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Summary. The physical properties of the solution in the diffraction of an
electromagnetic pulse by a perfectly conducting half-plane are studied from
the standpoint of energy propagation. The form of the energy current 1lines
and of the level lines of the energy density is given, for several instants
of time after the arrivael of the main part of the incident pulse at the
half-plane. The splitting of the incident wave front into a transmitted and
a reflected one leads to the formation of an energy reservoir near the edge,
The energy contained in this reservoir is then reemitted, giving rise to the
diffracted pulse. Lines of zero energy current play an important role in
this process; their formation and evolution is discussed, as well as the
growth of the diffracted wave front. The asymptotic behaviour of the dif
fracted pulse for large times is considered.

¥ Foragpear #n;71 Nuovo Cimento,
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1. JIntroduction.

The role of energy accumunlation effects in diffraction
theory has been discussed in a previous paperl,in connection
with the diffraction of a pulse at the open end of a parallel-
=plate wave guide. However, a detailed study of the accumula=-
tion process was not possible in this case, owing to the mathe-

matical complexity of the solution.

The simplest problem in diffraction theory IiIn which
these affects can be investigated 1s the well=known problem of
the diffraction of a pulse by a perfectly conducting half-plane.
The solution of this problem was given by Sommerfeld2 and Lamb3
(ef. also Friedlanderé)o It also enables us to discuss the
initial stages of the diffraction process in the above-mentioned
waveguide problem, because the two plates behave in a completely
independent way before the diffracted . wave originating from

one of them reaches the other oneso

Although the mathematical solution of the half-plane
problem has been known for a long time, its physical properties
do not seem to have been fully investigated. These properties
caﬁ best be studied by considering the propagation of energy,
as was done by Braunbek and Laukiens in the monochromatic case.
This casey however, is not well suited for our purpose, because
the energy accumulation effects are not clearly apparent in the

stationary solution.

In the present paper, we shall study the energy flow
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as a funetion of time, in the diffraction of a pulse by a half=-
-plane. The solutions are given in section 2, both for a Cauchy-
~type incident pulse of width b and for a delta-type incident
pulse, which can be considered as a limiting case of the former

one ag b —»Q,

In section 3, the energy current lines and the levellines
of the energy density, for a delta=type incident pulse, are studied.
Although the behaviour at the wave fronts 1is strongly singular,
the solution can be physically interpreted as representing the
asymptotic behaviour, for large times, of the solution for a
pulse of finite width, and it has the advantage of being consider
ably simpler. A striking feature of the solutions is the ap-
pearance of lines where the energy current vanishes. These lines

separate regions where the energy flows in opposite directions.

The effects due to the finite width of the incident
pulse are discussed in section 4, in the case of a Cauchy=type
pulse of width b. The energy flow pattern ig drawn for t = b/c
and for t+ = 10 b/c. The formation and development of the zZero=
-energy~-current lines, the growth of the diffracted wave front,

and the energy accumunlation near the edge, are discussed.

The junctions between the geometrical and diffracted
wave fronts and the zero=energy-current lines give rise to very
rapid variations in the energy flow. These regions are studied

in section 5.

Finally, in section 6, the behaviour of the energy

reservoir near the edge, as a function of time, is discussed in
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detaill.

The conclusions will be found in section 7.
2. F atio 8 oblen.

The coordinate system is shown in fig. 1. The perfectly
conducting half-plane is represented by x > 0, y =0, and the
incident pulse travels in the direction of the negative y-axis.We
shall consider only the case of transverse magnetic waves, which
can be described by a scalar function u(x, y, t). The field

components are

H=(0,0,u), E= (Egs E» 0), (1)

y

with the boundary condition E, = 0 for x> 0, y = 0.

The problem has also an acoustical analogue, if we in-
terpret ul(x, y, t) as the veloecity potential of sound waves; the
boundary condition then describes a perfectly rigid half~plane.
However, only the electromagnetic interpretation will be con=

sidered in this work.

The solution for an incldent pulse of arbitrary  shape,
and for both polarizations, was given by Lamb3, wvho considered in
detall the case in which the incldent pulse is of the form of a

Cauchy wave packet, b

bl+(et -i-y')2

This represents a pulse of half-width 2b centered at y = = ¢t.
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The corresponding solution for transverse magnetic polagp

ization 1is
-im/4
1 1
H =y = %’R + + ° X
z priCetty)  bH(et-y)  [pyg(eper 't
+ -

b+i{ct+y) b+i(ct-y)

where &= r% cos 8/2, 9= r% sin 6/2, and [b+i(ct=ri]% is

taken to be positive for ¢t = r. The polar coordinate system is

shown in fig. 1.

INGIDENT PULSE

A

Y

Fig. 1 = The coordinate system.
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The electric field components can easily be derived from

(%3). The results are:

1 1
E_ = %(Q cos © [ } +

T b+i(et+y) ) b+i(et=y)

in/4 ¥ =
e =N +7
+ . I:b+i(ct-r.):| o b - ? J (4)
T b+i(ect+y) b+i(ect-y)
1 1
b+i(ct-y) b+i(ct+y)
olm/4 b + lct §+ 0 £-9 o)
- + - o
r [b+i(ct-r)]i' b+i(ct+y) b+1(ct-y)_
We shall also consider a delta-type incldent pulse,
1 b
u; = d(et +y) = 1lim [—- ] (6)
b—=0 L7 bl+(etty)?

It might appear, at first sight, that such a pulse is of a too
singular charagter for a physical interpretation of the corre-
sponding solution to be possible. It is certainly true that
quadratic functions of the field components, such as the energy
density and the energy current, bécome highly singular atthe wave
fronts associated with (6). However, it will be shown later that
the corresponding solution, behind the diffracted wave front, is

closely related with the asymptotic behaviour of the diffracted
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wave originated from the pulse (2), for times t>> b/c, so that the
results have a direct physical interpretation. The main reason for
considering a delta~type incident pulse is the particularly simple

character of the solution in this case.

According to (6), the solution can be derived from (3),
(4) and (5), by going over to the limit b —>0 and taking into
account the normalization factor 1/w. The solution can be written
as the sum of a geometrical optics term and a diffracted fermo For

t < 0, the solution is obviously given just by the incident wave:

H, =E = Slet+7vy) (£t <0). (7)

The incident pulse reaches the half-plane at t = O.

For t > 0, the solution can be written as
u=u tu, *uy (8)

where u and W, the transmitted pulse and the reflected pulse,

are the geometrical optics terms, and Uy is the diffracted wave.

The transmitted pulse is given by

0 (ct+y) in region IIT,
Hz t Ex t " (9)
? ? 0 in region IV,

and the reflected pulse is given by

5(y=et) 1in region I,
H = - R = (10)
25T X 5T 0 in region II.

The division into regions is shown in fig. 1.
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It is clear, from considerations of causality, that the

diffracted wave vanishes for r > ¢t. For r < et it is given by

Hz a- - 3 ' ; + k| ’ (11)
’ -
an(et-p)® \C¥y ct-y
3
(et=r) E+n  E-D
E a = o - s (12)
T 2rr ct=y ct+y
ct +r2 -
Eg,q = - 3 ; +'€ ? o (13)
2rr(et-r)® \C¥Y ct-y
The field becomes singular both for r —— ct and for

r —0. The former singularity is the characteristic (ct-r)-%

singularity assodiated with the free propagation of a c¢ylindrical
pulse, which may alsolbe regarded as the effect of an iInstantaneous
excitation in a point of a two-dimengional space7° The "tail"™ of
the diffracted pulse is a well-known feature of two=-dimensional

wave propagation. In the present case, the incident pulse gives
rise to an instantaneous excitation at t = 0, along the edge of
the half-plane. The corresponding energy accumulation behind the
d;ffracted wave front should therefore be regarded as arising from

the two-dimensional nature of the problem.

The_r'% singularity of the electric field for r — 0 is
a general feature of the solution, which is independent of thé
shape of the incident pulse (cf. (4), (5), (12) and (13)). This
is the characteristic singularity at a sharp edge, which 1s also

found in the monochromatic solutionsc The nature of the energy
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accumulation in the neighbourhood cof the edge 1is entirely different
from that which takes place behind the wave front, and it will be

one of the main objects of our study in the following sections.

3. Delta=type cident se.

We shall consider, in the first place, the case of a
delta~type incident pulse. According to (11), (12) and (13), all
components of the diffracted field are of the form

(et) L £(r/ct, ©).

Thus, the lines of force in the diffracted wave expand radially (in
the two-dimensional sense) with velocity ¢. The Poynting vector-Er
and the energy density W are of the form

— C > = ¢ -2 0
§= — ExH =-— (ct)™ A(z/ct, 0), (14)
ar 16w

1 ECE 1
W= — ( E- +H ) = —— (ct)PW(r/ct,0) . (15)
3ar

The energy contained in a volume element which is undergoing

radial expansion with velocity ¢,

r dr @ dz = (ct)? (r/ct) d(r/ct) a® dz,

remains constant in time, provided we acompany the volume element

during its expansion.
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The form of the energy current lines (solid lines with
arrowheads) and the level lines of energy density (dashed
lines), for an arbitrary instant of time t > O, is shown in fig.
2. To draw these lines, the energy density and the slope of
the Poynting vector were evaluated at points (r/ct, ©), for
r/ect = 0.1, 0.2, 0.5, 0.8 and 0.9, and for O varying from 0°
to 360° in steps of 15°. The number assigned to each dashed
line 1s the corresponding value of ’ﬂ/(r/ct, 8) in arbitrary
units. According to what we have seen above, the form of the
lines at any other instant of time can be obtained by radlally

expanding or contracting fig. 2 by an appropriate factor.

Notice that, insofar as the diffracted wave 1is con-
cerned, the pattern is completely symmetrical with respect to
the half-plane. The direction of incidence is indicated only
by the positlon of the reflected and transmitted wave fronts.

Let us now consider the energy distribution. The
energy accumulations near the diffracted wave front and in the
neighbourhood of the edge of the ﬁalf-plane, already Treferred
to in the previous section, are immediately apparent in fig. 2.
Another apparent feature of the energy distribution = 1is its
asymmetry with respect to the plane x = 0O: the energy is much
more concentrated in regions I and IV than in II and III. In
the neighbourhood of the diffracted wave front, for instance,
the energy density behaves like (cos 6/2,/ cos 9)2 (the di-
vergence at 6 = 7/2 or 37/2 is due to the junction with  the
geometrical wave fronts, which will be discussed later). This

is 1dentical to the angular distribution of Sommerfeld‘s SO=
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lution’ for a monochromatic plane wave (transverse magnetic case).
In the transverse electric case, the behaviour is just the oppo-
site: the energy density in regions I and IV is much smaller than
in II and III, This is due to the different boundary condition
for this case, E = (0, 0, Ez) =0for x>0, y = 0, which implies
the vanishing of the Poynting vector on the half-plane, and does

not allow it to act as a waveguide.

Let us consider next the energy current lines. The most
striking feature, in this respect, is the existence of lines
(dotted lines in fig. 2) where the energy current vanishes. They
are given by Hz = 0y and they separate regions where the energy
flows in opposite directions. The origin and physical significance

of thege lines will be discussed in the next section.

Another feature which deserves attention is the behaviour
of the solution near the diffracted wave front (r=xct), at the
points © = v/2, 3w/2, and ¥. These three points belong at the same
time to the wave front (where HZ —> c0 ) and to the zero~Poynting-
=vector lines (Hz = 0), The first two of them also belong to the
junction between the geometrical (plane) and the diffracted (cy=-
lindrical) wave fronts. Similar junctions appear in the theory of
the Cerenkov effect, when a fast particle penetrates into a medium:
in thls case, the 8erenkov cone has to be joined to a spherical
wave front. Clearly, these junctions can only be studied in the
case of an incident pulse of finite width. This will be done in
detail in section 5.

The velocity v of propagation of the energy may be de~
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fined by

-
S =v

w L

(16)

The absolute value of the Poynting vector (which has not been

represented in fig. 2) is then obtained by multiplying the energy

density by the velocity. The velocity tends to zero on the lines

HZ = 0, which were already mentioned above. In particular, it

tends to zero at the edge of the half-plane. In the neighbourhood

of the edge, the velocity is much smaller than c¢; the field  |has

an electrostatic character; so that the energy accumulation in

this zone 1s almost purely electrical in nature. Away from the

lines H, = O, the velocity of propagation of the

energy ap=-

proaches ¢, so that the behaviour of the absolute value of the

Poynting vector 1s quite similar to that of the energy density.

Fig. 2 - Energy flow
pettern for a delte
=type pulses

energy currert
lines.

level line of
energy densi-

P _gy=2 (i
arbitrary u-
nits).

—————

lines of zero
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It must be kept in mind that, in this hydrodynamical
description of the energy flow, the energy current lines
correspond to stream lines in an unsteady flow; they should

not be confused with trajectories.

4, GCauchy-type incident pulse .

We shall now consider the case of the incident pulse
(2}, the solution being given by (3), (4) and (5). It has
already been mentioned in section 2 that the asymptotic be=
haviour of this solution for large times is closely related
with the solution for a delta=type incident pulse. To show
thisy it suffices to notice that, for ¢t -r>> b, we can neg-
lect b in (3) to (5); according to (6), this is the same as
going over to the solution for a delta=type pulse (except for
the normalization factor 1/w). Thus, the results of  the
previous section can also be interpreted as describing the
behaviour of the diffracted wave for c¢t >> b, at distances from
the wave front also >»b. The effectswhich we are now going
to studé are all due to the finite width of the pulse. Por
¢t >> b, these effects are all concentrated in ﬁhe neighbour-
hood of the wave fronts, and they will be studied in section
5. It suffices, therefore, to consider values of ct of the
order of b. Negative values of ct will not be considered,
as they are related only to the diffraction of the head of

the pulse, and do not lead to any interesting effects.

The energy current lines and the level lines of the
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energy density for ¢t = b are shown in fig. 3. The conventions
are the same as In fig. 23 we have also indicated the width of
the transmitted and reflected pulses by means of the  dashed

lines y = *+ ¢t *+ b.

Fig. 3 - Energy flow pattern for a Cauchy-type pulse, t = by
~ ehergy current lines.
...... 2 .. .__. level line of energy. density = 2 (in arbitrary units)
geometrical wave fronts.
—————— lines y=ct +band y =~ ct = b,

The main difference between figures 2 and 3 1is the
abseance, in the latter, of zero~Poynting-vectof lines: there
1s no reversal of sensé of the édérgy flow. The energy flows
from regions I and II into reglons III and IV (H, >0 every-
where). This smooth flow around the half-plane takes place
during all negat{ve times, while the energy accumulated near

the edge builds 'up steadily, accompanying the increase in
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value of the ineident pulse. The reversal of the Poynting wvector
is related to the beginning of the backward radiation (depletion
of the energy reservoir). We see that this reversai still has

not taken place for t = b/c, although the incident pulse has

already gone through its maximum.

In so far as the energy distribution is concerned, we
can notice in figo %3 that the energy accumulation near the edge
occupies the whoie region r < ¢ty which connects the geometrical
(transmitted and reflected) wave fronts y = + e¢t. The diffracted
wave front has not yet been formed. The energy density 1is \leo

_ slightly greater in regions III and IV than in regions I and II.

The pattern for c¢t = 10b is shown in fig. 4, where the
same conventions as in figures 2 and 3 have been adopted. The
numbers assigned to the level 1lines of the energy density are
&he corresponding values of W (r/ct, ©) in the same units as in
-figo 3, s0 that, according to (15); the energy associated with
these lines is 100 times smaller than that associated with the

corresponding lines of fig. 3.

In fig. 4 there already appear the two zero-Poynting-
-vector lines (dotted lines); which will tend to the asymptbtic
form shown in fig. 2 as ¢t increases (Cf. also fig. 5). Theée
‘lines must therefore "appear for b/c < t <10b/c. It can be shown
that they appear at two different instants of time. Each of them
appears as an isolated point and thereafter it expands, remaining
always closed, except where it comes in touch with the half-plane

(this happens only for the line in region I).
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Fig. 4 - Energy flow pattern for a Cauchy-type pulse, ¢t = 10b:
~————— ¢nergy current ‘lines. . ]

e-u---_.. level line of energy density = 20 (in arbitrary units.)

.................. lines of zero snergy current.
geometrical and diffracted wave fromts.

Although the Poynting vector vanishes along the closed

lines, the energy contained within them is not constant,

and

increases with time. In fact; let us consider a eylindrical

volume Vt’ having one of the zero-Poynting-vector lines as 1its

basis and with generators parallel to the z-axis. This

will obviously increase wilith time. We have

d W
—_— W av = W B.n as + — av,
at ' dt

Ve Sy Ve

volume

(17)

wvhere St is the surface of the cylinder, n its exterior normal

and E’ the veloclty of expansion of the surface. It

follows
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from
- W
div § + — = 0 ,
ot
and from the vanishing of S on the surface S, that the last
integfal of (17) vanishes. The remaining integral is always

positive, which justifies the above statement.

The first zero=-Poynting-vector line, which marks the
beginning of the backward radiation, appears for ct ® 1.73b, at
the point r ~ 0,66 ct, © ¥ 0°, The other line appears for ctz7b,
at the point r * 0,9 ct, ©x210°. There does not seem to be
such a direct physical interpretation for this line as for the
former one. It plays a far,less important role, because it

appears in a region wherer the energy density is very weak .

It can be verified that, immediately after their <formg
tion, both zero-Poynting-vector lines expand with a veloclity
greater than ¢. However, this does not lead to any difficulties,
because, as shown above, - the energy contained within the lines
is not constant. The velocity of propagation of the energy can

never exceed c¢. In fact, it follows from its definition (16)
10

that™
2.2 ve 1 m2 22, L el
16 7o W 1= =4(E=H2)+(Eoﬁ , - (18)
. .

— — i -

so that v € ¢, and v = ¢ is only possible for BZ = H s E.H =20

(wave zone).

The growth of the diffracted wave front, which still

had not been formed in fig. 3, can already be noticed 1in fig. 4.
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This growth is more pronounced in regions I and II than in III

and IV.

In order to show the way in which the zero-Poynting-vec
tor lines approach thelr asymptotic form of fig.2, these 1lines
have been drawn in fig. 5 for ¢t = 100b. The only feature which
differs appreciably from fig. 2 is the existence of a gap between
the two lines, through which a communication is established be~-

tween the energy current lines in regions II and III.

Fig. 5 - Lines of zero energy current for a Cauchy-type pulse, ct = 100bs
diffracted wave front.

........................... lines of zero energy current.
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5. Junction -Points.

There remains %0 consider the behaviour of the sclution
near the junction points at r = ¢t, & = /2, ® = 37/2 and © = 7.
In the limiting case of a delta~type pulse, as we have seen in
section 3, these points belong at the same time to at least one
of the wave fronts (I, —>00), and to one of the zero-Poynting-
-vector lines (H, = 0). Thus, for ct>> b, we would expect to

find very rapid variations in the energy flow near these points.

The junctions between the diffracted and geometrical
wave fronts take place in eircular segments, which are the inter
sections of the strips et - bsyset + b and ~ect =bsys=ct+ D
with the cireular ring ct-bsr<ct+b. These segments are the
analogues, for the pulse (2), of the Fresmel diffraction region

for the monochromatic sclution.

The junctions with the reflected and transmitted wave
fronts, for ¢t = 100b, are shown in figures 6 and 7, respectively.
The zero-Poynting-vector lines are already very close to their
limiting positions. Both the direction of the Poynting vector amd
the energy density change very rapidly across these lines. This
behaviour can easily be understood. According to (3) and (5),

Hz T Eg for ct»b, r % ct and @ = /2 or 3w/2. Thus, near the
zero-Poynting-vector lines (Hz = 0}, we shall also have Eg =< 0.
On the other hand, the field near the diffracted wave front is
nearly transverse, so that Er << Ego The sudden variation in the

direction of the Poynting vector, on crossing the zero=Poynting-
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70°

110°

Fig. 6 ~ The junction between the diffracted and reflected wave fronts for a
Cauchy-type pulse, ct = 100b:

~ energy current lines.

.............................. «++vieov. line of zero energy current.

— linesr=ct tbandy=ct ¢ b,

—— i e e o . T o S —

250°

Fig. 7 - The junction between the diffractedand transmitted wave fronts for
a Cauchy-type pulse, ct = 100b:
- energy current lines.
................... veiisssevse-n...... line of zero energy current.
___________ — linesr=c¢t + band y = -ct + b,
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vector lines, is due to the sharp decrease of the Ee component .
The rapid change in the energy density is due to the same ef-
fect.

The behaviour of the energy density as a function of ©,
in the neighbourhood of 6 = 7/2, is shown in fig. 8. Both in
this figure and in the former ones, the function W(r/ct, ©) is
represented instead of the energy density (Cf. (15)); the units
employed are always the same. A logarithmic scale is employed
in fig. 8, on account of the rapid variation of the energy densi
ty. The various minima, for different values of r/ct, appear in
the vicinity of zero-Poynting-vector lines, as can be verified
by comparison with fig. 6. The behaviour of the energy density
in the neighbourhood of © = 37/2 is very similar to that  shown

in fig. 8.
The behaviour of the solution near the point r = c¢t,
6 = 7, where a zero Poynting vector line approaches the dif-

fracted wave front, is shown in figures 9 and 10. According to
fig.. 10, there 1is a sharp minimum in the energy density for On7.
This corresponds to a gap in the diffracted wave front, which is
still present for ct = 100b, showing that this is the last region

of the wave front to be formed.

6. Bnergy accumnlation near the edge.

We shall now consider the behaviour of the energy densi

ty as a function of time near the edge of the half-plane. It
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Fig. 9 = Energy flow pattern for a
Cauchy~type pulse near
@ =m, ¢t = 100bs

> energy current lines.

vee-venn 1ine of zero energy
.. _ current.

______ lineg r = ot * b.
170° _

180°
w
10
190° ¢ -
5..
: 4 4
3 1
f 1.00
i 21
!
/ /
N _
reet i
0.
¢ »
54
Fig. 10 - The energy density g
as a function of g .

6, near O=W, for
different wvalues
of r/ct (indicated 2]
by the numbers be-
gide the curves).

01—

LY B AN LI Y
1 PO

T T
170° 15° 180° 185° 190°



136

follows from (3); (4)s; (5) and (16) that, for r << b,

1 %
W o= (b2 + o2 2)-F [1 + > ], (19)
16mr (82+ 2t2)E
v ct ~%
== 22 /5 (pB e eBtBy=3/4 [1 + 3 ,(20)
¢ (b2 + ¢242)

where v, as before, is the veloeity of propagation of the energy.
The behaviour of (19) and (20) as a function of time is shown in
figs. 11 and 12, respectively.

?16vrw
%
b
4 L
2b
| L L L L T o
~3b =2h =b 0 b b 3b ct

Fig. 11 - Time dependence of the energy demsity near the edge of the half-
-plane.
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A v/c

(nﬁﬂl/z

2 )
3b -2 b 0 b 2D 3b ot

Pig. 12 - Time dependence of the velocity of propagetion of the energy near
the edge of the half.plane.

The rapid increase of the energy density for t < 0, in
fig. 11, is clearly due to the arrival of the crest of  the
incldent pulse, whereas its much slower decrease for t > 0
shows that part of the incident energy remains near the edge of
the half-plane, building up an energy reservoir, before being

emitted in the diffracted wave.

This effect also appears in fig. 12: the rapid decrease
of v for t » 0 gives rise to the slower decrease of the energy
contained in the reservoir. The maximum of the energy density

is attained for ct ~ b/2, there being at this moment a perfect
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balance between the energy supply from regions I and II and the

energy less through regions II1I and IV.

7. Cone ion.

'The results obtained in the previous sections allow us
to give a complete description of the energy flow as a function
of time, in the diffraction process of a pulse of half-width b
by a half-plane. The main steps in this process - can be dg

scribed as follows:

For large negative values of the time, there are only
slight diffraction effects, due to the head of the pulse . The
energy flows smoothly around the half-plane, without formation

of any wave fronts.

The main part of the incident pulse reaches the half
plane during the interval =b/c ¢t £ b/c. It gives rise to a
strong increase in the energy density near the edge, bullding
up an energy reservoir which, for t = b/e, occuples the region
r S by bridging the gap between the transmitted and reflected
wave fronts Iin the neighbourhood of the edge. The velocity of
propagation of the energy in the reservoir is small (v <<ecl:the
energy accumulation has a quasi-electrostatic character. For
larger values of the time, as the splitting between the trans-
mitted and reflected wave fronts increases, this energy will

be redistributed in the region r <ect, giving rise to the dif-
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fracted pulse.

The depletion of the energy reservoir does not  begin
immediately after the arrival of the crest of the Incident pulse:
there is a time lag of the order of b/c. The appearance of a line
vhere the Poynting vector vanishes first takes place for
t#1.73 b/c, showing that only then has the incident energy de-
creased sufficiently to allow the beginning of backwards e=
mission of the energy contained in the energy reservoir. The
line appears at a single polnt and thereafter it expands with
time, separating regilons where the energy flows in opposite

directions.

The diffracted wave front is formed first near the half
plane, where the'energy density 1s greater; it appears later in
the opposite half<gspace. This is due to the wave-guiding proper
ties of the halfw-plane for transverse magnetic polarization. An-
other line of zero energy current also appears later in the op-
posite half-space. It has far less physical significance than
the previous one, because the energy density is much weaker in
this half-space. As the two 1lines of zero energy current expand,
there remains a separation between them, enabling the energy in
the diffracted pulse to flow across the continuation of the half
plane. This separation tends to get closed for large values of
the time. The same happené t0 the gap in the diffracted wave

front, where it meets the continuation of the half-plane.

Near the junctions between the zero-Poynting-vector

lines and the diffracted and geometrical wave fronts, there are
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very rapid variations in the energy density and energy current.
This effect, insofar as the junctions between the geometrical
and diffracted wave fronts are concerned, 1s the analogue of

Fresnel diffraction in monochromatic wave propagation.

For large values of the time, the solution becomes
more and more similar to that for a delta-type incident pulse.
The diffracted wave tends to become symmetrical with respect to
the half-plane, and the whole pattern of the enefgy flow tends
to expand uniformly with velocity c.
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