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- ABSTRACT

In this work the initial value problem for the equation

u, * Bu ¥ yf(u)X - Su ¥xe R, ¥te [0,T),

xxt = &

with periodic boundary conditions is interpreted in the sense of
periodic distributions and studied via fixed point arguments.

Weak solutions exist if f e C°(R) and g ¢ L¥(L2(0,1)). Moreover,
regularity in f,g and the initial data implies regularity of
solutions.



1. INTRODUCTION

Let B and v be real numbers and 6 and T be positive
real constants (under proper conditions T may be +=). We
shall consider fhe following problem:

Given real functions f and u, defined on R and a real
function g defined on Rx[0,T), find a real function u

defined on RX[O0,T) such that

(1.1) wug +pu + yf(w), - 8u . =8 ¥ x€R, ¥te[0,T),
(1.2) u(x,0) = uo(x), ¥ x € R,
and

(1.3) u(x+l,t) = u(x,t), v te [0,T).
. Equation (1.1), is a generalization of

(1.1)° u, + Bu  + yuu - bu =0,

t xxt

which was proposed by T.B. Benjamin, J.L. Bona and J.J. Mahony
in [1], as an alternative for the KdV equation, to model the
propagation of long waves in nonlinear dispersive media.

The homogeneous case of problem (L1")-(1.3) was studied
by L.A. Medeiros and G.P. Menzala in [2]. There they showed
existence and uniqueness of classical solutions when the third
derivative of u is square integrable. Also M.M. Miranda
studied this problem in [5] where theorems concerning the
exigtence of weak periodic solutions are presented. Numerical

algorithms for computing solutions of this problem were

analysed by M.A. Raupp [9].



The generalized problem (1.1)-(1.3) was first studied
by B.P. Ne&es [7],[8]. 1In [7] the author obtained theorems
asserting existence of classical and weak solution but only
for =0, Y<O0, g=0, and f two times differentiable
with positive first derivative. These conditions are clearly
not satisfied in equation (1.1)', where f(s) = g—. In [8]
the restriction that f’ 2 0 is relaxed for infinitely
differentiable f. In [4] L.A. Medeiros and M.M. Miranda

proved the existence of weak solutions of (1.,1)-(1.2) with the

more stringent boundary condition
(1.3)° u(0,t) = u(l,t) =0, ¥ t€l[0,T),

which are defined on [0,1] x [0,T). A numerical analysis
of problem (1.1)-(1.3), by C.A. de Moura et al., can be found
in [6]. The non-periodic problem (1.1)-(1.2) was studied by

Fixed Point techniques by L.A. Medeiros and G.P. Menzala [3].

The aim of this work is to study the existence and
regularity of solutions of problem (1.1)-(1.3). In doing
this, we follow a line of reasoning that parallels the one of
Benjamin, Bona and Mahony in [1] relative to the demonstration
of existence and uniqueness of solutions for problem (1.1)'-
(1.2). They reduced the problem to a fixed point question by
use of the Fourier transform and showed that, for T small
enough, the resulting operator is a contraction map and, thus,
has a fixed point. By recurrence their solution extends to

any T, and a "bootstrap" reasoning ensured regularity.

In the following we interpret problem (1.1)-(1.3) in



the sense of periodic distributions theory. Making the non-
linear term independent, we decompose equation (1.1) and
solve the associate linear equation by standard Galerkin
procedures (the Fourier series method is not appropriate for
this linear equation). Then we obtain a fixed point by mean
of Schauder's Fixed Point Theorem. A "bootstrap" argument
is again used:to study regulafity.

It is shown that weak solutions exist when f is con-
tinuous and are unique if, in addition, f is Lipschitz.
Moreover, the solution is as regular as u, and a bit more
regular than f and g.

In section 2 the framework and the weak form of prob-
em (1,1)-(1,3) that will be used are introduced and it is
shown that f can be replaced by a slight different but
more convenient. function. 1In section 3 existence and
regularity of solutions of the associated linear equation
are analysed. Finally, in section 4, a fixed point argument

is used to lift the results to the nonlinear equation.

2. THE WEAK FORMULATION

Before presenting the weak form of problem (1.1)-(1.3),
we need to define some notation and standard results that
will be useful later. The following is a list of spaces for

further reference:

PO = H°(0,1) = L2(0,1), the space of square integrable

functions on (0,1);

Hk(O,l), the space of function of P, with (generalized)



derivatives up to order k belonging to PO;

Pk’ the closed subspace of Hk(O,l) whose functions v
are such that D;V(O) = D;v(l) for i=0,...,k-1;
Ck(I), the space of continuous functions whose derivatives

up to order k are continuous on I, I <€ R;

c” (1), the space of infinitely differentiable functions on

I.

All these spaces ére endowed with their usual topologies.
For subspaces, the topology of the larger space is:induced. We demote
by Dx (resp. Dt) the derivative with respect to x (resp.
t). If i is a non-negative integer, Di and Di are the
i-th powers of Dx and Dt’ In the sequel V will stand
for a Banach space. Its dual space will be denoted by V' and

the duality pairing will be denoted by <(.,.). The inner-

product and norm of Hk(O,l) (and Pk) are denoted respecti-
vely by

k
(2.1) (f,g), = % i i
and
2 k . .
(2.2) Ed -Zo (D;f, D;f),
1=

except for k=0 when (.,.) = (.,.)o.

We need also to consider the space of periodic test

functions
5,(0,1) = {® € €([0,1)) | Dlw(0) = Dlp(1), i},

and its dual &;(0,1), the space of periodic distributions.

A sequence {mn} converges to ¢ in @p(o,l) if and only

if Dibn - D;m uniformly for all i = 0 (note that



D;w =®). Its dual @5(0,1) is endowed with the weak*
topology. More information on these spaces can be found in
[10, Chap.IV].

The spaces above are spaces whose elements are
functions of a single variable (which will be the spatial
variable x). To take account of the variable t we need
some spaces of strongly measurable functions from [O,T)
into V, a Banach space. The space Ll(V) of integrable

functions normed:by:

T
(2.3) lulLl(V) = f; Iu(t)lV dt.

Its subspace Lm(V), of essentially bounded functions,
normed by

|u|; = = ess sup |u(t)]

The subspaces of ‘Lm(Po) defined by

i

K(m,k) = {u € L°(P) | Dy

u € L7(p) i=1,...,m},
are endowed with the product norms
max IDiuI
0=<i<mnm

lul , =

for all non-negative integers m and k.

The following properties of these spaces will be used
in the sequel. As P, 1is a closed subspace of Hk(O,l) it
follows that Pk+1 is compactly imbedded in Pk. Since
ﬂp(O,l) contains the trigonometric basis and Py
is - : a subspace of Ck_l[O,lj, ﬁp(O,l) is densely

imbedded in all Pk. This last statement is a consequence



of Fourier series convergence theorems [12]. Finally, by
the compactness criterion of Lions-Aubin (11, Chap.Il], the

space K(1,1) is compactly imbedded in K(0,0) = L”(po).

Next we point out in what sense the weak solutions of
problem (1.1)-(1.3) are to be considered. Since ﬂp(O,l) is
dense in P1 and Po’ we identify PO with its dual and
consider all the spaces Pk and their duals as subspaces of

&;(0,1). Then the weak problem is to find a function

u € K(1,1) such that for almost every t € [0,T)

(ug (£),®) - BCult),o ) - y(f(ult)),p ) +
(2.5)
8¢u_, (£),0_ 7 = (g(t),0), * @€ 8 (0,1),

(206) u(O) = uo.

Since solutions of the weak problem should be in K(1,1)
(conditions under which such.g solution exists will be made
precise in section 4), equation (2.6) makes sense. Moreover,
due to the density of ﬂp(O,l) as a subspace of P;, (2.5)

can be modified to read as follows

(ug (£),vd= BSu(t),v 2 - y(£(u(t)),v ) +

(2.5)"

éﬂxt(t),vx> = (g(t),v), ¥ vEP,, t € [0,T).ae.

From now on, and without any loss of generality,
we shall take 8 =Y = 8§ =1,

The following lemmas show that under reasonable condi-
tions on f and g, f can be replaced by another function
f*, as regular as f, which is bounded and constant outside

a bounded interval. This will be necessary for some arguments



of section 4.

Lemma 2.1 - If g € Ll(Po) and f € C°(R) then any solu-
tion of the weak problem is uniformly bounded. That is,
there is a constant C depending only on g and ug such

that

(2.7) ess sup sup lu(x,t)| < c.
telo0,T) x€[0,1]

Procof. Choose v = u(t) in (2.5)', then it follows that
(2.8) (ut(t),u(t)) + (uxt(t),ux(t)) =
= (u, (t),u(t)) + (£(u(t)),u (£)) + (g(t),u(t))

almost everywhere in t. But if v € Pl’

1 1
v2 2.1
(2.9) (v,v.) = v v_ dx = (=)_ dx = v°|_ =0,
) X 0 X 0 2 °x o .

Generalizing this, if F is any primitive of f, it follows

that
1

(2.10) (f(v),vx) = ﬁ; f(v)vx dx =

v(x)

=// DXF(s)ds = F(v(1)) - F(v(0)) = 0,

v(0)
for all v € Pl’ since v(0) = v(1). Thus, for almost every
te [o,T),

(u(t),ux(t)) = (f(u(t)),ux(t)) =0,
and so

30, (u®) ]2 + Ju (]2

> (g(t),u(t)) < Ig(t)lo Iu(t)lo.

Integrating the above equation we obtain

t
lu(t) |2 < luol% + 2 /; lg(T)lo lu(T)lo dr,



and from this it follows that

2 2 t
ess sup ju(t)|, < |u |. + 2 [ lg(r)| . Ju(r)|. dr <
t€[0,T) 1o e 0 ° °

t

2

< Ju |7 + 2 ess sup lu(t)l |g(T)|O dr
© te[0,T) 0

Therefore, for any € < 1,

(2.11) (1-€e) ess sup Iu(t)l% s luolf % Igl

4

2

, ! (P, )’
(2.11) implies (2.7), as sgp lvix)| = clvll, if v € P,.
Lemma 2.2. Let f € C°(R) be Lipschitz on any bounded

interval. Then there exists at most one weak_solution

satisfying (2.7).

Proof. Let u u be two solutions of the weak problem.

17 72
Then w = u;-u, € K(1,1) satisfies
(2.12) (wt(t),v) - (w(t),vx) -
(£(uy (t)) - f(uz(t))’vx) + (woyrv,) =0, ¥ vE P,

for almost every t. For v ==w(t), equation (2.12) becomes
2
2 Dt(lw(t)l v (o] ) =
= (w(t),wx(t)) + (f(ul(t)) - f(uz(t)), wx(t)),

which by (2.9) implies that

2
D lw(t) [} = [£Cuy (£))-2Cuy (8D [ lw (£) ]

Let L be the Lipschitz constant of f on [-C,C], where

C is the constant of (2.7). Then,
|£Cuy (£)) - £Cu (e[ = Llw(t) |
and

2 2 2
(2.13) D lw(t)[] = L(fw(t)|  + wa(t)li) = L|w(t) g



from which it follows that

ess sup Iw(t)lf < eLtlw(O)I% = 0,
t€[0,T)

Therefore, w = 0,

Lemma 2.3. Suppose that f 1is Lipschitz continuous on

bounded intervals and that the solution of the weak problem
satisfies (2.7). Then there is a bounded function f%*, as
regular as f, such that the solution of the weak problem

with equation

(2.5)" (ug (t),v) - (u(t),vx> - (f*(u(t)),vx> +

+ (Uxt(t),vx> = (g(t),v)
which satisfies (2.6)' is the same as that of (2.5)'.

Proof, Take C as the constant of (2.7). If f is

continuous let

(2.14) £*(s) = <f(s), if |s| < e,
f(e), if s > c.

Now let u* be a solution of the weak problem for
equation (2.5)". We can suppose that u* satisfies (2.7)
with the same constant as the original solution u (because,
if not, we let C in (2.14) be the maximum of the two con-

stants) and then

(2.15) £*(u*(x,t)) = f(u*(x,t))
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almost everywhere in x and t. Consequently u* also
satisfies equation (2.5)', and by Lemma 2.2 u* =iu,
. k
Suppose now that f has more regularity, say f € C (R)

for k= 1. In this case we define f* to be

f(-C~-e), if -s > C+e

81, if C € -s € C+t+e
(2.16) £%(s) = { £(s), it |s| < c,
85 if C < s < C+e,

f(C+e), if s > C+e,

where 91, 92 are generalized Hemmite interpolants on
[-C-¢,-C] and [C,C+€], respectively, such that

8,(~C~¢) = £(~C-€),

(2.17) D, 6,(-C-e) = 0, i=1,...,k,
D, 6,(-C) = D_ £(-C),  i=0,...,k,
and

§,(Cte) = f(C+e)
(2.18) pl 8, (Cre) = 0, i=1,...,k,
DL 6,(C) = D} £(C),  i=0,...,k.
Then clearly £* € CX(R) and u* satisfies (2.15).

Therefore, u* = u,

3. THE ASSOCIATED LINEAR EQUATION

The study of solutions of the weak problem will be
pursued in two steps. First, we reduce the non linear

equation (2.5)" treating the non linear term as an indepen-
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dent one, thus obtaining a linear problem whose solution
depends upon a given function w. That is, given w in a

proper space, we study solutions of

(3.1) (ut(t),v) - (u(t),vx> + (uxt(t),vx) =
= (f*(w(t)),vx> + (g(t),v), ¥ vEP,, t €[0,T),
(3.2) u(0) = us

which belong to K(1,1). Secondly, the mapping that associ-
ates u, the solution of (3.1)-(3.2), with the function w is

shown to have a fixed point.

In this section we consider the linear problem derived
from (3.1)-(3.2) which, given functions g(x,t), h(x,t) and

uo(x’), is to find a function u € K(1,1) satisfying (3.2) such that
(3.3) (ut(t),v> - (u(t),vx> + (uxt(t),vx) =

= (g(t),v) + (h(t),vx), ¥ v E P,

almost everywhere in t.

Two results are presented below. The first is
concerned with existence and unigueness of solutions of the
linear problem., The second relates the regularity of

solutions to the regularity of h,g and u, .

Theorem 3.1. If u, € Pl’ h - and -g € Lw(Po) = K(0,), and T <

then there exists a unique funetion u € K(1,1) which

satisfies (3.3) and (3.2).

Proof. The argument follows the usual path of the energy
method in which compactness theorems are used. 'So we -

shall have three steps:



12

1. Finite dimensional approximation in x,
2. A priori estimates,
3. Passage to the limit.
Step 1. If i and m are non-negative integers, let

cy cos(mix) when i 1is even,

w,(x) =
1 . . .
cy stn(m(i-1)x) when i 1is odd,
vV, = span {wo,...,wm}
and
V_ = span {wo,...,wm,...} = % Vo

where c; are normalizing constants. Observe that
c c c
(3.4) v, eV, SV, sp(o,l)

whenever m<.n and that V_  is a dense subspace of Pk for
all k, since {wi}iZO is a basis of P,. This last claim,
which implies that Sp(o,l) is dense in Pk’ is a conse-
quence of convergence theorems for Fourier Series L12].

We define the finite dimensional approximation problem to be the

finding of a function wu : (o,T) — vV, such that

(3.5) (u  (t),w;) - (u (t),wy ) + Cup (B),wy ) =
= (g(£),wy) + (h(t),w, ), 0< ism, telo,1),
(3.6) u,(0) =u -,

sy ‘ Y i .
where uOm is such that uom € Vm and U u, in P1

More precisely, we take uOm to be the truncated Fourier

series of u and 1 3 € u -
o recall that, as u, Pl’ o1l u,

in Pl’ Writing
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m
um(x,t) = iEO ai(t)wi(x),

u (x) =

om «

I M3
o

. oi Wi(X)’
1
and putting

o (t) = (a3 (t),.er,a (E)7T,

= (qa . o )T
Co ol?°***%nmn’

it is easy to see that (3.4)-(3.5) is equivalent to the problem
(3.5)" (A+B)a’ = Ca + F(t),
(306)' a(o) = QO,

where the matrices A, B and C have asltheir éelements the

quantities A, . = (w,,w.),
ij S
Bij - (wix’wjx)’
Cij = (wix’wj)’

and the vector F has the components

Fo(t) = (h(t),w, ) + (g(t),w,).

The existence of a unique measurable local solution of
(3.5)-(3.6) in [0,t ) 1is assured, since A+B in non-singu-
lar for all m, Actually, as a consequence of the next

estimates, we can take tm =T,

Step 2. Since (3.5) is equivalent to

(3.7) (U (6D, %) = (u (£),v.) + (o (t),v ) =

= (g(t),v) + (h(t),vx), ¥ v € A

choosing v = um(t) leads to
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1 d 2 2y =
5 3t (up g+ fu ©)]5) =

(u (£),u_ (£)) + (g(t),u (£)) + (h(t),uy (£))

and
3.8) 24 Ju®IZ= gy lu®)], + [n@ ] lu, ®)1,
since (um(t), umx(t)) = 0. Integrating (3.8), we have

2 -t t
Ium(t)l1 < |u omli ZJ/ lg(T)Iolum(T)lodT+2r/ lh(T)loh%m(T)lodT’
0 0

and so T

2 2
ess sup Ju (t)|, < |u | + 2 lgCr)| . lu (m)|_ dr +
te[0,T) m 1 om ' 0 o m o

T

+ 9 j/ |h('r)|o |um§T)|O dar
0

This, by the same reasoning used to arrive at (2.11),

(3.9) (1-e,-¢ ) ess sup [u (t)l

t€[0,T)

2 1 2 1
Iuomll + B lglLl(po) + <, lhlLl(Po) .

Then, for €1 < €5 small enough, it follows that

2 2 2
(3.10) ess sup lu (t)l Iuoi1 + c(lgl +|n| )=K§,
te[ 0,T) Ll(p ) Li(p )
o o
from (3.9) and the inequality [u_ | s |u_ | ,
: om'] o'y

Estimate (3.10) is enough to guarantee that we can take

tm =T in Step 1 but, to pass to the limit, another estimate

is needed and to obtain it we take v = u_ (t) in (3.7). Thus,
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2 2 _
Iumt(t)lo + lumxt(t)lo =

= (u (£),u (£)) + (g(t),u  (£)) + (h(t),u .. (£)).
Consequéntly,

2 2 1
Iumt(t)l1 < lum(t)lo + = |u mxt(t)l

2 .
1 1 2 2 .1
+§Iyﬂ%+§l%gw%+|mw%+4lmﬂun
and
(3.11) o @12 = 2lu ]2+ [g®]2 + 2in®)] .
* mt 1~ m o o o
Therefore,
42 2 2
<
(3.11)" igfos¥§ Iumt(t)l Iumtlo’1 < 2K7 + Iglo,o |h|o’0

Step 3. Estimates (3.10), (3.11)' mean that the sequence u,
is bounded in K(1,1). Hence, by the weak* compactness of

bounded sets in K(1,1), we can extract a subsequence of u

m
converging weakly* to a function u € K(1,1). Denote the
subsequence by u, for convenience.

But | K(1,1) can be identified with a closed sub-

[=<] [-<] ©
space of L (Pl) X L (Pl)' Also L (Pl) is the dual of
Ll(Pi) and
C L4
P, = P C P/,
with dense imbedding. Then ! (Pl) c Ll(Pi) continuously
and the weak¥* convergence of u, to u in K(1,1) means
that
~T T

inJ i3
(3.12) (D, Dy u (t), v(t))dat » | (D, Dy u(t),v(t))at,
0 0
. . 1
for 0 < i,j< 1 and for all v € L (Pi). Thus, a fortiori,

(3.12) holds for all v € Ll(Pl).
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Therefore u satisfies

T
(3.13) ( [ (u (£),v(£)) = (u(t),v (£)) + (u _ (t),v (£))]dt =
“0

T
=/( [(g(t),v(t)) + (h(t),v (t))]dt, v vE Ll(Pl).
0

In particular, (3.13) holds for v(t) = 6 (t)w(x)

€ Ll(Pl), where w € P; and 6(t) = &(A)_l %A(t),

for A an arbitrary mensurable subset of (0,T) with positive

measure and ZA the characteristic function of A. Henee any

solutien of (3.13) is alse a solutioa ef (3.,3).

Since (3.11)' implies that u is a continuous map of

[0,T) into P u satisfies (3.2). This accounts for

1’
existence.

To show uniqueness, note that, if uy and u, are two
solutions of (3.3)-(3.2), then w = u;-u, satisfies the
relation

(3.14) (wt(t),v) - (w(t),vx) +
+ (th(t),vx) =0, ¥ve€P, ae. telo0,T),

and is such that w(0) = 0, Take v = w(t). It follows
that

1d 2 _
(3.15) 5 3t Iw(t)l1 0,

and since w(0) =0, w =0 in Lm(Pl) > K(1,1).

The regularity theorem is as follows.

Theorem 3.2. Suppose that ug € Pk+1 and that g and h

belong to K({,k) for some positive integers 4 and k.

Then wu, the solution of (3.3)-(3.2), belongs to
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K(4+1, k+l),

Proof To prove that u € K(4+1, k+1) it is enough to show
that u, is bounded in this space. To see this, note that
the space K(£,k) is continuously imbedded in K(1,1) and
can be identified with a closed subspace of a power oflﬁ(Pl).
Then repeat the arguments in Step 3 of the proof of Theorem
3.1 to see that any subsequence that converges weakly* in
K(4{+1, k+1) converges to the solution of (3.13).

To show the boundness of u_~ in K(4+1, k+l), observe

first that, as gand h belong to K({,k), then Dg and D%h
belong to K(0,0) for Osji<{, Next, since

Dg(f(t);wi) = (Dgf(t),wi), ¥ i=0,

when DJ

if € Lm(Po), it follows that (with F as (3.5)')

DYF(t) € L"(R™.
Due to his fact we can differentiate equation (3.5)' j times
(7=t) to arrive at the relation
(3.16) p}"e = aB)! ¢ Do + (arB)™! Dl (D).

Now, by the Caratheodory Theorem, on the existence of

solutions of Ordinary Differential kquations,

Dja € L"R™), 0O jsL+l.
Consequently,
. o .
D;gum € L7(V,), 0= j= ¢+l,

Moreover, (3.16) is equivalent to

(3.17) (0 tu (£),9) - (DJu_(£),v ) +

+(Dj11Dxum(t),vx) = (Dgg(t),V) + <D€h(t):vx)
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for all v € Vm’ whenever 0 =< j < 4. Thus if we take

j+1

v = Dt

um(t) in (3.17),
j+1 2 j+1 2 _
IDt um(t)lo + IDXDt um(t)lo
j+l
t

= (pJ J j+1 J j+1
(Dtum(t)’DxD um(t))-t-(Dtg(t),Dt um(t))+(Dth(t),DxDt lmgt».
Thus,
i1 2 j 2, 4 2 - 2 .
(3.18) |y u, ()] = 2]Dlu, (2)] +IDge()] +2]Dgh(e)] , 0=j=t
(note that for j=0 we have (3.11)). Thus, recursively,

2

1% < e fnl% +lel® o+l )
= u .
11 ) glj,0

j+1

3.19 pJ*
( ) l t um 0,1 o'y Ll(P )
(o]

J,0
O

for 0< j< 4.

The estimate (3.19) means that u, is bounded in K(++1,1).

Next we show that the spatial derivatives are bounded.
To do this pick v = Dilum(t) in equation (3.17) and
integrate by parts i times. Then,

. 2 . 2
1 d ni i+1 N =
(3.20) 5 dtQ1Dxum(t)|o + le um(t)lo)
_ i i+1 i i i i+1
(D,u, (£),D; " (£)) + (Dig(t),Diu, (t)) + (Dih(t),D; " Fu (¢)).
s i i i+l

But since D,u € P,, (dxum’t), D, u (t)) =0,

and thus (3.20) implies

. ) .
d i i+l 2
dt (leum(t)lo + le um(t)lo) =

i . . .
< |pge(t) | Ingu (4| + IDph(e) | IDLu (£) ],

which integrated in time is:

i 2 i+l 2 3 2 i+l 2
IDxum(t)lo + |Dx um(t)lo < IDxumOIO + |Dx umolo +
t | t
i i i i+1
+ Ing(T)loleum(T)lo dr + |th(T)|o|Dx um(T)I0 dr.

0 0
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Since g and h € K(0,k) and u_€ P we have, by the

o} k+1

argument used for (3.10), that

. 2 . 2

i i+l
(3.21) IDxumlo’o + IDX m!o,o <

- 2 i 2 2 2
< Ipfu |+ IDJ e 17 + cllel™y  +InlTy O,
© o L™ (P,) L™ (P,)

for 0 < i< k, That is, u, ~ is bounded in K(0,k+1).

One is 1left now with the estimation of the mixed
derivatives. With this purpose, for 0= j< 4 and 0= i < Kk,
take v = D€+1 Dilum(t) in (3.17) and integrate by parts i

times in x to obtain

IpJ " plu_(t)] +|DJ+1 ot tu_ (t)l = (@Jplu (+),0J D}y (£)) +
ji j+1.i Goi Jrlpitl
(Dthg(t), Dy Dxum(t)) + (Dthh(t), Dy "D (t)).
Then
(3.22) ID%+1D;um(t)| IDJ+1 1+1 (t)l
2|DjDiu (t)I2 + IDJDig(t)| + 2!DJDih(t)|2
t7x m o tx o tx o.

The above inequality for J =0 1ig

i 2 1+1
IDyDeu, (£)]  + |DyD (t)l

. 2 . 2 .
1 1 1
2|Dxum(t)|o + Ipeg(t) ]+ 2|th(t)|0
whose right-hand side is bounded for all i as a conse-

quence of (3.21). Therefore, by recurrence on J, (3.22)

implies
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Theorem 4.1 Let u_ € P, and g € K(0,0) and let £ € cO(R)
be Lipschitz continuous on bounded intervals. Then if T< e« ,

there exists function u € K(1,1) satisfying (2,5)'-(2.6).

Proof. After Lemmas 2.1-2.3, we can work with equation (2.3)".

Let w € K(0,0). Since f* is bounded, say

(4.1) sup |f*(s)| = c¥*,
S
then
(4.1)' £x(w(t) |, = c*,
and f*(w) € K(0,0). Therefore, by Theorem 3.1, for each

w € K(0,0) there is a unique solution u, of (3.1»@B.2).

Moreover wu € K(1,1) < K(0,0) Thus, the operator

(4.2) F: K(0,0) » K(0,0)
w — rF(w)=uw

is well defined.

Next we see that operator ¥ is continuous and maps
K(0,0) into a bounded subset of K(1,1).

To show continuity of F 1let w, and w, be in K(0,0)

1 2

and set wuy= F(wl)aﬁ u, = F(wz). Then, y = u;-u, satisfies
(4.3) (v (£),v) = (y(t),v, ) + (¥ (¥),v ) =
= (f*(wl(t))—f*(wz(t)),vx), ¥ VEP,, telo,T)

and y(0) = 0, Taking v = y(t) above and using (2.9),
equation (4.3) yields

1d 2 2 .

5 at (Iy(t)|o+|yx(t)|o) < |f (wl(t))-f*(wz(t))lolyx(t)Io.

But since f* is Lipschitz continuous, with constant L,
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. . 2 . . 2
Jj+1.di j+1l.i+1
(3.23) IDt Dxum(t)lo + IDt D, um(t)los
L2 441 2 2 2 i .2 i .2
cCIpgu | +Ipy "u |7+ gl +|n] +Ipgl +IDghl
X 0 X (o) Ll(Pk) Ll Pk) x®'j,o x j,o

for 0 j=< 4, 0= 1ic<= k.

),

Estimates (3.19), (3.21) and (3.23) show that the
sequence u, of solutions of (3.5) is bounded in K({+1,k+1),

and therefore u € K(4+1,k+1).
Remarks

1, We may take T = » in Theorems 3.1 and 3.2 by requiring
1
that g and h belong to K(0,0) N L (Po)’ g aerd h

belohg %o “K(itsk}) N L}(Pk) respectively.

2. The constants appearing in estimates (3.19) and (3.23)
depend on 4, growing with it, Thus, Theorem 3.2 do not
take care of the case £ = », However, this is due to term
(u,vx) in equation (3.3) and, since this term can be
embodied into (f(u),vx), this limitation will have no

significance in the nonlinear case.

4, THE NON-LINEAR EQUATION

This section is devoted to showing that, for functions
w belonging to a properly chosen space, the operator which
associates the solution of (3.1)-(3.2) with w is well
defined and has a fixed point. Also, through a "bootstrap"
argument, solutions of (2.5)" are shown to be as regular as

u f and g.

O’
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lf*(wl(t))-f*(wz(t))lo = Llwl(t)—wz(t)lo,

And

2 2 2
gt Y@ = 12w, @15 + Iyl

which implies, integrating and using Gronwall Lemma, that
t
2 D) 2
(4.4) Iy(t)ll < L° exp(t) lwy (T)=w,(T)|  dr.
0 1 2 (0}
Therefore,

(4.5) luy~u, | o St exp(1/2) |wy-w

2]0, 2'0’0 s

so that F is continuous,

To prove F maps K(0,0) into a bounded subset of

K(1,1) 1let v = uftt) = F(wd)(t) in.(3.1). Then,

(ut(t),u(t))+(uxt(t),ux(t)) = (f*(w(t)),ux(t))+(g(t),u(t)),

as a consequence of (2.9). This implies the inequality
355 e 2 < dervend Ju 6] + Jee) ] lue) ],

and so t

) 2
Iu(t)l1 < luol1 + j; If*(w(T»lolux(T)lo dr +

-t
+ j' Ig(T)Iolu(T)lo dr.
0
Then, by the same arguments as for (2.11), (3.10) we arrive
at | T

2 9 2
(4.6) lulo,1 < 2(|uo|1 + lgILl(po) + J; lf*(w(t))lo dt),

and since, by (4.1)°¢,
.T

|£*(w(t)) | at < TC*,
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inequality (4.6) yields the bound

2 2
< 2(ju |7 + |gl 1 + TC*) = K, ,

(4.7) lu|
0,1 o 1
’ 1 L (PO)

- where K1 does not depend on w.
Also, taking v = ut(t) in (3.1), we have

2 2
Iut(t)lo + qut(t)lo =
= (u(t),ut(t)) + (f*(w(t)),uxt(t)) + (g(t),ut(t)).

Pursuing now the same steps that were used to obtain (3.11)°',

the above equality implies that

2 2 2 2
lu (07 = 2]ue) | + [£xw(t)) | + 2]g(t)]
1 o o) o)
so that, using (4.1)°',

(4.8) 2K

9 2
; +©®)° + 2|g] = K
0,0

’

Iutlo,l =

where K2 does not depend on w,.

Estimates (4.7)-(4.8) show that F(w) belongs to a
bounded subset of K(1,1) for all w € K(0,0). Hence F is
a continuous operator which maps the cldsed convex set K€0,0)

into itself. in such a way that its range is a pre-
compact subset of K(0,0). Therefore Schauder's Fixed Point
Theorem ensures the existence of a fixed point for F., That
is, there is an element u&K(640) buech that F(u).= u, This is
obviously a solution of (2.5)''. Moreover u belongs to the

range of [ and thus u € K(1,1).

Remark 3. Theorem 4.1 gives solutions of (2.5)'' for T € o,

If the hypothesis are changed to require that



24

1 ©
(4.9) g € L (P) NL(P),

we may take T = o, This can be done in the following way.

Let T, < ® Dbe such that nT1 = T, Theorem 4.1 says that

1l
there is a function uy [O,Tl) » P, solution of (2.5)' and
Lemma 2.1 implies that T1
2 2
|u(T1)|1 < luol1 + C lg(t) ], at.
0

Since the arguments of Theorem 4.1 are independent of the
origin of time there is a function u2: [Tl,Tz) ~ P1 solution

of (2.5)' such that u2(T1) = ul(Tl)' Therefore

ful(t), it t € [0,T))
u(t) =
\Luz(t), if t € [Tl,Tz)

is a solution of (2.5)' on [0,T2) satisfying

u(0) = u,
and j’Tz
2 2 2
lu(m ) 1] = a1 = fug(rd iy + . lg(t)]at <

T 1

2

2
< luoll + lg(t)|at.
0

Repeating the process, we can define u on [O,T).
Clearly this procedure can be repeated indefinitely, and
u may be extended to [0,«).

The next theorem tell us about the regularity of
solutions of (2.5)'"., First note that equations (1.1) and (2.5)
are invariant when f (é6x £*) aré replaced by f-£(0)(£*-f*0).
Thus we can suppose without loss of generality, that f(0)= 0.

In this case, using a result of Sobolev [5], it is easy to
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£
see that f(w) € K(m,k) if w € K(m,k) and f € C (R),

where 4 = max(m,k). Then we have::

Theorem 4.2. 1In the case that f € CL(R), g € K(m,k),

u € P and T <€ =, the solution u of (2.5)'" (or(2.5))
o) k+1

is such that
(4.10) u € K(m+1,k+1),

Proof. Since K(m,k) < K(0,0) and Poi1 © P1 there

exists a function u € K(1,1) which is a solution of
(4.11) (ut(t),v)-(u(t),vx) + (uxt(t),vx) =
= (f(U(t)),vx) + (g(t),v), ¥ veEP .

If m =k =0 there is nothing to do. If m,k > 0, 1let
h = f(u(t)). Since u € K(1,1) so does h. Then, by
Theorem 3.2, u € K(2,2). This reasoning can be repeated

until h € K(m,k), showing that u € K(m+l,k+1).

Remark 4. If g € K(m,k) N Ll(Pk) the result of Theorem 4.2
remains true for T = «» because Theorem 3.2 can be used
when T = for f(w) € L'(P_) and, if £(0) = 0 and

t€ e ®R), we L'(P) implies that £(w) € L'(p ).

Remark 5. With a slight modification in the argument of
Theorem 3.2, one can weaken the hypotesis on g, on both

regularity theorems, by requiring that g € K(m,k-1),

Concluding, we observe that the weak solutions for

m>0 and k >1 are inhntedd classical solutions.
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