 .2
N™(e) = 7 — 5 1+ G___TZ‘—_—J ] . (5.40)
w (el” - Wk)(le[—ewk) 3

We denote

=\/p2+k A v2/2 . ‘ (5.41)

W 3

k
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The factor (ZTr)2 Nz(e) in the right-hand-side of

(5.37) can be interpreted as inversely proportional to the local
number density of states (j,m;ks;e); that is, the number density
of states in the Fourier space associated to the complete basis
of solutions (5.2)—(5.5). It is clear from (5.40) that the local
number density of states (j;m;ks;e) depends strongly on the sign
of e. We recall that (5.40) is well defined in the limit k3 + 0
(cf. (5.1)), and the same is true for the limits [42] m = -1/2
as well as j =m = -1/2.

(0) to

Since we have used the local number density j
normalize the wave functions; the normalization depends on the
orientation of the field of tetrad frames e%A)(x); with an
arbitrariness due to local Lorentz transformations (4.2). The

present orientation of the tetrad frame in which (5.37) and

(5.40) were calculated is nevertheless a preferred orientation

in"the_sense that (4.11) is based on the matter flow of the
model — actually the zeroth vector of the tetrad frame is defined
by the four velocity field of matter 6%0) = 6%, and (5.37) and

(5.40) are invariant under Lorentz transformations which preserve

this condition, that is; LOA = 52.

singles out (5.37) and (5.40).

The matter flow of the model

VI. THE GENERALIZED FOURIER SPACE OF FERMION AMPLITUDES

The Fourier space associated to the complete basis
(5.2)—(5.5) is constructed as follows. The kernel of the trans-

formation is defined by [43]

K(j,m,ks,e;x) = K(+)(j,m,k3,€;x) + K(_)(j,m,ks,e;x) (6.1)
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where

K, . = diag(—F, °‘2, £ 5 '°‘1 2)exp[i1n¢+ik3x3+ile|{l (6.2)
+) <B>1/2' <ot <3>1/ T

and

K, = diag(—Sm, —2 0, —% 0, Bi/z)exp]—im¢+ik3x3—i]e]1:jl . (6.3)
(=) <a>1/ <3>1/2 <o> / <B> L

and K, and K are related by YZKtt) = K(i)Yz. The kernel (6.1)

is a generalization of the exponential kernel of the Fourier
transformation (with the substitution of eiikx by the matrix
K(i)(x)). The diagonal form of K(i) is the simplest choice, and
is derived from an inspection of the system of solutions (5.2)-

-(5.5): for instance; we construct K(+)(x) with the column

vectors appearing in the expansion

-

8 0 0 0
{[8} - y2h [81 oy, [gl ~ v A {g”exp (img-ik x -i]e|t)

0 o

of the positive-energy solution (5.3). The normalizing factors
<a>1/2 and <B>1/2 are used to guarantee the unitary character

of K(i). The Fourier transform of a fermion field V¢ has the

expression

Fly] = wF(j,m,k3,€)>= J ars d4x K(j,m,ks,e;x)W(x) (6.4)

where the integration is taken over the whole manifold.

For (5.42) we have the unitarity property

J{ /g d*x K(j',mf,kg;e';x)KT(j;m;kS;e;x)=z(2n)3n 85518y 8 egkD 8 (fe[-[e" D).
(6.5)
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The first term K(+) of the kernel (6.1) can be considered as a
projector — with respect to the operation (6.4) — onto positive-
-energy states; since its action on negative-energy states (5.4),
(5.5) results zero; analogously the second term K(_) in (6.1)

is a projector onto negative-energy states since its action on
positive-energy states (5.2), (5.3) gives zero. Because a pro-
jector is not a one-to-one map; the inverse Fourier transform is
then defined separately for positive- and negative-energy ampli-
tudes with respective kernels K( ) and K(_). We have [42]

+

( ) i F_l (._ k - ) o0 ddeE
px) = wF J,m, 3}5’1) = 2 2
j=-1/2 m=-1/2 e ‘e>0 (27)

6(32 - Wi - 41j+1/211V/Z]e|-3-1/21) K:i)(j,m,ks,e;x)wF(j,m,ks,s;t)

(6.6)

for positive- and negative-energy states, respectively. The

following unitarity properties hold

dk._de

I | 2y s W4 (5+1/2) (VZ]e|-3-1/2))
j,m,e (ZTT)
e>0
c KD Gmk,e;x)K, L (Gmkyesx') = Eil_(i‘;’iln (6.7a)
and
dk3d€ 2 2
. j s 8(e” - Wi - 4(3+1/2) (VZ|e|-j-1/2)).
Jj,m,€e >0 (ZTT)
K' . Gmkaes0K, - Gmk,e:x') _sfeexn g
() 35 (=) LIMKLE, = (6.7b)

/-g
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1 1

which actually imply FF~ = F 'F = 1, as expected.

The Fourier transform of a positive-energy amplitude

(5.2); (5.3) is the four spinor

<8>1/2 3

.2
1Y, 1/2

. - <a>
k3+(-|€[-/7/2+p)y+

2m g (e)
o

pr(jmk3 e;+)=

Y+ <B>l/2
iy

| + <a>1/2

| Ko+ (-|e{-V2/2+u)y,

* 885508 (kgk8CGel-[e" ) (6.8)

where g(e) = y_ for e = 1 and g(e) = 1 for e = -1.
The Fourier. space described above is actually a

momentum space for fermions and it is obviously non-local [44].

Because of its greater simplicity we first consider
here the Fourier momentum space for neutrinos (or fermions with
k% >> pz). Expressing a neutrino positive-energy solution (5.16),

(5.17) as (we note that eWk = st for U o= 0)

ddeE 2 2
by Wokg) = 3 [ —2gs0e? - W - 4G/ (e -3-1/2)
jme (2m)

. K?+)(jmkSE;X)wF(jmkssL;+)

and noting (5.13), Dirac equation yAxﬁw = 0 for neutrinos results

in the transformed Dirac equation
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. A
- = .9
imaY g 0 (6.9)

where o is given by

1/2 V2

me = (el 0,-20G+1/2) V2] el-3-1/21 2 kgL BB L (6.10)

A

We have

™ =0 (6.11)

as expected for a massless particle, where P - nABﬂ The form

B
of the component g (along the direction of the vorticity
vector) shows that the "leptonic charge'" L behaves like the
coupling constant in the coupling of the spinor structure of
neutrino to the vorticity field. We comment here that it 1is
exactly the zeroth component To which appears as a factor in
(5.40); and characterizes the behaviour of (5.40) under local

Lorentz rotations. We shall therefore normalize all Fourier

transformed solutions with the remaining factor (cf. (5.40))

w (|e] - (m2) )(’EI—LNS)
This corresponds to have, dropping §-factors,
Wi = lel (6.13)
"F*F ) )

For a negative-energy neutrino solution (5.18),(5.19),

, dksde 2 2
w(_)(L,kS) = ) J — §(e” - Ty - 4(3+1/2)(VZie|-j-1/2))
jme (2m)~ = \
. kT

() (jmkssL;x)wP(jmkSSL;—)
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we analogously obtain (6.9) where m, is now given by

(-]e},0,20G+1/2) T e|-j-1/2011% kS-L*-‘/Zz) (6.14)

The same results (6.10) and (6.14) are obtained if
we used instead the infinite dimensional representation basis
discussed in Section Iv; the only difference being that the
quantum numbers j and m have their range -1/2 < j < =, -1/2 < m < ¢
completely independent. We remark that Mo has the same sign
in (6.10) and (6.14) due to our definition of (6.3); in fact
if in (6.3) we change k3 +—k3 and L - -L (cf. (5.21),(5.22)) we

have in (6.14) that n

> =Ty without altering other components.

3
It follows that the corresponding Ta for negative-energy solutions
has the opposite sign of T for positive-energy solutions, a
behaviour characteristic of "plane-wave-type' positive- and
negativeQenérgy amplitudes related through property (5.22). This
fact is important when we consider symmetry transformations
between particle. and antiparticle amplitudes.

We now calculate the component (along the vorticity
field 8 ) jés) of the local four-current (5.35) of neutrinos.
For the positive-energy amplitude (5.16), (5.17) normalized

according to (6.12), (6.13), we obtain

- an® erpty,

85500k s Clel-lerh L (6.18)

For the case of a massive fermion we use (6.6) to

obtain the transformed Dirac's equation

(YATTA - U)IPP = 0 (6.16)



- 56 -

where Ta is now given by

V2 5)

ny = (el 0,-20G+1/2) (Z|el-3-1/21H 2 - HF (6.17)
for positive-energy solutions; and
Tyo= (-lel,0,20G1/2) (VZle]-i-1/D1Y2, k- 2 vS) (6.18)

for negative-energy solutions. We must comment here on the sign
of o in (6.17) and (6.18). The same sign of k3 is due to our
definition (6.3); if in (6.3) we change k3 - -k3 it results

Tz (negative energy) ='-k3 - é? YS. Thus for

that in (6.18)
negative-energy solutions the components of Ta have the opposite
sign of the corresponding positive-energy solutions, except for
the term - %; YS appearing in UES This is due to the fact that
the symmetry transformation y - iyzw* change the sign of polar
momentum but leave invariant the axial-momentum. In case of
neutrinos (cf. (5.29), (5.22) and comments below (6.14) L » -L
because although YS do not change éign; its eigenvalues change
under ¢y - iyzw*.

We note from (6.17) and (6.18) that not all components
of T, are scalars, namely the component of Ta along the vorticity

field is the matrix

V2
TYS = k3(1 - WZ) Y ) ’ (6.19)

a result which 1is obviously due to our definition (6.2) and (6.3) for
the kernels of the transformation. However a detailed examination

shows that we cannot define a kernel K(+) which commutes [45]
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with YO and for which the corresponding m, are numbers. For
massive fermions we then have to live with momenta of the
type (6.19).

In what follows we consider the momentum space asso-
ciated to the choice (6.1)-(6.3) for the kernel of the transform-
ation. The first reason for this choice is simplicity, but the
main reason is that the constant of motion S (cf. (4.20)) commutes
with K. Then b is also eigenstate of S with eigenvalue -eVp2+k32
and for k32 >> u2 wF becomes eigenstate of ys and of the helicity

operator ¥.T. Using this fact we can transform (6.19) to:
(1) if k3 £ 0

2

My o= kg (- ) -

— Y7y
- K

associated to the basis {wF(j,m,kS,e,e)}. Using (6.20) equation

(6.16) can be rewritten

A -~ V2 5
Y WAwF - p(1l - jfg Y) wF = 0

where 3
~ ' o | 1/2 /Z SVH kg
Ty = (£e,0,5 20(j+1/2) (vVZ]e|-j-1/2)1 > Kz (1-= ) )
k
3

With respect to the momenta %A and for u # 0 we have the

conservation of the four currents [46]
~ - i\ fz
2

(-n-l -

1 1, 715
ATTA) Iy = (Fg + Fg) YEY Vg (6.21a)

or equivalently
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~r = A V2 L1 1..A U 1 1 —1
(‘EA—TTA) { JV s (T + -E—)Jax} =7 (;—Z - —Z)WF\PF (6.21b)

[}
3 5. 3 k's

— . —y 5
where jé = wéyAwF and jA = wﬁy YAwp. For ¥ = 0 the two

currents are conserved separately.

(i1) if k3 =0

V2 .3
Mg = = €Y (6.22)

associated to the basis {wF(jJBRSJAGJ}- Using (6.22) equation

(6.16) can be rewritten

i - (u - B ey = 0 (6.23)

where 7, = (+|e],0,32[(j+1/2) (VZ}e|-j-1/2)11/%,0). Expression
(6.23) is valid only for yu # 0. In this case the mass invariant
~ = V2 2

ﬂATTA = (u - T e)

and thus the local Lorentz observers see massive fermions with
distinct masses for distinct values of e. In other WOrds, massive

fermions have an intrinsic degree of freedom associated to the

‘quantum number e, which is raised by the gravitational coupling

of the fermion to a vorticity field; and produces in this case

a split of mass. We could use this mass split effect in a
gedanken experiment to measure the direction and the intensity
of the rotation of the universe: particles in motion in a plane
orthogonal to the direction of the vorticity field would present
a split of mass proportional to the intensity of the vorticity

field. By a change of the plane of motion this split effect
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would be obliterated because in this case we would need a super-
position of solutions (with distinct values of k3) to describe
the motion.

For the positive-energy Fourier amplitude (6.8) the
component (along the local vorticity field 5) 553) of the local

. (A)

four-current Jg = ﬁFyAwF is given by

p -V +k32

. (3) 6 1
S A s
1s k 32
3
éjj,Gmm,é(ks—ké)é(le]—le'I) (6.24)

We have here normalized (6.8) as in (6.13) for neutrinos
(cf. also (5.40)). We shall also use this expression to discuss
the microscopic asymmetry of fermion currents in the presence

of a local VOrticity field.

VII. SYMMETRY TRANSFORMATIONS FOR FERMION AMPLITUDES AND

MICROSCOPIC ASYMMETRIES OF FERMIONS

In order to examine fermion-antifermion symmetry of
some processes, we must try to define amplitudes for particle and
antiparticle states. To this end we obtain transformations which
can be interpreted as leading from particle to antiparticle
amplitudes and which actually are symmetry transformations for
the present fermions in the sense that they preserve the Hilbert
space of fermion solutions generated by the basis (5.2)-(5.5).

These transformations can be reasonably understood as corres-

ponding locally to known symmetries of particle physics.



The use of tetrads is practically unavoidable to
describe the interaction of fermions with gravitation [27,47]
and, in this context; the theory has two groups involved: the
local Lorentz rotations (4.2) of the tetrads and the isometry
group of the manifold. Spinors are defined with respect to the
local Lorentz structure; in the sense that they provide a basis
space for a spinorial representation of the local Lorentz
group. On the other hand these spinors provide a basis space for
a scalar representation of the isometry group of the manifold.

In the definition of fermion and antifermion amplitudes
both groups are involved; for instance the energy eigenmodes
are related to the Killing vector 3/3t of the isometry group
while the charge-conjugation operation must take into account
the local spinor structure. In this way, we obtain here consistent
fermion- antifermion symmetry transformations of the Hilbert
space of fermions amplifudes generated by (5.2)—(5.5) and which
then necessarily takes into account the two group structures
present. V

Let us start by Eénsidering the neutrino (or massive
fermions with k32 >> pz) Hilbert space of solutions generated
by (5.16)—(5.19). Starting from a negative-energy solution lP(_)(L,kS)

(cf. (5.18),(5.19)) we define the transformation

¥y Mokg) » €T g, 1) (7.1)

vhere C is a matrix of the algebra of Dirac matrices, which

satisfies

Cy'°C = - ¥ . (7.2)
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In the present representation [29], (7.2) is satisfied by

C vyl (7.3)

where ~ denotes equality up to a constant phase factor. An
explicit calculation of (7.1) gives

V¥ BT (kgL = Gy, (7.4)
Transformation (7.1) has the following properties: (i) it is a
symmetry transformation of the Hilbert space of neutrino
amplitudes; since it takes a negative-energy solution (5.18)
to a positive-energy solution (5.16);and vice-versa; (ii) the
S matrix (7.2) and (7.3) has the character of a charge-conjugation
operator on the amplitudes (5.16)-(5.19) (in case of charged
particles it relates solutions with distinct signs of the charge);
(iii) neutrino amplitudes related through (6.1) have opposite
helicity L and momentum k3 — the local momentum T (cf.(6.10)
and (6.14)) change sign under (7.1). We note that (5.4) is
precisely the symmetry (5.22) between positive- and negative-
-energy neutrino solutions. From the above properties we inter-
pret (7.1) as a charge-conjugation-parity (CP) transformation for

neutrino amplitudes, and hence we have the independent positive-

-energy wave-functions interpreted as

¢(+)(k3,L) = neutrino amplitude
(7.5)

w(+)(-k3,—L) = corresponding antineutrino amplitude

The positive-energy amplitudes (7.5) are said CP related in the
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sense that the corresponding negative-energy amplitudes
w(_)(ks;L)[w(_)(-kS,-L)] of one is transformed into the other
w(;)(—ks;L)[w(+)(k3;L)] under (7.1). From the local CP invari-
ance of neutrino physics (only negative-helicity neutrinos exist)
we take L = -1 for neutrinos, which implies L = 41 for antineu-
trinos (cf. (7.5)). Neutrino and antineutrino amplitudes have
their respective momentum T with opposite sign.

We make identical analysis for the amplitudes of
massive fermions. In what follows we assume that all fermions
involved in our considerations are produced by weak interactions.
From the local law of physics we are then led to take that

2 5 uz) — electrons are left-polarized

— for high momenta (k3
at production by weak interactions, and from CP invariance
positrons are right-pélarized. In other words high-momentum
fermions (antifermions) will have es(ks) = -1 (es(ks) = +1) at

production by weak interaction and, since es(ks) is a constant

of motion; they will be characterized by

Il

es(ks) = -1 or L -1 for high-momentum fermion, neutrino

(7.6)

]

es(ks) = +1 or L +1 for high-momentum antifermion, antineutrino

in the absence of interactions other than G8del's gravitation.

We can now discuss the microscopic asymmetry of high-
-momentum fermion/neutrino currents along the direction determined
by the vorticity vector field. From the expression (6.24) (which
reduces to (6.15) for u = 0) for the component of the local
Fourier current }F along ¢ we take the relevant factor

p-Vu +k4

JIE-S) = (—K‘——) (Vu - ev/2/2) (7.7)
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and we distinguish the two cases:

(1) V p:+k32 > V2/2: j;s) has the opposite sign of k3; for
electrons Ces(ks) = -1) we have that §F
is large along the direction antiparallel
to & than along the parallel direction;
for positrons (es(ks) = +1), jF is large

along the direction parallel to 9)

(2) V pz+k32‘:>/7/2 : for electrons the component of §F along
¢ is always negative (?F has only antipa-
rallel component along 5); for positrons
the component of ?F along G is always

positive.

Analogous behaviour holds for neutrino/antineutrino as (6.24)
goes continuously to (6.15) in the 1imit p = 0. The diagram of
Fig. 1 is illustrative. It is easy to see that the restrictions
(7.6) violate P while they are CP invariant. As far as weak
interactions are concerned; the selection rules (7.6) are
legitimate for the high-momentum fermions produced.

As for the local current j(A)(x) = $(x)yAw(x), we
calculate the component j(s)(x) at the origin x = 1 (the results
are typical due to the homogeneity of the space-time). In the
normalization «<y|y> = le| (cf. also (5.40)) we obtain for the

positive energy solution (5.2) and (5.3)

2 .
o 4 (el P (e ey

<a> ERTERATY I 2
3..2
1+ (—p—397
3
2
g?

(lEI?eWk)Z } (7.8)
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Positrons Positrons
9J,(3) +.(3)
| F | F
6 . : e=c1 5 e=+‘1 le=—1
| Raal ! L]
I | |
Ve=41
e=+1
e=-1
Y e=-1
Electrons Electrons
.(3) . (3)
J F ] F
Case vi?+ki > /2 /2 Case Vi?+k% < V2 /2

Fig. 1: Diagram of Current Asymmetry.

where <o> is given by (5.38);and o and B have their expression
in (5.6), (5.7). We note that j(A) depends on the coordinate

x = cosh2r only. At the origin x = 1, we can see that for a

i}
1+

given j > 1/2 only the modes m 1/2 contribute to (6.8),

namely for a given j > 1/2

2

(3(3) (X))m=_1/2 = ,%3 R (lell_ewk) (7.9)
(cf. Ref. [30]) and

G, 10 = & R Clel-ewp (7.10)

- -

4

2 77
where R%= 1/2 (-u+Vi+k.2) W (VZ|e|-2j-1). The
: T
1 + k )
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total local current along ¢ (at the origin x = 1) for a given

mode j > 1/2,

50) (x21) - 5 (j(3)(x=1))m
m=-1/2,1/2

" is then calculated to be

j(s)(x=1) = (p— p2+k3' ) w? (VZ]el-2j-1)W
k3' —u-LVuZ-t-ksz 2 K
1+ ( X ) (7.11)
3

The same analysis and diagram for the asymmetry of the Fourier

current (6.7) applies to (7.11).

A special case is the mode j = m = -1/2 for which

. (3) e 2 :

jr2) (x=1) = = R /Z|W, | (|w, |-eWw,) . (7.12)
. k k k k
j=m=-1/2 3

The current asymmetry in this mode is analogous to the two pre-

vious cases, for Vp2+k 2 < ¥2/2. For i/p 4k32 > V2/2 we

3 3

have non-null current components along 5 only for e = -1, with
electron current antiparallel to ¢ and positron current parallel
to ¢ [48]. This microscopic asymmetry of current — which 1is

a parityvviolating effect — could be used as a local test for
the existence of a rotation of the universe. For instance the
decay ni.+¥f34 v(v) in the presence»of a vorticity field can
give rise to parity violating effects — e.g., asymmetry in the
muonic current;aSymmetry in neutrino current — which could in
principle be detected and would be an indication of the presence

of rotation.



- 66 -

Finally we draw some interesting conclusions concerning
the number density of fermion and antifermion states, CP
violation and lepton asymmetry, for the present problem. To this
end we note that the number density of stateé — which we denote

by n(e) and is proportional to

dky, Je|-vZ(25+1) e
W

e}
~
o
—
§
]

i (7.13)
k N™ (e)

where Nz(e) is given by (5.40) — depends strongly on the sign of

e (through |e| and Wk); for \/p24k32

Consequently, for a given value of (j;m,ks) such that Vu +k32

is of the order of /7/2; we could have a number density of states

of the order of v2/2.

different for e = -1 and e = +1. This fact can be significative
in the presence of CP-violating interactions; as we shall discuss
now for the case of creation of fermion-antifermion pailrs in the
presence of a CP-violating perturbation; when a particle- anti-
particle number asymmetry may possibly occur [49].

Since CP transformation does not change the normalization
of a wa;e function; we can split the Hilbert space basis of
fermion amplitudes satisfying (7.6) into two distinct sets:

fermions and antifermions of type 1 (amplitudes with e = +1) and

fermions and antifermions of type 2 (amplitudes with e -1).
Type 1 amplitudes are CP related; and type 2 amplitudes are also
CP related. In the diagréms of currents in Fig. 1 the large
components of fermion and antifermion currents corresponds to
amplitudes of type 2 and are CP related. The small components

correspond to CP related amplitudes of type 1, which clearly

shows that the asymmetric emission of fermions is CP invariant.
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In case of creation of fermion pairs in the present

universe, we can distinguish two possibilities:

(i) fermion-artifermion pairs whose amplitudes are CP related,
namely (lel) or (fzfz); for each case the corresponding current
diagram is CP invariant, and the number density of fermion states

is equal to tke number density of antifermion states.

(ii) fermion-zntifermion pairs whose amplitudes are not CP related,
namely (fsz) or (fzfl). In both cases we note that e has opposite
sign for fermion and antifermion amplitudes, which corresponds to

a number density of states different for fermions and antifer-
mions . For (flfz) or (fz?l) we have, respectively, the number
densities of states (n(e:%l); n(e=-1)) or (n(e=-1), n(e=+1)).
Nevertheless 1f the creation of pairs is due to a CP-invariant
perturbation toth cases will be equally probable since
(fsz)<—JEL—>(f2T1) and no net asymmetry in fermion-antifermion
number is possible. A net asymmetry (due to different density

of states avaiable for fermions and antifermions) will appear

if the pair production perturbation violates CP. Indeed if pairs
(flfz) are prcduced; thé pairs (fzfl) are then forbidden and a

net asymmetry between fermion and antifermion will appear pro-

portional to the ratio

n(e=+1) - n(e=-1)
6jmk3 T n(e=+1) + n(e=-1) . (7.14)

The ratio (7.14) is significantly non-zero only for \’u2+k32

of the order of VvV 2/2.

It could be argued — in the case of creation of charged

fermion pairs (for instance electron-positron pairs) — that the



non-null ratio (7.14) would violate charge conservation which is
a global (space-time) symmetry of the theory (in fact the theory
has a global symmetry associated to charge conservation; in
contrast to the légél CP symmetry referred to above). The

answer is that the CP-violating perturbation which creates pairs

with 6 £ 0 1is locali;ed [49] and the local charge conserva-

jmkg
tion is actually violated by the perturbation.
We also remark that the above discussion is independent

of the space-time point considered, since we have dealt with

scalar quantities only.

VIII. CONCLUSIONS

One of the main conclusions of our investigation is that
the presence of a vorticity field of matter produces, via gra-
vitational coupling; microscopic asymmetries in the physics of
spin-1/2 fermions. We have shown our results in the context of
the Einstein theory of gravitation, and for technical simpiicity
we have considered GBdel's universe as the gravitational back-
ground because it is the simplest known solution of Einstein
field equations which is stationary and in which the matter
content of the model has a non-null vorticity. Complete bases
of scalar field solutions and Dirac field solutions are obtained,

in invariant modes of the total angular momentum which is defined

in close connection with the Killing vectors of the space-time.

The results follow:

1) we solved the scalar field equation by separation into invariant



modes defined by the global Killing vectors of the space-time.

and obtained a complete set of solutions of scalar field

modes are eigenfunctions of the square of the total angular
momentum of the scalar field system — in fact for these modes
the séalar field equation is reduced to the eigenvalue equaticn
for the total angular momentum operator of the system. The
angular momentum algebra is naturally defined by the Killing
vectors of the space-time, up to a complexification of one of
the Killing vectors. The field solutions are assumed to be
regular over the whole GHdel background due to their test field
character, that is; they are assumed to be finite perturbatiozs
at any space-time point. Two distinct complete sets of soluticns
in these hyperbolic harmonic modes are obtained, which
constitute bases of representation for the algebra of angular
momentum: one infinite-dimensional and the other finite dimen-
sional with dimension (%2+1), where % is a positive integer or
zero which caracterizes the latter representation basis. For
both cases, the angular-momentum vector space is polarized alcag
the direction determined by the vorticity field ¢ . The spectrum

of energy eigenvalues for both cases are calculated to be

Z
3

R

lel = vZ (22+1) + V (20:1)2 + k.2 . ufa’ 4 1

2) The local dynamics of fermions is obtained from the Dirac
equation in GBdel's universe. The Hamiltonian which determines

the local dynamics is defined with respect to the global timelike
Killing vector 3/3t. Contrary to the flat space case, a staticaary
state of the system cannot have helicity as a good quantum nuznder.

There is however a new constant of motion S of the system, whcse



existence is crucial for the separation of the equations. For
low values of momenta S can be interpreted as the projection of
the spin of the system along the direction determined locally

by the vorticity vector. For the limit of large momenta S 1is
proportional to YS and stationary states which are eigenfunctions
of S are also eigenstates of the helicity of the system (defined
with respect to the local Lorentz frames of the tetrads). S
allows to define a conserved projection operator into states
which are left- or right-polarized in the large momentum limit.
We select a basis of simultaneous eigenstates of S and of the
Hamiltonian; in which the separation of Dirac equation is made.
The corresponding second-order equations are shown to be the
eigenvalue equation for the square of the total angular momentum

operator. Two distinct complete stes of normalizable solutions

are obtained, which are spinorial generalization of the hyperbolic
harmonic modes of the scalar field case. These distinct sets of
solutions constitute two representation bases for the algebra of
the total angular momentum of the system: one infinite dimensio-
nal and the other finite dimensionhl. The finite dimensional
representation basis is characterized by a half-integer j > -1/2,
and for a given j the dimension of the representation is given

by (3 + 3/2). The angular-momentum vector space appears to be
polarized along the direction determined by the local vorticity
field & . Without loss of generality we analyse only the finite
dimensional case. From an examination of the low momentum limit
we have that the complete basis of solutions of Dirac equation
must be normalized differently for different values of e (quantum
number associated to S), in order that the solutions are bounded

for all values of the momentum k3. In the limit k3 +~ 0, the change
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in the sign of e corresponds to the mass reversal symmetry of
substitution for Dirac equation. Also in this limit k3 = 0 we
have not only zero-energy modes, but also states of massless
fermions which — due to the gravitational coupling to matter

vorticity — are converted to bosons polarized along the direction
of the vorticity % . In the limit of large momenta (k32 >> uz)
the solutions assume the form of neutrino (p = 0) solutions, in
which we have the identification L= esﬁgﬂ(@? where L is the heli-
city (or chirality) of the neutrino wave function. We also show
that the set of solutions obtained corresponds to a hybrid re-
presentation — which mixes the advantages of the wusual Foldy-
-Wouthuysen representation of Dirac solutions (with a good non-
-relativistic 1limit) and of the Cini-Toushek representation

which is most convenient for large momenta (or massless)
particles — with the corresponding correct limits in the non-

-relativistic case and in the case of large momenta (k32 >> uz)

or massless (u = 0) particles.

3) We construct the Fourier space associated to the complete

bases and the complete unitarity felations for the kernels of the
transformation are obtained. This Fourier space is a momentum
space for fermions. In the case of massive fermions, the component
of the momentum along @ is not a number but a matrix (indeed this
occurs for any consistent generalized Fourier transformation we
can define); for k3 = 0 1t appears that massive fermions have

an intrinsic degree of freedom associated to the quantum number e

which is raised by the gravitational coupling of the fermion to

the vorticity field and produces a split of mass.

4) From the symmetry properties of the Hilbert space of fermions



solutions (messive and neutrinos) and its corresponding Fourier
space, we are able to define fermion and antifermion amplitudes.
We assume that all fermions involved in our considerations are
produced by weak interactions. From the local laws of physics

we impose that — for high momenta (k32 >> uz) massive fermions/
/antifermions; or neutrinos/antineutrinos (¢ = 0) — fermions are
left-polarized at production by weak interactions, and from CP
invariance antifermions are right-polarized. Since es(k3) -
which characterizes the polarization of high momenta massive, or
zero mass fermions/antifermions — is a constant of motion, it
then follows the selection rule for high momenta or zero mass
fermions/antifermions: es(kS) = -1 for fermions and es(ks) = +1
for antifermions; as long as the produced particles have no in-

teraction other than GBdel's gravitation.

5) In our following statements all massive fermions are considered

NN pz). The Fourier current

in the high momentum limit (k3
associated to the fermion amplitudes (electrons, neutrinos) as
well as the local current calculated at the origin x = 1 (for a
given j > -1/2, summeé over all contributions -1/2 <m < j) are
asymmetric along the direction determined by the vorticity field:
the component of the fermion current along the direction antipa-
rallel to the vorticity field is larger than the parallel componen:
in some cases the fermion currents are purely antiparallel to )
Also the Fourier component of antifermion amplitudes (positrons,
antineutrinos) as well as the local antifermion current calculated
at the origin x = 1 (summed over all contributions -1/2 <m < j)

are asymmetric: the component along the direction parallel to the

vorticity field is larger than the'component along the direction



antiparallel (in some cases the antiparallel component is null).
Therefore, at the microscopic level, fermions (electrons, neu-
trinos) are preferentially emitted antiparallel to the local
vorticity field; as well antifermions (positrons; antineutrinos)
are preferentially emitted parallel to the local vorticity field.

This result is CP invariant.

6) The gravitational coupling of fermions to the matter vorticity
field of the cosmological background gives rise to parity vioclating
effects — for example, a split of mass for particles in motion in

a plane orthogonal to the vorticity field (cf. Sec. VI), and
asymmetries of microscopic currents of fermions (cf. Sec. VII).
These parity violating effects could in principle be used in
devising experiments to detect the presence of a cosmological
rotation of the universe, its direction and intensity, as we have

discussed in Secs. VI and VII.

7) In case of production of pairs under CP violation a net number

asymmetry appears between fermions and antifermions, which is

significantly non-zero for Vp2+k32' of the order of the vorticity

Valﬁé v2/2.
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posed, and with respect to the scalar product to be defined

+ . . .
in the next section, the momentum T 1s Hermitian.

/&

. . 1 .
Actually the fermion wave function (-g) y 1is a pseudo

scalar with respect to general coordinate transformations.

Because successive application of J(_) would lead to non-

normalizable functions, namely, m+m'/2 < -1/2.

We use the result lim cF(a,b,c3;A) = abAF(a+1l,b+1,2;X).
c>0

J. Tiomno, N. Cim. 1 (1955), 226.
+ 3

Actually we have A S(k3=O)A = =Z7.

We remark that in the limit ¥ = 0 solutions for different e

differ by the factor L =% 1.

L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78 (1950), 29.
M. Cini and B. Toushek; Nuovo Cimento 7 (1958), 422.

J. Tiomno, Physica 53 (1971); 58.

Besides the coordinate independence of the definition (5.36)
for the normalization integral, we have analogous convenience
as discussed in the case of the normalization (3.35) for the
scalar field solutions. When a global space-like hypersurface
is avaiable in the geometry of the space-time, the definition
(5.36) can also be shown equivalent to the usual definition
of the conserved scalar product for fermions solutions which

are eigenstates of the Hamiltonian of the system.

In the right-hand-side of expression (5.37) the Kroenecker

delta See, is obviously redundant (cf. expression (5.12)).



[42]. We note the relation

12 - w2 . o4(+1/2) (VTlel-j-1/2) .

le K

[43). In the remaining of this section we take for simplicity

w = 1.

[44]. The local Lorentz group (4.2), (4.3) — with respect to which
the spinor structure is defined — induces on the Fourier

space the group of transformations

, , ..dk3fds' 2 5
$ (jmk,ee ;%) = ) —2 . §(e“W, T-4(j+1/2)(V2|e|-j-1/2)
F 3 Laby 3 k
j'm'e (2m)
S(imkgee;i'm'kie’e )P (G m'kje e’ ;)

where

. I DU PO DO R B W 4 1 .
S(Jmk3ee,3 m k3€ e') = J V=g d x K(i)(Jmk3€e,x)S(x) .

Kti)(j'm'kée'e';X)

The infinitesimal version of the above transformations are

easier to handle.

. .. 0 .
[45]. We impose the condition [Ki’Y ] = 0 in order to have

T = ilei always.

[46]. Expressions (5.48) show that the gravitational coupling of
fermions to matter vorticity violates parity: in fact the
conservation equations (5.48) are not invariant under active
parity transformations of the system, for instance an active
reflexion through planes which contain the x3—axis. We note
that the parity transformations considered here are local
transformations defined with respect to the local Lorentz

frames of the tetrads.

[47). P.A.M. Dirac, in Recente Developments in General Relativity

(Pergamon Press, New York, 1962) pp. 191-200.

[48]. The preferential emission of spin-1/2 fermion (antifermion)



along the direction " antiparallel (parallel) to the local
vorticity field has a macroscopic analog in the case of
neutrino evaporation by a rotating black hole. Cf. A.
Vilenkin; Phys. Rev. Lett. 41 (1978); 1575; Phys. Rev.
D20 (1979), 1807 and D.A. Leahy and W.G. Unruh Phys. Rev.
D19 (1979), 3509.

[49]. Provided also that the characteristic length of the pair-
-creation perturbation be much smaller than the characte-
ristic dimensions of GBdel's universe. In other words,
the pair-creation perturbation must be localized in a

small space-time volume of GYdel's universe.
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ERRATA

pg 29 - equation (4.26) should read

dz 2X + m'! ! 52 + ﬁz e (m"+m) +
dXZ (x+1) 2

(m-1/2) (m'-1/2)1 0

m'+m+v2 € .3
+ —= - 7 -

2
(x -1)

0 (m+1/2) (m'+1/2)1

pg 31 - equation (4.43) should read

J ov(m,m') = - —30  y(met,m'41) (4.43)
+ m+m'+3

Pages 13, 14, 33 and 34 should be substituted by the following

ones.
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1im ¢"¢ = finite ‘ . (3.22)
x+1
lim v-g ¢"¢ = 0 ) (3.23)
X+oo

From the explicit expression (3.17) for ¢€ m(x) condition (3.22)

implies that
m > 0 : (3.24)

So starting from a given regular solution ¢e,m with m=positive
integer or zero, we can generate a sequence of regular solutions[19]
by successive application of L , which by (3.21) necessarily
terminates at m = 0.

On the right the sequence could in principle extend to
infinite values of m by successive application of L, . However
from (3.23) two distinct possibilities arise. By using the

asymptotic expression of the hypergeometric function[Z0],

condition (3.23) is satisfied if either [21]

(1) a = negative 1integer or zeTro (3.25)
or
(11) c-b = m+l-b = negative integer or zero (3.26)
with
a=m+ P esl 2 (3.27)
b-m+ZFc.1l.D (3.28)

for both cases (I) and (II). Two distinct sets of solutions arise:
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Type I solutions

We express any negative integer or zero by m-%, where

£ = integer > m, that is,
0 <m< & . (3.29)

= 0 which

NS ]

From (3.25) and (3.27) we then have % + %? £ + % +

implies

e - _[/7 (20+1) + V' (2041”4 k2 4 wfat o 1j] . (3.30)

The corresponding positive-energy solutlons are obtained by

taking the complex-conjugate solution ¢*. We note that for

type I, the negative-energy solutions are associated to the

negative exponential e'im¢ [22]. The eigenvalue of Ly for this
V2

case are given by 31 (m - 7; le|) for positive/negative energy.

Also from (3.20) we have that

L = 0

+ ¢€,£

as expected.

Type II solutions

We denote here any negative integer or zero by -4, where

£ = integer > 0 . (3.31)
From (3.26) and (3.28) we have L - %; € + % + % = 0 which
implies
t
e = V2 (20+1) + V (20:1)% 4 k24 wfater (3.32)

3
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any of its components along a difectioh ofthogonal to @ 1is not.
The allowed '"rotations" in this space maintain the direction 9
invariant.

To proceed we shall then make use of regularity and
boundary conditions on the wave functions; and obtain two
distinct sets of solutions, one infinite dimensional and the
other finite dimensional representation basis of the algebra of
angular momentum. On the set of solutions (4.30) we now impose
boundary and regularity conditions; namely that Dirac fields
(which are test fields and do not contribute to the curvature
of the cosmological background) are finite perturbations at

any space-time point. We impose similarly to (3.22), (3.23),that

1im ¢ty = finite (4.47)
x=>1
lim v-g Yty = 0 . (4.48)
X o0

The quantity Yty is the component of the Dirac current Eyu(x)w
along the four-velocity of the matter content of the model.
By using (4.31) and (4.32); the regularity condition (4.47)

implies

. m> 1/2 . (4.49)

So starting from a given regular solution y(m,m') and
by successively applying J(_) we necessarily arrive at a solution
which does not satisfy (4.49) unless J ¢y = 0 for some value (m,m').
From (4.42) we have that the sequence finishes on the left for

m+m'/2 = -1/2, and we must then have

‘“;m' > -1/2 (4.50)
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that is, m+m'/2 takes half-integer values greater or equal to-1/2.

m+m' _

The lower bound 5>—= -1/2 is not in contradiction with the regula

rity condition (4.47) because we have [33] 1im o = finite for all x.

m+m'

> -1/2

On the right the sequence could in principle extend to infinite

values of m+m'/2 by successive application of J+.

Condition (4.48) will nevertheless impose an upper bound on the
values of m+m'/2.
From (4.48) two distinct possibilities arise [20,21].

Either (cf. the scalar field case)

(1) a = negative integer or zero (4.51)
or
(11) c-b = negative integer or ZeTro (4.52)
with
)
a=%ln—+%7€+%+% (4.53)

p - mxm' _‘/zz (4.54)

T2

™
+

DO =
1

(=

for both cases (I) and (II) and we obtain the two distinct sets

of solutions:

Type I solutions

We denote any negative integer or zero by m+m'/2 - j,

with j = half-integer > m+m'/2Z, that is,

!
VAR (4.55)




