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ABSTRACT

By means of an example for which ‘the effective poten-
tial is explicitly cglculable {up to the one loop approxima-
tion), we discuss how a phase transition takes place as we ig
crease the temperature and pass from spontaneously broken syﬁ

metry to a phase in which the symmetry is restored.

- Key-words: Finite temperature; Field theory: Statistical me-

chanics.
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§ 1 INTRODUCTION

Quantum field theory {Q.F.T.) has accumulated a sig#
nificant nﬁmber of sﬁccesses in describing the fundamental farces
of Nature. The partial unification achieved by the electrowewé
theory! has been put'through several experimental tests, cul-
minating with the recent discovery of the W and Z mesons®.
Quantum chromodynamics (Q.C.D.) gains more and morc credibili
ty as the theory of the strong interactions. Its perturbative
(high energy) predictions seems to fit well to existing data
on deep inelas®ic scattering and e'e” (annihilation)® whereas
non-perturbative computer calculations" provide the first in-
dication that the low energy spectrum of baryon and mesons
might also be reproduced,

Nevertheless a complete unified theory of all forces
in Nature has not yet:been thieved as gravitation has not
been successfully incorporated in a complete unified scheme.

The weak and electromagnetic forces are unified, but
in a subtle way. The reason beiﬁg that the Electro-weak interac
tion is described by a Sponianeouély broken® gauge theory; ie
one in which the gauge invariance is not manifest (just as ro
tational symmetry is not manifest in a mégnetized ferramagnet) .
In fact, the SU(2) xU(l) group has its symmetry reduced to
that of the electromagnetic U(1) group. In order to actually
have the full invariance, first of all one has to be able to
somehow ae&ﬁme the gauge symmetry (if tha% is possible) through
the variatiQn of some adjustab&e_parametei af the theory

(phase transition).
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Statistical mechanics provides us with numerous ex-
amples of'systems that undergo phase transitions. Such systems
may have different degrees of symmetries and pass from one
phase to another as we change one or more of the physical pa-
rameters. For example, raising the temperature of the fer-
romagnet beyond the Curie point we transform it into a para-
magnet. Analogously we could find that QFT which in the euclide
an region is an example of statistical mechanics can alsa un
dergo phaseftransitiohs as we change the ﬁemperature. Thus one
might expect that for a high enbugh temperature, the SU(2) x
U(l) symmetry would be valid. Then weak and electromagnetic
forces will have the symmetry restored.

Precisely the standard cosmological models® provide
us with a theory in which the universe evelves from a big-bang
(very hot) state to the rather coldworld we live in today.
Thus, somewhere along the line we should find the appropriate
critical temperature for the transitions toitake place. Investi
gétion of the history of the Universe has thus becomeof great
interest to particle~physicist.

Not only in cosmology but also in heavy ion and high
energy particle collisions ("little bangs®) we can reach tem-
peratures high enough to detect phase transitions. Furthemmore,
even higher temperatures might be probed by using the experi-
mental richness of comsic-ray physics 7,

The above mentioned arguments justify the study of
QFT at finite temperature. Unfortunately the perturbative de-
velopmexit of theory presents divergences which have to be regu-

larized and renormalized. For that purpose, dimensional regu-
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larization is often used which ,allows in same cases to obtain
results as analytic functions of the number of space-time di-
mensions (n = ¥+1).

This also opens a simple way to establish relations
between properties at different dimensions®. In thé above meﬁf
tioned reference an integral expression was given for the
effective potential (in the one loop approximation)as a func-
tion of the témperature for any number of dimensions. The ef-
fective potént;ial allows the calculation of critical temperature
as the point where the type of symmetry changes mafking thus
a phase trahsition. We have uséd the expfession obtained in
ref. [8) of the effective potential for the Ay" theory, which
for v = 0 can be easily computed providing thus a simple model
wﬁere several properties of finite temperature field theories

with broken symmetries can be explicitly studied.

§ 2 THE EFFECTIVE POTENTIAL AT FINITE TEMPERATURE

Let us illustrate some of the features of QFT a fi-
nite temperature by 1looking at a simple example: we shall treat
the "Ay"*" theory in a heat bath.

The Hamiltonian density is given by

1, 1 1 A
A = 3m2 (T 7 e uty? ¢ oy (2.1)

We shall work in v spatial dimensions, v being arbi-

trary. The partition function Z, defined as
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2 =e{e P, H- [dv.x B (2.2)

may be expressed as a functional integral over the field vy,

i.e.
-1 1 B v 2 2., 2 A
Z =N [/94: exp{—-z-JdT Jd x[ (YY) +u‘y +I§W"]}
o (2.3)
T = it is the euclidean time. The integral over the fields on

ly includes those which obey periodic boundary conditions in T.

-

v(x,B) = ¥(x,0) (8 ) (2.14)
We may add to the curly brackett in 2.3, a source

term of the. form.
8 v
8§S = J dt Jd xJ(x)yp(x, 1) (2.5)
o

‘where J(x) represents a static external field which couples
to Y. The partition function is then both a function of 8
and a functional of J(x). The ‘situation is entirely analogous
to -that of models in statistical mechanics. We may now proceed
to obtain the relevant thermodynamic quantities. The Helmholtz

free energy is simply

1

Ban(B,J) (2.6)

F(B,J) S

Its functional derivative with respect to J(x) yields
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the expectation value of the field at finite temperature;

B8
[ dt <yp(x,t)> (2.7)

]

In the Ising model for example, J(x) will correspond
to an external magnetic field that orients the spinand m(B,x)
to the average value of the spin at a particular point. The
magnetization is the average of the last quantity over the vol

ume of the lattice.

It is quite useful to consider yet another thermody-
namic function, the mean free energy G(Landau potential) ob

tained from F via a Legendre transform:
G(B,m(B,x)) = F(B,T(x)) +‘Jdvy3(y)m(8,y) (2.8)
From which;we get,
= J(x) | (2.9)
This equation provides us with a way of 6btainingthe

vacuum (J = 0) of the theory; i.e. the lowest lying state at

a given temperature as we turn off the external field. Thus:

(2.10)

S
]
o

]

8
o

For theories that are translational invariant (such as
Ay"*), the solution m, (B) of 2.10 is independent of x.

The effective potential is obtained by
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u = ot (2.11)

v) = &wnC

where Q(v)is the volume of space.

A systematic (perturbative) way of computing 2.1! 1o

-
hg

provided by the semiclassical expansion (loop expansion).
amounts to computing Z by expanding the fields arocund a uniform

background. .
Y{x,1) = m + nix,T) (2.12)

and then integrating over the "fluctuations" n. The zeroth order
(in n) is the zero loop approximation. It gives for Uzv)(ﬁ,m)
the potential appearing in the original lagrangian. When the

symmetry is broken, u? < 0 and

L R éifgj' (2.1 4)

0 =

m
U(V} ) 4! v v

For the next approximation we take the quadratic terus

in n which are responsible for the one loop result. Performing

the corresponding gaussian integration we get {See [Y]):

. 1 TDet (-0+ p? +%—IE?
U = £n L 1 (2.14})
(v = 288, Det (¢ u? + 4m? -

Where the determinants are restricted to the sub-
space of periodic functions (as in 2.4).
We may rewrite 2.14 as

1 1 A= , -
Utyy = Wﬂ(v) Tr £.n]:_1+D(ﬁ)(§(m —-mvb)] (2.14
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where D(B) is given by:
1
D(B) = (2LTT1'1)2 " (2.16)

Taking the trace is equivalent to an integrationover

p and a summation over n.

The result is given in ref. [8]:

\Y]
1 ® z
U} = - f dt (t? - u’) cotht (2.17)
) g+V ¥y (1 +3)
with u = 12_-6\}) 7 (pz = %—fﬁz - !pzl

(2.18)

D S
= Z79(v-2)

Having computed the effective potential for arbi

trary dimension v, we can use it to obtain the vacuum of the
. -1 ; ,

theory at different temperatures (T = B ). Once this is ac-

complished, one can compute the effects of temperature on the

couplings by taking derivatives of the potential at the vacuum

state:
d%u
12 (B) = ——0) (2.19)
dm I?I(: m
\Y
d“*u
A(B) = ———:}—"—’- (2.20)
S R
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In the next section we shall consider a simple example - the
case v = 0 - where we have a closed form for U, and by stud-
ying the vacua at different temperatures we will obtain intor

mation about a phase transition in T,

§ 3 THE PHASE TRANSITION

Our aim now is to illustrate, from an analysis of the
effecti&e potential at finite temperature, how a phase transi
tion can emerge..Up to one loop ordeg, we have to sum the ze
ro loop contribution given by 2.13 with the oné—loop potential
of 2.17. Hdwever, the latter presents in general a singulari
ty (or cut) for y < 0 whicﬁ is due to the presence of
cotgh t' ~ % near t = 0. So, this approximation breaks down ncar

2 = %IUIZ(w = 0). We are thus inclined to concentrate our anal

31

ysis in the vecinity of the minima of the zero~-loop potential

m mv.;Then we can use 2.18 to write a Taylor development of
!

U, near that value, keeping only up to quadratic terms

0 U
2 o ve2 2 - _}_— v=-4 2 o2 2
U\)(Bw ) = U\) - 4'” (w - w ) + 2! ' z(w —w ) +
(4m)
(3.1)
- = - A 2
where O, = U_(87%) (2 = 3m2 - [u]")

The effective potential being given by (adding the

zero loop 2.13).

0 . o
Uy = O, - =T e (02 -8 (g e e Ll (3.2)
' 3am
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It is then seen, from 3,2 that the gunstants ﬁv 2

modify the position of the minima of U, and the curva

U\)-,-l;

ture of U i i.e., the effective mass of the eletﬁentary excita
tion. Of course, this modification depends on the temperature.
When the temperature is raised, the effective masg is decreascd
until a value 1s reached (8 = Bc) at which the curvature is
zero, the minimum desappears, showing then a phase transi-
tion. We pass from a broken symmetry phase to a restored sym
metry one. This ranaiysis is qualitative for any v but it can be
made quantitative for the case v = 0 when we have a corhpact

expression for the effective potential.
1
, h(58y)
= A =3 232 1 2
U(OJB,mi) -z—-!-(m -my) *3 @E—-———————h(ls 2] {3.3)
389,
2,
where m; = i‘.}\lL.L, p? = 2‘2-1'1'12 - |p?], and ‘Pf, = 2|:u2|.

We have chosen to compute the potential in the broken phase.

In order to look fior the values of m that are ex-

trema of U(o) we shall introduce:

(ﬁz-mé) (3.4)

-
H
N>

The derjivative of-ﬁ 3.1 with respect to ¢ yields:

P A L a
Uloy = 3%- + 55 ctgh(38¢) (3.5)

The solutions of Uto) = 0 are the given by

1 , 3
tgh(z8y) = -~ (3.6)
2 29 (p? - 2| u?])
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The graph for the two functions, members of the e-
quality 3.6, is shown in figure 1,
From that graph we see that solutions (other than

m = 0) will only exist in the range:
0 <y < [Yo|u?|

This corresponds to:

2

2 2 m
E%E_i <mr <8 ;‘ ; 1; < m? < m? (3.7)

In fact the minimum of the full curve occurs at a

value of ¥ given by:

2 -, 5
v = /5l mE o= gml (3.8)

A further condition for the existence of non-zero ex-
trema is then that the value of the right-hand side of 3.6

at Yy be smaller or equal to one.

3 9 . ‘
- :-v—%-.go—jlim— =1 (3.9)

20, (02 - 2{u?]) [u

Let us see how a phase transition might be inferred
from our analysis in the case where 3.7 is satisfied. At ze-
rc temperature {8 - «} the curve (c) in fig. 1 tends to a
step function at the origin. Thus there willbethesolutions to
3.6 at A and B, It is easy to check that B carresponds to sym

metric minimum whereas A corresponds tO symmetric maximum
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of U(o)‘ This is illustrated in figure 2, where the zero loop
potential, represented by the dotted curve, is also exhibited.
The one-loop approximation breaks down near W =
* Wfé;if]lw = 0), where the potential diverges. Thus we .are
inclined to interpret the maxima at A not too seriously and con
centrate our analysis in the Vicinityeﬁfthe minima. As the tem
perature is raised, the intersection points occur at C and D of
figure 1.D will correspond to the minima and what we see is
that the wvalue of U(o) is lower there that at the minima of T =
0. Furthermore, the concavity is "softer" indicating that the
mass of the fluctuations (near the miniha) is decreasing with
increasing temperature. We will eventually reach a situation

where the curve (c) just touches curve (a). At this point the

mass vanishes:

d?u (B ,m)
uz(Tc) = (0)_ cl = 05 B, -
dm?

(3.10)

n
3

ﬁztnv

At TC the non zero extrema disappear. The criticaltem

perature may be roughly estimated from:

B

C

=5 lu2I N

w

.ﬁ\
N~

\/3 9 A
tgh 3 -g.W (3.11)
The system thus exhibits two phases. One, the low temperature
phase, where the expectation value of the field m(T) is dif-
ferent from zero. And another, above TC, where m vanishes.

A brief comment is in order about the singularity
!

in U/, (B,m) at m? = %—m;(w =0). This singularity is an arti-

fact of. . the loop expansion and may or may not appear in a com-
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pletely non perturbative treatment,

Two-loop calculations, as well as other methods of es
timating'Tc are being developed in order to clarify this point.
Preliminary results show that the singularity subsists, for

the same value of y.
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