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ABSTRACT

A static spherical distribution of incoherent matter
which 1is a source of Yukawa field is considered, in equilibrium
under its g;avitational attraction and short range repulsion.
Numerical solutions of the fulllEinstein~Yukawa equations are ob
tained. The stability of the system under various degrees of con
éentration is discussed, and the impossibility of static configu-
rarion of massless Yukawa charges under its self gravitation is

deduced.

1. INTRODUCTION

It is a generg]'be]ief that gravity is the only inter-
action present in any physical system; however, its attractive
effect has to be balanced by some kind of repulsive interaction
in order to prevent collapse. Long range fields have been

tried1’2

» 1like Coulomb and repulsive scalar fields, but the re-
sulting system proved either unstable or insensitive to each other.
Quantum effects are of course essential for microscopic objects,

or even for macroscopic ones like neutron stars, where the kinetic



energy of constituents due to the Pauli exclusion principle plays
an important role; even though, it seems worthwhile to investigate
from the purely classical viewpoint the role of the interaction
between gravitation and short range fields in the formation and
stability of elementary systems.

A simple system was recently conéidered3. It is a static
sphere of incoherent dust, which is assumed.to be, at the same
time, a source of gravitation and of a short range repulsive
Yukawa field. It is shown that the‘]inearized solutions of the
Einstein-scalar equations are free from the gravitational insta-
bility. Since an impértant feature of General Relativity is
exactly 1ts’n6n1inear character, more interesting results can -
be expected in the 1imit of strong nonlinear fieids. It is the
purpose of this paper to study that system in its nonlinear Timits.

Analytic so1utionsAof Einstein equations involving short
range scalar fields have not been obtained; we then look for
numerical so1ution§, taking advantage of the fact that only two
dimensionless parameters are sufficient for characterizing our
system; the parameters are relatéd to the central density of.
matter and the ratio of the two coupling co;stants. It is shown
that the radius of the distribution should be determined by the
boundary condition to the scalar field which consists the eigen
value problem for the radius for a given set of the parameters.
Some results are demonstrated, and discussed. It is also shown
that the pure Yukawa field can not have a stable static configu

ration under the gravitation.

2. FIELD EQUATIONS




2. FIELD EQUATIONS

We start from the Einstein scalar equations3

RY - LR Y= - 2 ¢ 2

I ) 2
5 Tv s e = 47G/c s (1)

e s/22 = fe o, f% = const > 1 , (2)

y 2 2 -1 [osu 1w ,e2..2 oo
T\) = C DUUU\) - C € [S S;\) + -2— 6\) (S /L - S S;CX)] ’ (3)

where p is the matter density with velocity field u and S is

a repulsive scalar field with range £ ; as usual, the semicolon -
means the covariant derivative. f denotes the ratio of scalar
field charge to gravitational charge of the matter.

As we consider a static, spherically symmetric distri-

bution of matter, we may write the line element as

2 2 _2..2 2 2

ds™ = ezn(dxo)2 - e2a dr™ - r-dé”- - r- sin 6d¢2 ; (4)

the functions p, S, n, a depend only on r.

In the interior region (r < R) the above equations

reduce to

n' = - fS' s - a (5)
ee?o = s(s+f)(F2-1)7N - (6)
xS' = f - [f2-1 4 (1+x252)e2a 1/2 , (7)
a' = S'(F-xS') + xS(f+5)(F2-1)7" 2% | - (8)

where x

r/Z and a prime means d/dx. For definiteness we consi
dered f > 1; a change of sign in S and S' is required for

f < -1, in these equations, | |

For the exterior region (r > R), where p = 0, the

equations are



' xS' - o' s ' o (9)

n = -
st = se?® o x5 [3+(1 . xzsz)eZd] . (10)
2xa' = 1 - x25'2 - (1 + x%s?%)e?® . (11)

3. SOLUTION OF EQUATIONS

The coupled ordinary differential equations (7) and (8)
for S(x) and o(x) can be numerically integrated when the initial
conditions are given. A simple analysis shows that a = a' =S' = 0
at x = 0; we then fix a value for the parameter f, and also an
initia] va]ue:S0 for S(0O) and start the integration from the
origin to odtwards. |

For a given initial condition, the radius R should
be determined uniquely. To find the value of R we first proceed
the numerical integration of interior eqs. (7) and (8) up to a

certain test radius r = res for r > r, we switch to exterior

t
eqs. (10) and (11). We impose the continuity of a, S and S'
through r = ry»> and we also impoée that § vanishés_at infinity.
We Took for the correct value rt'= R by itefation,which safisfies
the above condition. '

In possession of S(x) and a(x) we can now obtain the
extérior solution %or n(x) from (9); we impose the asymptotic
condition n(«) = 0 which determines the integral constant. The
interior solution for n(x) is obtained from (5) and must be con
tinuous at r = R; the continuity of its radial derivative through
r = R follows automatically from the continuity of a, S and S',

as can be seen from the following general expression, valid for

both interior and exterior regions,

2xn' = (1+x°5%)e2® - (1+x%s'2)y | (12)



4., RESULT AND DISCUSSION

We present now the results obtained.cofresponding to
several sets of values of f and So'

In case f = 1.1 and S_ = 107° (Fig. 1) the solution al
most coincides witﬁ that of linearized equations, as expected.

L sin x, which shows

The matter density p(x) is essentially x
a maximum finite value around the center and decreases monotoni-
cally to the boundary R = 0.92 of the spheres; we plotted p/10,

where

5(x) = e2% o(x) | (13)

is a dimensionless quantity. The also dimensionless scalar field

S(x) starts from the maximum pre-assigned value SO = 10"5

on the
origin and decreases monotonically to zero at infinity; in the
exterior region (x > 0.9) it presents the usual Yukawa behaviour
x'1 e *. The dimensionless gravitafiona] potential n{x) shows

the well known pattern (we p1otted its négative in order to save
space), with maximum slope close to the boundary x = 0.9; in this
weak field Timit (S2 << p << 1) we can relafe n(x) with the

Newtonian potential ¢(x) produced by the matter density p(x),
-2 . .
n{x) = ¢ "¢(x) H ) (14)

these potentials n and ¢ then approximately present the usual x_]
behaviour for x > 0.9. Finally the metric potential a(x) is rela
ted to the ratio between radial physical lengths and the corres

ponding radial coordinate intervals, d& = e%dr; since a(x)

phys
is positive from the center till infinity, all physical radial

distances are numerically larger than the corresponding radial



coordinate intervals. One finds that a(x) has a parabolic (x2)
behaviour near the origin followed by a slight bending rightwards
before reaching the boundary x = 0.9. On this boundary a is con

tinuous, but its x-derivative has a discontinuity

' R _ 20.(R) 15
it a = g¢f Rp(R) e > , (15)
as can be shown from eqs. (6), (7)., (8) and (11). For x > 0.9 one
finds that a{x) closely follows -n(x) in this weak field limit,
as it should in a Schwarzschild exterior solution. The gravita-

tional mass of the whole system, as defined by

mo= - %; liil[gn(ri] ' (16)

is 0.87 x 1072 in units c’£/G.

We next consider the casé f =1.1, as before, but with
SO = 3 (Fig. 2); this is no longer a weak field solution. The
density of matter p(x) still shows a larger concentration on
the origin, and dilutes monotonically to a nonzero value at the
boundary-R = 0.32£. We note the diffused property of the di;tri
bution near the surface region which is not*bbserved in the weak
field Timit. Potentials n(x) and S(x)-have a behaviour similar
to that of the previous caﬁe. A somewhat different pattern,
however, is presented by the metric potential a(x): it still has
a parabolic (x2) behaviour near the center and reaches a maximum
in the region of maximum radial derivative of the gravitational
potential (n'), but it now decreases in the tail region of matter
distribution. There is a discontinuity of slope (15) on the bou§
dary of thg sphere; for increasing x the potential a(x) gradually

approaches the Newton-Schwarzschild hyperbolic (x'l) behaviour,

2

since the scalar field density S“(x) tends to zero exponentially.



It is worthwhile to stress the cointidence of regions in which
the material system presents maximum gravitation (as giVen by n')
and maximum di]atatjon of the physical radial distances (as given
by a). It is also interesting to remark that the maximum gravi-
tation occurs in the interior (x = 0.2 < R/L) of fhe sphere;
this is a consequence of the faint concentration of the outermost
shells. The gravitational mass of the system, as defined by (16)
is 0.11 c%¢/G.

We finally consider the case f = 5 and S0 =1 (Fig. 3);
a few preliminary words are necessary to understand the peculiar

situation found in this case. It is known4

that'the "effective
energy densfty" that produces a static gravitational field is

ZTg - T, which in our system ié proportional to ? + 52. In thé
previous two cases the major contribution to the attractiQe gra-
vitational effects came from the matter density p(x), but in

the present case the main contribution comes from Sz(x). A trivial
calculation starting from (6) shows that one always has

p(x) < Sz(x) in situations where 1 < (f2-2)f']S(x); in the present
case (f = 5) we then have predominance of S? contribution in
regions where S(x) > 0.22, that is, from fhé center of symmetry
where p = 0.25, Sg = 1 to the radius given by x = 13.7 as can

be seen in Fig. 3. Another interesting question concerns the me-
tric potential a(x); in the two prévious cases we found a posi-
tive parabolic behaviour near the origin. Indeed, a few calcula-
tions starting from (7) and (8) show that one always has near

the center

1im [%‘Za(xi] - & S, (£2-1) [%f (f -3)3:] (17)

we then have negative values for a(k) in the innermost shells



when 2 < (f2-3)f-]So. That is.what happens in the present case
(f =5, S0 = 1); the metric potential o(x) starts from the zero
value on the origin and assumes negative-values with increasing
X, with a minimum iﬁ the region where the gravitational potential
n(x) shows a minimum derivative; for x > 13.7 one finds positive
values for a(x), with a maximum.near the boundary x = 15.8 of
the sphere, a region wﬁere n(x) presents a maximum radial deri-
vative; with increasing x in the external region the two functions
a(x) and -n(x) asymptotically coalesce as originated by a mass
m=7.63 c’2/G.

For a better understanding of the behaviour of a system
under variouswdegrees of concentration, we plotted in Fig. 4
the gravitational mass m (Schwarzschild mass), the proper mass
m, and the ratio of the binding energy to the total proper mass
as functions of the central value of Yukawa field. The value 1.2
is chosen for f. The proper mass (jnvariant masé) mg, is defined5 by

R .

m_ = 4x f oe®ldr o ' ' (18)

o
o

and the binding energy is

2

B = (m, - m)c R . | (19)

0

where m is the gravitational mass defined in (16).

A1l these quantities increase almost linearly in
log-Tog scale up to log S = 0.5 x 1072 (non-relativistic region),
then bend down in the relativistic region. For very high central
values of So(log So > 5), the nqmerica] procedure fails due to
the computational difficulty.

It is interesting to note that the gravitational mass

m has a maximum at log SO = 0.8. A similar situation is well



known in the case of neutron star models when the gravitational
mass is plotted against the central density of neutron star6

In the latter case the existence of maximum mass is related to
the gravitational iﬁstabi]ity, and solutions with the central
density higher than this maximum point are unstabie against
collapse. In analogy to the above, it seems that the solutions

of our system with log SO > 0.8 are unstable for the value f = 1.2.
However we should note that the proper mass does not have a ma-
ximum in contrast to the neutron star models. The ratio of the
binding energy to the proper mass seems to increase monotonically
with So’ tending to unity. Around the maximum of m, the binding
energy reachéé about 60% of the total proper mass.

The problem of instability of the Yukawa system becomes
clear in the following 1imit. Let us introduce the "number density"
n of the source of Yukawa fié]d by
n=H]—p s ‘ ' (20)

0

where m, is the proper mass of the source. The charge of Yukawa

field is then
q="Ffm . . (21)

Now consider the']imit
f>eo , m >0, g = const H (22)
this 1imit corresponds physically to a system of massless sources

of Yukawa field under the gravitation created by the field itself.

Using a new variable u(x) defined by

1
x|l

(23)

we get the field equations
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S' =0 ’ . ’ (24)

u' o= - x2s? , . ' ' (25)
. 2 2

nt =g e (j% + xS, (26)
2on = ' / (27)

e gn = S s .

for interior region. For exterior region the equations are the

same as before and u satisfies

o xP(ee v 52y . (28)

The internal equations are easy to integrate; the solu

S = const =S, s (29)
3
. _ X 2
u = - 5 S , (30)
n = - o + const s A' (31)
S
n = — - . A . . (32)
efq .

In the exterior region, the derivative of u is negative
definite and, for x = R/£, u < 0. Thus u is‘a1ways negative. This
means that the metric never tends to the Schwarzschild behaviour,
in which case u is finite‘and positive.

On the other hana we see from eq. (10) that S" > O
at x = R/&Z, since one always has S' < 0; this means the scalar
field, which is constant in the interior region, begins to in-
crease for x > R/Z.

From the above observations we conclude that there is
no static configuration of the system of massless sources of

Yukawa field under its self gravitation.
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Our Yukawa field has no self interaction. It may be
of great interest to study the system of pure Yukawa field with

self interaction under the gravitation.
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CAPTIONS FOR THE FIGURES

1072,

The scalar field S, dimensionless matter density p =

Fig. 1 - case f = 1.1 , S0

= eﬂzp, gravitational potentials o and the negative

of 1 as functions of radial variable x = r/4&.

Fig. 2 - case £ = 1.1 , S0 = 3,
The scalar field S, matter density p, gravitational

potentials o and -n as functions of x.

Fig., 3 - case f =5 , So =

1.
The quantities S, p, & and -n as functions of x.

Fig. 4 - The proper mass m, the Schwarzschild mass m and the
ratio of the binding energy mo-om to the proper mass
(in units ¢ = 1) as functions of the central value

So of Yukawa field, for f = 1.2. Log-lecg scale is used.
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