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ABSTRACT

An exact solutior of Einstein equations éorreSponding to
an equilibrium distribution of disordered cléétromagnetic radiation
with plané symmetry is obtained. This équilibrium is due solely to’
the gravit&tional‘and préésure‘effects inherent to the radiation.
The distribution of radiq£ion is found to be maximum and finite at
the plane of symrmetry, and to decresse monotenically in directicns

normal to this plane,

The solution tends asyumptoiically to the static plane synmetric

=1

vacuum selution obtained by Levi-Civita., Timelike and null geode=

sics are discussed.

*
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1. INTRODUCTION

One of the host fascinating physical systems described
by the Einstein-Maxwell theory is that of an electromagnetic ra-
diation evolving only under the influence of its own gravitation.
Situations might occur in which the gravitational attraction as-
sociated to the energy density of the:radiation Qere'strong.

- enough-to compensate the corresponding pressure; this radiation
in equilibrium Would then not need any recipienf or walis to be
confined.

 Tolman (1934a) seems to have first providéd the suffi
cient mathematical apparatus for studying thaf possibility; he
explained the circumstances under which a radiation may be tred
ted as a special case of a perfect fluid. And Klein (1948) first
applied Tolman's results to a cosmoiogical situatioﬁ, he studied
a spherically syﬁmetrfc distribution of disordered electromag-
netic radiation in equilibrium. He was able to find ohiy an ap-
proximate solution, which he presented as a set of series expan
sins fn terms of his dimensﬁpn1ess radial variable Kpofz.

In the present paper we obtained the exact soljution
of an unbounded plane symmetric distributibn of disordered ra-
d%étion in gqui]ibrium. Similariy to Klein's sphere our slab
distfibution shows a larger condensation in the innermost re-
gions, and dilutes ﬁOnotonicai1y.to a vanishing distfibution
cutwards; in the asymptotic regions our solution goes to Lewi-
Civita's (1518) planc symmetric vacuum solution. Some time-1i

ke and null geodesics are discussed.
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2. GENERAL EQUATIONS

~We start with the static and plane symmetric line ele-

. ment

' 2 2.
2 [0} )

ds™ = e (dx0

)2 - e26 dx% - es-a(dy2+dz . (1)

where a and B are anct1ons of x alone; the corresponding non-ve

. ro Chrtstoffe] symbo]c of the second Kxnd are
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where a subscript 1 means d/dx. And the surviving components of

the Ricci tensor are

o L, . .
RO = ~ @ 80']1 . 'y : (3)
R} = L?]I + 3a +B )(a] 8 i] ' (4)
2 3 1 -2

RS = RS = ?<a1]-el]) e"28 | (5)

Perfect fluids are systems with energy momentum

where pCZ, p and u are the rest energy de nsity, the pressure and
the macroscopic velocity field ef the fluid; this last quantity
must satisfy u U, = 1. We consider a particuiar kind of perfect
fluid, - with eguation of state pc2 = 3 p (Tolman 1934a); for such
' 123

a fiuid with plane symmetry and in static condition {(u ' =u"=u~=0)

we have

¥



Tg = p(x) diag (3, -1, -1, -1). (7)

Then the Einstein equations
RY = —|TH - L sk « = 8n6/ct (8)
v v 2 v ’ o

reduce to the three equations

e-zsa]] = 3kp s (9)

: -2 '
[6]]+ 7}(3a]+81)(a]'8")]e 8 = -Kp > (]O)
(ay7-877) e 28 = 2cp (11)

And the contracted Bianchi identity gives the re?ation

| py * Apay = 0 . . _ (?2)

3. SOLUTION OF EQUATIONS

From (9) and (11) we easily obtain 3g = a-bx+ta, where a
and b are constants of integration. We are free to impose, as

boundary condifjons, that g5y = -9,, = “Oyy = 9y, = 1 on the

plane % = 0; from (1) one finds then that o{0) = g(0) = 0. So
with the constant a =0 we have
38 = a - bx , b= const. (13)
From (9), (10) and (13) we obtain the equation

1207 + (10uy-b) (26y+b) = 0, (14)

whose solution is ' ' ’

T = - 5hx '+ 6leg{ctd ebx) , (1583



with c.and d cbnstants‘of‘{ntegration. We want to avoid solutions
corresponding to surface density of matter concentrated on the
plane x = 0; and we also require that our system present mirror
symmetry with respect to that plane. We then impose as another
boundary condition that the normal derivative of the metric coef

ficient 900 be zero on the piane x = 0. So with a(0) = a](O) = 0

‘we obtain from (15)

¢ = 1/6 , d =5/6 . (16)

The.pressure p can now be'eaéily obtained from (9)

the result satisfies the relation (12) and is

p = (b%/36x) &7t

If we call b2/36z = pg our resylts become

Cds? = £ TR (Ax0) 2o £ eTBax® -7 (ayPed2?), (18)

(19}

where

fle) = E%(‘+5eg{} , Cix)=6(zpox2)}/2 > 0.

In regions close to the central plane (x=0) we have

the approximate values

900 = 1*E/12 L b= pp(1-E2/6) <<l o (2))

these results will be used in connection with some special geo-

desics in the next Section. .

In studying the properties of the system in regions

far fromw ine central plane x = 0 one finds more appropriate the



dashed coordinates

XO' - (5/6)3/5 XOV_’ xl = (5/6)]/5 X . yl = (5/6)-]/5 y ,
(22)

= (5r6)7!°

~N
¥
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in terms of these dashed coordinates the exact solution becomes

ds?=h3 e (dx? )% - we Mdx'? - nV(dy'%+dz'?) (23)
p=qh®efn : (24)
where
. . . ' ’) P N r
Ch(n) = (eM 1780275 a(x)=s(kax'8)V2 5 0, q=py(6/5) 12/ % (25)

Then in regioﬁs far from the plane x'=0 we have the apnfoximatg
(asymptotic) solution |

ds? = eN/5(dx0")2 - &35 gyi2 | m2n/5 gy rlig,r 2 (26) .

these results will be discus;ed later, in connection with the
exact Levi-Civita plane symmetric static vacuum so]utidn.

Before closing thié Section we evaijuate the enérgy con
tent of cur system, per unit area on'the plane x' = 0. We.start
f%bm the expression of the energy content of a volume element

(Tolman 1934b)

3

¢ = (-g)V/% (et

OO

- T) dx' dy' dz' ', q = det guv 5 (27)

for our fluid (7) with line element (23) and pressure (24} we

have

i%E/dy'dz’ =6 g h¥ e dxi . | (28)



Integrating -this differential de' of the surface density of ener

gy between two planes x' = = const we get

-1

V2 (eM 1y (eM+1/5) : (29)

e'(n) = (4q/x)

for |x'| = » = n we obtain for the surface density of energy a

finite value

1/2

e' = (4q/x) (30)

This result will also be discussed later, in connection with the

Levi-Civita solution,

4, TIMELIKE GEODESICS

In the geodesic equations' for a test particle

Hrgs + dW & Ve . ‘ '
du /df + Vo uu 0 (31)

we use the Christoffel symbols (2) and obtain

du’rds + day ¥ Ul e 0, | (32)

] 20-28

du'/ds+aye (v2)% + 5 ()P« %(a}-e])gf““ﬁ[ku2)2+(u3yéj= e,
| , | (333

2, 12 .
du/as @ (6]~u})u'u = 0 (34)
3 K
du”/ds + (Bluui)uju“ = 0 . (35)

These eguations ave not independent, since we must have uvuv = 1;

we can easily obtain the First integrals
0 é ‘2(}. 2 N {4 o {4 sl ;D
u = D7 e , v o= p "R . u® = ¢ 7P . £36)
i .4 -2a Wl a2y anf] -2p N
{u ) = %P} & =1-{8"+C )em Ri,e “ {(37)



The three constants 02,,8, C are related to the three components

of a given "initial" velocity of the test particle; curiously

the three covariant components of the ve]ocityA

= - C (38)

remain constant along the motion of each test particle, only

the covariant component Uy varies along the motion. These results
are va1id for all piane symmetric static systems with line ele-
ment (1).

In view of the difficulty in obtaining the subsequent
integrals éf (36) and (37)'with our line element (]8) we only
consider the motions of test particles with velocities small
in comparison with that of light, and in regions not far f?om
'§he central plane x = 0. In other words, we take the ve16city pa

2 2 2

rameters B~, €, D"-1 and the distance variable £ all very small.

We then obtain from (36) and (37) with the line element (18)

dx%/ds = (1-3kpgx“)D% = 1, dy/ds = B , dz/ds = C , (39)

C(dx/ds)® = p*-1-B5-c%-3¢p X (40)

' - g . ) ) )
These equations can now be easily integrated; we call xL = ¢t

and obtain the approximate (non-relativistic) timelike geode-

sics
dx/dt = cA sin wt , dy/dt = ¢B , dz/dt = cC , (47%)
where
£ /\ o '?
T O T o)/ (42)



inese geodesics represent sinusoidal motions on planes normal

to the plane x = 0, and with nodes on this plane x = 0. 3

5. NULL GEODESICS

Nullgeodesics are also obtained from (31), but now

uuuu = 0. A first integral is then
dy/dx® = 8 3B dzzdx® = c 3B, (43)
(dx/dx0)2 = 22728 _ (p24c2) %38 o (44)

the two constants B and C are related to a given initial direg

tion of the null geodesic. ' o -
| 'Let us consider a light ray travelling in the plane

.z = 0, Making then tﬁe constant C = 0 in (43) and (44) we ob—}

tain for the trajectory in the (x,y) plane the equation

(dy/dx)? = 82 £3 e72R(1pPe%eHy7t T (a8
where we used the line element (18). One finds that

82 = sinly | (46)

where v is the angle of incidence of the ray on the plane x=0 ,
where £ = 0 and f = 1. After crossing this central plane the
ray travels outwards until it reaches a maximum distance from

the plane x = 0; this distance is given by dx/dy = 0, or

£E/e f-Z

¢ = sinv . (47)

After having reached this distance the ray proceeds inwards
with identical characteristics. Feor large angles of incidence

on the plane x = § (v = n/2, RS = 1) one {inds from (47) that
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thé maximum-distance reached by the ray is given by

2

£ = 3(mw/2 - v)" << 1 (48)

ma X
and for almost normal incidences (v = 0, B = 0) we again obtain

from (47)

£

nax © J(10/3)logu > 1. (49) ~

For am incidence of 450 some computation. gives

Emax =~ 1.5 , v = /4 . | (50)

6. DISCUSSIONS

We obtained the exact unbounded solution given by Ge-
neral Relativity to a c]ass-(pc2 = 3p) of—perfect fluids with
plane symmetry, in static condition; two pﬁysica] axamples of '
such fluids are disbrdered distribut{ons of electromagnetic ra-
djation (Tolman 1934a), and disordered distributiohs of neut;i—
nos (Klein 1948). Also distributions of colliding particies
with randomly oriented u]trére}ativistic velocities can'be des -
cribed,'in first approximeticon, in ferms of that class of
fluids (Klein 1948).

' Qe found that the gravitational atiraction associated
to the energy density of these fluids is stirong enocugh to com-
pensate the repuisien produced by the corresponding pressure. It
is then possible to have an isotropic clectromagnetlic radiation
bound .together in a static equilibrium configuration solely due

to its own gravitation.

We have defined (2) our “working x-variable" £ in a



way such that g(x) = g(-x); this ensured the mirror §ymmetry

of the system across the plane x = 0, since the pressure and
all metric coefficients have been expressed in terms of £. The
same remark holds for n(x').

The density of our plane symmetric fluid is maximum
and finite on the central plane x = 0, and decreases monotoni-
cally to zero in both directions normal to this plane,.

In our system the scalar curvature Rﬁ vanishes every-
-where, however Rng = 12 K2p2 as can easily be obtained from
(7) and (8); this quantity also is finite in the central plane
and decreases monotonfcai1y to zero outwards.

In the central zone (g<<1) the density of the fluid
is near]y.uniform, as can be seen from (21); as a consequénce
. we obtained the sinusoidal motion (41) for slowly moving test
particles in that zone.

.It is known from non-relativistic mechanics that én
infinite slab of homogeneous'f1uid of density of mas; u.pro -
duces internal motions of test particles which are sinusoida?l
with frequency'm2 = Kc4u/2. If we compare this result with
ours u’ = KC4p 6btained in (42) we find that our fluid with
Tg = czp = 3p produces a gravitationaf field which at first
approximﬁtion ressembles that produced by & howogeneous fluid
with active mass density o= 25, The same conclusion could be
drawn from (27): since the trace T is zero one finds from that
equation that the time component Tg = czp contributes twice to
the energy of cur fivid (Tolman 1934¢).

{t is also known from non-relativistic gravistatics

that an infinite homogeneous slab with surface density of mass ¢
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produces an external acceleration field which is uniform and di- 2%
rected inwards, of strength 2nGo(or KC40/4); to this acceleration

field it corresponds a Newtonian potential ' 1

o(x') = (kchora)|x'] . (51)

Newtonian potentials ¢ are often reiated to the metric coeffici
ent god of relativistic descriptions according to S0 :exp(2¢/c2).
Indeed, the exact Levi-Civita (1918) static vacuum solution with

plane symmetry can be written as

‘ 2 \ o 2 2
ds? = 20774042 | om80/cT g2 A8/t 42 42y (5

with ¢ given in (51). One finds that this line element coincides
~ with our asymptotic line element (26). Our surface density of
’ energy ¢' = Z(q/xc)]/2 obtained, in (30) coincides wifh the Levi-
Civita's surface density of enérgy cza = Z(Q/K)j/z, obtained
by comparing (25) and (26) with (51).and (52).

Again in non-relativistic gravistatics of usual per-
fect fluids one finds that the condition for local equilibrium
is grad p = - u’ grad ¢ where p is the presuyre, u' >> p/cz is

the mass density and ¢ is the Newtonian potential. If we now

a

compare this equation with the result p, = - (40/3)cLa] stated
in {12) we find that in a first approximation (¢ = cza) our
Tluid behaves as a passive mass density u' = 4p/3. In wusual

incompressible fluids the contribution p/cZ of the pressure p

to the passive mass density u' = p + p/c2 is negligible

-

3

z . . C s i . .
(p/c” << p), but in our Fluid this coniribution is consider-

Al
.

ab?e:and amounts to p/c2 = of

From (29) and (30) cone finds that half of the total
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energy of our f]Qid slab is contained between the two planes gi-
ven by (en—l)(e”+1/5)—] = 1/2, or n =& = 0.8. We may take
then this value 2¢ = 1.6 as a measure of the thickness of our
slab. Referring theﬁ to (20) one finds that this thickness is g¢gi
ven in light years by [2xt = 186 pa?/z , with the central pres-
sure p, in atmospheres; the thickness of the slab is thus seen
to decrease with increasing central pressure. Some representati
ve values of radiation pressures are 0.002 atm. and 107 atm.,
corresponding to the situation on sun's sUrféce and at the be
ginning of a thermonuclear reaction, respectively (Band 1955).
The values of the thickness |2x| corresponding to these values
for the central pressure Py are 4,000 light yearé and 20 light

days, respectively.

ACKNOWLEDGEMENTS

We acknowledge CNDTC {Brazlif) {on the grants

01.120.306/75 and 01.120.721/75.

g

<At i A AR RN AN

T B L

§ Yot s

Lol B o N L P P
caigel BB ha bl B s db R R T



-14-

REFERENCES

BAND, W. (1955) "An introduction to quantum statistics'" - van 5

Nostrand - p. 145.

KLEIN, 0.(1948) Ark. Mat. Astr. Fys. 34 A no. 19.

i
L

LEVI-CIVITA, T. (1918) Rend., Réale Accad. Lincei 27, 29 sem.,

240.

TOLMAN, R.C. (1934)'"Re1ativity, thermodynamics and cosmology"-

.Oxford Univ. Press; (a) §109, (b) §92, (c) §1l10.

1k



