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ABSTRACT

The magnetic behavior of a médel in which van Vleck ions,
under the action of a crystal field, interacting by exchange
with an electron gas is investigatéd. The condition of onset
of ferromagnetism and the behavior of the critical temperatu-
re, band and ionic nagnetizations (and susceptibilities) ver-
sus temperatufe, as a function of the band width, exchange
interaction and the crystél field splitting energy parameters
are obtained within an approximation equivalent to a molecu-

lar field formulation.

On a &tudié le comportement magndtique d'un modéle dans
lequel des ions van Vleck, sous l'action d'un champ cristallin,
interagent par échange avec un gas d'électrons. On a obtenu la
condition d'existence d'ordre ferromagnétique, la dependence ave
la temperature de l'aimantation et de la susceptibilité ainsi
gque la temperature critique en fonction de la largeur de bande
et des paramétres du champ cristallin et d'@change dans une

approximation de champ moléculaire.



1. INTRODUCTION

The onset of ferromagnetism in a system consisting of
a paramagnetic electron gas and localized magnetic moments
coupled in such way that the electron gas creates a molecu
lar.field which acts on the logalized spins and vice versa
is, since long, an exercise in text books [}].“This nodel,
sonetines refered to as Vonsoviskii-Zener (V-Z) model, has
been extensively used as the starting point to explain a
variety of magnetic properties (magnetic susceptibilities,
Curie temperatures, phase transitions) of rare earth inter
metallic compounds [?—5]. In the case of the heavy rare
earth compounds of Y and Co a quantitative prediction of
the Curie temperature as a function of the rare earth posi
tion in the periodic table can be successfully compared to
Ehe experimental data [E]. However, for the'light rare earth
compounds, as remarked by Bloch et al [5], crystal field
effects have to be taken into account and that complicates
the simple description applicable to the heavy rare earth
compounds.

A particularly interesting case where the crystal field
plays a fundamental role is the case of the systems where
the rare earth component is a van Vleck ion. A typical exam-
ple is PrAl2 for which magnetization and susceptibility studies
as a function of temperature are available [7,8]. These are ten
tatively explained with the help of a model, known as bootstrap
ferromagnetic model [Q], in which in addition to a crystal
field term (describing the two level splitting of the
ground state of the van Vleck ion), a Heisenberg interaction

between the pseudo—spins/\associated to the ions. In a

W
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molecular field approximation this model exhibits ferromag-
netism. Here, in contrast to the V-Z model,the conduction
band does not seem to play a major role although one may
assume it is somehow implicit in the exchange interaction.
The purpose of this work is to explore the magnetic
properties of the following modgl: a crystal of van Vleck
ions coexists with a paramagnetic electron gas. Each ion is
under the action of a crystal field, which splits the ground
state into two levels and interacts, via exchange, with the
itinerant electrons. We show that this model may exhibit
ferromagnetism both in the electron gas and in the ions,
the magnetizations and susceptibilities being a function of
the band, crystal field and exchange parameters. The plan
of the paper is as follows. In the next section we introduce
the model, the physical quantities to be computed and the
method employed. In section 3 the formal solution and the
approximations used are presented. Finally, in section 4, the

numerical solutions and the magnetic behavior are discussed.

2. FORMULATION OF THE PROBLEM

The model Hamiltonian is

_ + _ X _ A4

H= ] Ti5 €igCye ~ B L Sy - J ) sy s] (1)
The first term is the conduction band Hamiltonian in

the Wannier representation. In the Bloch representation it

is written as
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kX and ﬁi are defined in the reciprocal and direct space res
pectively; the sum over k is in the Brillouin Zone and ¢ = +
or +.

The second and third terms represent the ions Hamilto-
nian and the exchange interaction between the conduction elec
trons and the electrons of the ions. They are an extension -
taking into account symmetry translation - of a model intro-
duced by Fulde and Peschel [10], who concentrated on .the stu
dy of the dynamical susceptibility of a single van Vleck ion
interacting with an electron gas. In a previous paper [}l],
on the electron gas spin polarization features of the Fulde-
Peschel model, we also rederived the last two terms of (1)
(restricted to a single ion) emphasizing the conceptual dis
tinction between the pseudo spin s? and the electronic spin
s?. For simplicity we assume that the Crystal field splits
the energy level of the ions into only two levels, which are
not degenerated. So s* and s? are 2 x 2 Pauli matrices and &
is the energy difference between the sub-levels.

The effective J is given by:

J = 43'(g;-1)a
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where o is the matrix element of the angular moment between
the two levels of the ions, 95 the Lande's factor and J' is
the exchange integral of the localized and itinerant elec~

trons.

Our aim is to study the band and ion magnetizations.

These quantities are respectively

m =g, ug <S‘z> . (2-a)

= Zl(gia) .uB <s?%s : (2-b)

=
|

where Je is the gyromactic factor of the conduction electron
and Mg the Bohr magneton:

<8%> and <s®> are the statistical averages associated
to the ion pseudo-spin and conduction electron spin polariza-
tion. In order to compute these objects we start, similarly

to a procedure used previously.[;L], from the relations

Z—.]:._ - gt
Si 2 S Si
z _ 1 t - 1 -
Si 2 (ci+ ci+ iy ci+)‘ (3-b)

Due to symmetry translation <S§> and <si> should be indepen-
dent of i and we can dropp sub indices in the statistical

averages. Furthermore we also have

z. _ 1 + _+ >‘>
<s™> = 57 %((ck+ iy Cx, Ck+) (3-c)

The statistical averages <S—S4) and <c;0 Cy,>(o=tor+) are

to be obtained using the double time Green function method.
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Once these are available (see section 3). the following ques
tions, as a function of the pafameters of the model, are
considered

a) the condition of the onset of magnetic ordexr and the
behavior of the saturation magnetizations at T = 0.

b) The Curie temperaturé. A

c) The temperature depgndence of the magnetizations and the
susceptibilities.

These subjects are treated in the last section.

3. APPROXIMATIONS AND FORMAL SOLUTION

In order to compute'<sz> and<Sz>, using equations 3, we

define de Green functions <c. ]c+ > and <S;|SE> . Following

ilo jo
the same steps of [11], but now having in mind the transla-

. . + 4+, -

tion symmetry, we easily see that <ci0}cj0> and <Silsi>

depend on <SZc, [cf > and <s? s
Jo i

iCig 1l Si> respectively.

Making the decouplings

+

z
<Si ciclcj0> « <8 ><ci0|cj0> (4-a)
Z2 4, - z +, -
<sy Silsi> ~ <8 ><Si]Si> (4-b)
we obtain
e [ot _ Sxxe 1 5
ko[ k'o! T 2% )

w-(ek“Jo<Sz>—p)

+ . +
where «<c c > 1s <cC, .
kol k's 1o|c]c

In (Sy\}s the chemical potential and ¢ as a subindice is t ory;
2N

> in its Bloch representation.

as a coefficient it is + or ~- respectively.
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. + o
The following equations dete:mlne <Si|Si>

2z +a= _ _ Z, - -
(w=J<s >)<Si|Si> = == A<Si|si> (6-a)
Zi o™ = A +i - A - - _
w<silsi> = - 3 <§i|si> *3 <s;ls3> (6-b)
z -l a— Z| o
- = A -
(v-g<s®>)<si|s}> <silsy> (6-c)

Solving equations 6 for <SI|SZ> and using the Zubarev's
algorithm [121, which connects the Green function <A|B> to

the statistical average <BA>, we obtain

1/2
Z 2 z2 2
g% = —38 2 o tann (L2 o) (7)
2(J%<s™>"+ A7) 2kT
Similarly from (5) and (3-c)
R n(ede .
e—(J<S"> + )
o exp[ T ]+l
® . ‘ (8)
n(e)de |
- p ;
e~ (-J<8" > +u)
o exp[h XT + 1
N = n(e)de . +
e =(J<S"> +yu) .
o expE T + 1.
(9)
n(e)de

z
€ = (-J<S">+u)
o exp[ *T '+ 1
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The last equation, relates the chemical potential to
N, the number of electrons in the band; n(e) is the band
density of states. Ihntroducing the band width parameter e,

€
aszg c)n(c-:)ds‘ = N and from now on assuming a parabolic den
o}

3N

sity of states n(g) f¢?2——§7§ /e , we rewrite (8) and (9) as
(o) :
AR
3/2 .
4 (%o _ _ _ ,
3 (ET) £ = F(p+tg) - Fln—g) o)
4 EZO 3/2 B ' - .
3 (ET) = F(n+8) + F(n-8) (11)
where
z
g = 2<Sz>78 = _..—--——J<]S<T> , = .]_éi’f
T xM 2y
and F(n) = eXp (X=n) 71 is the Stoner-Mc Dougall func -
tion [13]. “°

The equations 7, 10 and li are our formal solﬁtion. From
them we may obtain ¢ (the band magnetization), <s?> and n, in
terms of the parameters é% and é% , as a function of kT/eo.
It is interesting to note that equations 10 and 11 go into the
Stoner equations 3.5 and 3.4 of reference 13 if we make the
correspondence J<SZ>+keg , where k6 is the intraband exchan-
ge in the Stoner notation. In this way we may say that in our
case the electron gas sees a molecular field induced by the
ions which in its turn feel, equation (7), a molecular field

proportional to J<s?> (see Appendix) created by the electrons

in a process of mutual magnetization.
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4, Numerical solution and magnetic behavior

We have solved the system of equations (7, (10) and

(11) with the help of the McDougall-Stoner tables for F(n)

and F'(n), available in the range -4<n < 20 [14]. Initially we
look for the condition of the onset of ferromagnetism and the
saturation magnetization‘of the Eand and ions at T = 0. After
that we determine the Curie temperature, choosing model para-
neters which allow us to use the McDougall-Stoner tables. Fi-
nally, the temperature dependence of magnetizations and suscep

tibilities are obtained.

4.1 - Magnetization at T = 0

At T = 0, (7), (10) and (1ll1l) reduce to

Z _ i3
2<8%> = !;’-2 " 4(%)2|l/2 (12)
2/3 2/3 | J £
(1+¢) - (1-¢) = (13)
© A

We have solved (12) and (13) for ¢ and 2<s%5, Figures la and
1b show thé band and ion magnetizations, respectively (for
increasing values of A/eo) as function of J/go. One notes in

(a) and (b) that for greater values of A/eo one needs dgreater

J/e:O in order to start the magnetization process, the onset of
v 2
magnetization occuring when gL = %(Eg) . The magnetizations,
o o

as a function of J/eo, increase more slowly for higher A/eo.
The behavior of ¢ and 2<s?5 in figure 1 reflect the process
of mutual magnetization as a function of the crystal field and

exchange.
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4.2 - Curie Temperature

We look in (7), (10) and (11) for T = Tc’ defined as:

T—;TC when £ and <s?> goes to zero we obtain

kT F'(n.)
A c _ c’. A (14)
A7) 7 = Flng) tanh ¢ T,
(k Tc) 3/2 2 1 (15)
€5 3 F(nc)

From (14) and (15) we obtain k?c/eo as a function of J/eO and

A/eo. Figure 2a shows ch/eO as a function of J/¢ for increa

Ol
sing values of A/eo; figure 2b is similar to 2a, but with diffe
rent A/J values. Ones notes,in 2a, that for the same J/eO value,

kTC/so increases as A/eO decreases.

4.3 - Temperature dependence of the magnetizations

In this section we.present the band, ionic and total
magnetization as a function of temperature, using the same mo-
del parameters used in 4.1 and 4.2. Figures 3a and 3b show res-
pectively ¢ and 2<s%> versus kT/eo for different values of J/sO
and A/eo. The role of A/eO on the magnetization behaVior is dis
played by comparing curves 1, 2 and 4 with the curve 3.

Figure 3¢ shows a comparison of the band magnetization
between the Stoner behavior and our case. The parameters A/eO
and J/e:o were chosen in such a way that both curves have the
same ch/eo and the same magnetization at T = 0. Ones notes that

thg Stoner magnetization is never greater than ours.
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Finally, figure 3d shows the total magnetization

Mp -z z
e = Zgia <S87> + Jg <S> (16)
B
In constructing figure 3d we have taken Je = 2 and g = 2.

4.4 - Temperature dependence of the magnetic susceptibilities

Above Tc' only under the action of a magnetic-field H
the system exhibits a magnetization; this comes both from the
band and the ions. In the limit H+ 0 we obtain uBH/gao and
uBH/2<SZ>so. These quantities are directly related to the inve£'

se susceptibilities of the band and ions, respectively.

_F'(n) o o)
, 1 F (n) 4 A kT tanh 2 kT
uH € €
g? - o "o o . (17)
2
© ' () 2 sJ' (gioc) -eA-
F'(n. 1 o] o
F(n) [jEI + KT & tanh S kT
€0 €5 € o
(=2 2 A
_ F'(n) €o o
1 F () s b KT tanh kT
ugﬁ _ €0 o €5 (18)
2:¢8%> —4— —— #
i tanh ( 0) S © + 8(gia,‘
2 L/ F() KA 7y 8
o 0 fo o

These quantities are displayed in the figures 3a and
3b -(right-hand scale). The susceptibilities show Curie-Weiss

behavior, except for higher values of J/eo. Other things being
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equal the susceptibilities increase with A/so. The comparison
with the Stoner case and the inverse of the total susceptibili-
ty are shown in the figures 3c and 3d.

The use of the McDougall-Stoner tables for F(;) and
F'(n) in the range-45n 520 imposes restrictions on the choice
of the parameters A/go aﬂa J/eo.:As a consequence the ch/go
obtained are too high to allow a,confrdntation of our model
with real systems. An extension of the McDoﬁgall~Stoner tables
to higher values of n, which will eventually permit us to make
a detailed comparison with the magnetization and susceptibility

as a function of temperature of the PrAl2 is in progress.

APPENDIX

The Hamiltonian of a van Vleck ion under the action of
a magnetic field and a crystal field which splits the ground

state into two non~-degenerate levels is:

0 -8
H = A (1.A)
~& A

where A is the energy difference associated to the crystal field

splitting and § is the magnetic interaction, namely

6=gath

g is the Lande factor, h the applied magnetic field and

Q
!

= <0|Jz|] >

1 1

c . 1

Defining S = —7% ( , which is unitary, and making
1 -1



-12=-

a similute transformation we get

H=s5tus = -as¥ - 2682 (2.2)
0 1) 1 0
where SX = % and SZ = %
1 0 0 -1

In order to obtain the ion magnetization one has to

-8E _ . »
compute the partition function Z = 2 e i,where E0 is the
o=t
eigenvalue defined by
A
_.6 - _2_
|£> = E, [+> (3.3)
A P -
-— _2_ 6 z‘,,
'As can be verified
1/2
E, =t2 (4 6% + 4% | (4.2)
and
1/2
(4 62 + a%- 45E)
£> = + 1 72 (5.3)
2 2 1/2
{?(4 e )] (4 6% + 4%+ 45 E,)
From Z one calculates F ==kT¢n Z and finally M = - (%%)
' T
29 @ ug ¢ (4 524 A2)1/2
M= = tanh (6.A)
2 2.1/2 2 kT
(48 + A%)

It is also interesting to calculate <s?5

_BE
<SZ> = %‘- 2 e c<(:;|Sz|0>
o=
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Using (5) one obtains

z §
<£|8%|z> = 2
(4 §2+4%) 172
and
‘ - 1/2
_ 2, 2
<SZ> = ————6—2—-—5 1/2 tanh —('é——@'—LA-—)‘ (7-A)
(4 §°44°) 2 kT
Combining (6.A) and (7.A) one gets
M=2ga uy <5 (8.R)

In writting (2-b), in section 2, we are actually making the
Ansatz that (8) still applies in the case where the magnetiza-
tion is induced by an exchange interaction.

-One finally notes that putting in(7.,A)

=9
§ = > <S7>

one recovers expression 7 of section 3.
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FIGURE CAPTIONS

Band magnetization versus J/eo at T=0. The numbers

on the curves are the values of A/eo.

Ion magnetization versus J/e:o at T=0. The numbers

on the curves are the values of A/ao.‘

kTC/eO versus J/eo. The numbers on the curve are

the values of A/ao.

ch/eo versus J/eo. The numbers on the curve are

the values of A/J.

Band magnetization and inverse of band susceptibi
lity versus kT/so. Curves 1,2 and 4 correspond to
A/eo = 0.10 and J/eO equal to 0.73, 1.00 and 1.33
respectively. For curve 3 we have A/eO = 0.30 and

J/eO = 1.30. The right hand scale corresponds to

the inverse of susceptibility.

TIon magnetization and inverse of ion susceptibili-
ty. Curves 1-4 correspbnd to the values of A/eo and

J/e_ as given in figure 3.

o
Band magnetization and inverse of band susceptibi
lity. Curve 2 is a pure Stoner model. Curve 1 corres

ponds to our model.

Total magnetization and inverse of total susceptibi

lity. Curves 1-4 correspond to the values of A/eo and

—— .

J/e_ as given in figure 3a.
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