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INTRODUCTION
The study of the electronic structure of actinide metals has been the
subject of increasing interest in recent years. The peculiar magnetic

1 in terms

properties of these metals have been discussed by Jullien et al.
of the virtual bound state model of Anderson, extended to include the
existence of two local levels (d and f) and phenomenological hybridization

2 introduced a band picture to

among them. Latter on, Continentino et al.
describe the electron-correlations in these metals using the Roth 3 approxi
mation. The advantage of the band picture is that it takes into account the
fact that due to the larger spatial extension (as compared to the rare-earths)
.the f-states overlap with each other an important amount. Recently Jullien

et a1.4 introduced also the band picture (within the tight binding frame
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work) and described f-d hybridization in terms of transfer integrals between
f states and neighbouring d like states. They succeed also 1in describing
the anomalous magnetic behaviour of actinide metals essentially in terms of
band-parameters and Coulomb correlations. It is the purpose of this work to

5 model) of a three

give a description (in terms of the Kishore and Joshi
band problem, namely a broad s-band which overlaps high-density d and f bands.
We hope that such a picture approaches a more realistic description of éﬁ
actinide metals, particularly in order to discuss the role of the broad s-bandﬁy
in the electronic structure. Since the broad s-band played a role in produc-
ing virtual bound states in the first Jullien et al.1 approach, it is interest
ing to discuss its effect within the band model, at least in the hybridized
density of states. The plan of this paper is as follows: firstly we discuss

dd ff calculated within the Hartree-

5

the one-electron propagators GSS, G™" and G

Fock approximation. Secondly the method of Kishore and Joshi is extended
to include the three band model. The third part discuss the numerical results
obtained for homothetic bands and model density of states and finally the
results are discussed (in particular the implications of the mixings in the

Stoner critetion are qualitatively discussed).

1. FORMULATION OF THE PROBLEM

We start discussing the model hamiltonian we adopt to describe hybridi-

PN

zation effects for the three band metal. Written the Wannier representation

one has:

Jf?%o "'ﬂc “déh (M
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The Hamiltonian #% describe three non-hybridized s,d and f bands, shown
schematically in fig. 1. We assume that the f band is a narrow band (as sug-
gested by the relatively small overlap of f atomic states ). The d and s

bands are transition metal like bands.

The Hamiltonian j% accounts for Coulomb repulsions among d and f elec-
trons; one recognizes intra-orbital d-d, f-f, and inter-orbital interactions
d-f. Fina11y'ﬂa|describes the usual hybridization effects among s-d and s-f
electrons; we note that these hybridization matrix elements are considered
for simplicity to be k independent. We also include a k dependent Vdf(k)
hybridization, whose derivation within the tight binding approximation has
been given recently 4. Later on we will use a constant Vdf’ which is the
mean value calculated in the region of overlap of the d and f bands. This

simplifying assumption is used because it provides analitically simple
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results for the density of state,

We emphasize that the purpose of this work is to set up the formalism and
the numerical problems that arise in the three band problem, and to study the

effect of the hybridization in the behaviour of the density of states.

In order to solve the problem described in (1), the natural way is to use
the Green's function method, from which the density of states is easily

derived.

We use the general equation of motion for the green's function <<A;B>>w

1
w<<A;B>> = p <[A.B] > + <«<[A4f ; B> (3)
and the interesting propagators for this problem are <<y §c>>w, <<dio;

4 . . .
djc>>w and <<fic’ fjc>>w’ since from these one derives the density of states

nSUuL ng(w) and nf(w).

a) DETERMINATION OF THE s-ELECTRON PROPAGATOR
Using equation (3) and the Hamiltonian (1) ones gets:
1
et 5> m (s) d. et s ot
WSy 3C5 7>y P 8 gt 22’ T} «clc’c.]o»w + Vo4 «d'ic’cjc»m + st «f'ic’cjo»w
(4-a)

For the new Green's function introduced by the hybridization terms one gets:

| d + f
weedy 35 e Ty TR edygicion, + Ug <en{l) dypicioongr Tgpeenidigicioo>, ]
+
* vds«cic;cgc»w * 29, vdf(Ri “Ry) «fﬂ,c;cjc»m (4-b)

and
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- (f) (f) (d)
w<<f ’CJO>> 22 T <<fzo’c >u * Uf<<"1 -0 f1c’ch»w+Idf«n1 of1c’c30 w

- + -
* st< io? JO> w 22 fd(R Rz) <<d20’cac>>w (4-¢)
In equations (4 b) and (4-c) the Coulomb interaction terms 1ntroduce higher

order propagators; these are treated in the simplest approx1mat1on name1y

the Hartree-Fock approximation. One‘gets’the following resu]ts:

<<n(d) dio’c >> <n(d)><<d sct

Jo Tw ig? JG %0
(f) o (f) +
<«<ng_o d10,ch o = ><<d1°,ch>>w (5)
() ¢ , = ()
<<n f1c’ch 0 = <n} §<<f1o,cJo w

(d) ct (d) ot
“<nig figsc jo~ S R E Y €i0””w .

Translational invariance being used to write

(@) o cpl®)s .
<ni /> =<nl /> where o=d, f
With the approximations (5) one gets using equations (4):

(d) (d) (f)
w<<d1 ,c >> 22 T) <<d20,c w + Ud <n_c > + Idf<n—c'> <<d, ,c >>

io* jo" w
4V, << ¢t s & Yo Vie(R:-R )<<f sct o> | (6-a)
ds “<Cig? Jo w 2 dfti TR 20°7jo " w
(f) ; (f) (d)
w<<f1c’cJo o 22 T <<f J e + Uf<"- > + Idf<n 5> <<f1o’cJo "
+ vfs<<c1o JO >m + 1y Veq(Ry-Rg)<<dyy ’ch>>w (6-b)

Equations (6) and (4-a) form a closed set which determine the propagator

<c1c,c30>z Now we solve by Fourier transformation, introducing the
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Hartree-Fock renormalized d and f energies.

By = ek + Uy anlgh 4 140 alD>
(7
EI(«? = e'((f) + Ug <nSZ)> + Ly <n£g)>
One gets
(w-ef*))GE5 1 (6) = 2 B + Voq Gp o)+ Gyp () te-a)

(w0-E{3 685 (w) = vy ekk (w)+V go(K) Gy p () (8-b)
(BT )GPS ()= B33 (w) ¥y (k) GRS () (8~c)
The Gss.(m) propagator is then: ~
v dl2 [Vegl?
wels) . 1,5 . sf | }Gss'(m)s Lo, (9)
k Nee(k)12 oy [Vgelk)[2 Kk
-E(d) SRR LA E(f) af
e
w= Ek w- E )
or alternatively
1
G (w) = E_ Skt - . (10)
Ve 12 [V el?
'm-e:( ) ! sd! _ | sf
o (f) )
" o wEps

We haye Qr‘-qppend‘outA the terms V_, Vdf(k)vfs and st vfd(k) Vs from the
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propagator, because we can choose Vsd' Vdf(k), st. st, Vfd(k), Vds which
are in general complex numbers, in such a way that Vsd Vdf(k) V and V Sf
Veq(k) Vds can be taken zero; and the values.of |st|2 lvsdl2 and |Vdf(k)|2

finite. Later we wﬂ] refer again to these terms. So we can rewrite the

s-propagator:
kk'(“’)=
d f 2
R (w-s.((o))(w- L) [Vgelk) |
2T (- e‘”)(w E“”)(w E4T))= [V (k) 12 (wmef ) 1V g 12 (BT - vy 2 (0mE( D)

(M)

One should note that equation (11) is identical to that obtained for three
hybridized bands in theAabsenCe‘of Coulomb repulsions; the only effect as-

sociated to it being the renormalization of f and d energies as defined in

(7).

bl DETERMINATION OF THE § PROPAGATOR

Using the equation of motion (3) and the Hartree-Fock approximation

‘(5); together with translation invariance one gets:

£, oft 5y o (f)
w<<fic’fjc>>w' E}'Gij + zz T3 <<fzo’f 7t
{U NGNS TIN } o
f 10 JG %

+V (]2"a)

+
fs <<Cig? fjo>>w + Zl vfd(Ri' R2)<<dzc’fjo>>w
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(s) + et +
w<<c1o,fJo> o 22 T} <<C20’fj S stA<ffic’fjo?>w + V‘d d1c fJ
(‘Zfb)
{d) (d) () s
w<<d zl <<d f. >> ~ Ud<n >+ Idf <’ >‘§<d1o fJU >,

+ vds 10 fao>>w + zz df(R -R )<<f ch w

Again the coupled system (12) provides the solution for the propagator
<<fi0; f§U>>. Using Fourier transformation and the definition of the
- renormalized energies (7) one gets:

1

i (w-e{ e () = — 80 + Vg 6 () + Vpg(K)GEF L (0) (13-2)
; e (weg> )6 (w) = Vg Gy (@) + Vg B () (13-b)
;‘ (wE{ D)6 (w) = Vg 851 (w) + Vye(k) GFTL(w) (13-c)

[Tar

the solution of the coupled system (13) gives as solution

ff
Gy (@)=

o (-GN (0me*) - gl

2n

(0-e$%)) (0-E{D)) (wELT) -1V 12 (B D) - 1V ) 12 (0mef ™)) - 1V 2 wmER D)
(18).

where we have dropped out the termsof'third order in the mixings_




109

c] . DETERMINATION OF THE d-PROPAGATOR: - .
. Quite.similarly to the previous cases one gets the following coupled

system .

"y R . | g SRt AR

Hﬁ(w-gég))s (w) - 5kk. + Gkk.(w) + Vdf(k)Gkk.(w) (15-a)
eI - g 0 el (s

(w- E(f))ekk.(w) v, Gkk'(“) Y d(k)G d i (15-c)

by solving equation (15) one gets:"

G ()=

e (m%”nw‘”)wfv

2m

(w-eﬁs)(w—ség’)(w-Eéﬁ’)-lvsdIZ(w-Eéj))-lvdf(k>IZ(w-e§5’>5|vstZ(w-Eﬁg’)
’ | - (16)

where Tike in the others propagators we have also dropped out the terms

Vsd Var(k) Veg and Ve Vey(k) Vyq.

d) 'DISCUSSION OF THE OBTAINED PROPAGATORS
Firstly let us compare the ‘results embodied in equations (11),

(14) and (16): one notes that the ss, dd and ff propagators have the same
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denominators and consequently the same poles. This just means that the
energies of the system are contained in a single equation describing three
hybridized bands. However different propagators have differents residues,
just‘méaning that the s,d and f characters of the hybridiied bands are not
necessarily identical, A very clear picture of the mixing effects separated
from intraband correlations is provided by the following; consider for

instance the free ss propagator without hybridization:

1

Gz(w) = . The Gss propagator (10) reads:
s
w - Ek
§
kk' 1
Gpr(w) = - 63 () (17-a)
L s
1 - X Go(w)
where x is defined as
x = [Vl 28D () + v .12 8T (w) (17-b)

In the Hartree-Fock approximation adopted‘here the propagators Ed and éf are

defined:

2 ] a(f) ]
G, (w) = and G '/ (w) = (17-c)
v V. .(k)|2
@ Nart®l Cen el
w ko w ko
which in the absence of d-f mixing reduce to Gg and Gg, which are similar to

6°) expect that ef*) is replaced by £fg) and ET).

Expression (17-a) can be rewritten as:




m

G (@)= 5 Sy 6®) (w)] (G(s)(w))
n=0

-1

S BT (Iggl? 80wy + [vgel? &0 ) (6 1)) (17-0)

n=0

Equation (17-d) can be put in pictorial terms defining free propagator as
Tines with arrows and a letter specifying its nature (s, d, f); the mixing

matrix elements are represented by dotted lines. One gets:

S S S S

= = —p— + ———vp.-,' :-—-——pv- + _i_.._..... :_s_____.,_
sd!_d 1ds Vse i ¢ Vs
— e
+“'S—"'r vi‘—’—x r—v—-—b— + ~—~>—| __§___.._.
i
Vsq! Vsd ds : fs sf. f
% Sflégw
+ r____.__s = 4 etc.

Sdl vdS Vst
e

The propagator &4 and &F are represented by de and Qf@_

respectively. Because of d-f hybridization each of these propagator can be
written in a way similar to that of the Gii(w) as in expression (17-d). In

a pictorial form:

~d,  _ _d d o, _d d d_,
Var . Vtd Var VEd Var! ' Vd
f ! —_— b LL—..J

+ etc.
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It should be emphasized that the processes depicted aboVezare perfectly
general in the following sense; using .appropriate free propagators d and f
and effective mixing matrix elements this series of diagram can always

6

be drawn . Quite similar diagrams can.be.writteh for d and f propagat-

ors. From this pictufe one sees the possibles improvements of the Hartree-

Fock approach for the three band~prob1em;soneureplaceS"the.Ed, ﬁf

propagators
by hew ones describing more in detail the effect of electron correlations
(for instance the Roth method 3 for narrow bands). Also one replaces the

, mixing matrix elements by effective ones.(inciuding correlations effects)6

in these conditions the general effect of mixing is still described by

2. EQUATION FOR THE POLES; HYBRIDIZED BAND DISPERSION RELATIONS
;  One gets the energies for this three-band problem from the roots of the

» third order equation:

' (e gl £y Vgl ) - Vgl 2 (wmEL) - Vg () 2 0-E{))=0
| (18)
For each value of k one gets from (18) three solutions corresponding to the
three branches of the hybridized bands. Equation (18) is general in ~thé
sepse that the non-hybridized s,d and f bands have general dispersion rela-
tiéns.- An schematic picture of these dispersio? relations is shown in fig.
(1), and the general result one obtains is that:ﬁithin the constant mixing-
elements scheme (from noﬁ on we take Vdf(k) constant equal to Vﬁf’ WHich

is a mean value calculated in the region of overlap of the d and f bands),
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crossing of bands are supressed (fig..1). Also one obtains a shift in
energy of the lower and higher bands.

At this point it is useful to introduce a trick firstly used by Kishore

and Joshi 5

to obtain simple results for the density of states curve; this
trick consists in adopting a model for the ndn-hybridized bands consisting

of homofhetic bands.

One chooses a certain dispersion relation €k and defines:

(s)

Ek = Ek

el ne, + A" (19) .5
, !

(f)e Be. + B | 7

e = Bek +B _ ]

Then only one diépersion relation €k specifies all the three bands, the bot-
tom of the d and f bands being specified by A' and B'. The width of the d

and f bands are.specified through the coefficients A and B, which are taken
tess than 1. For this choice, the bands d and f defined in (19) are narrower )
than the s band, and if A > B one has a f band narrower than the d band. Then '
equation (19) qualitatively describe the situation expected for an actinide
metal where a narrow f band is superposed to a transition metal like s and.

d bands. Figure 1 shows for the case of parabolic bands the dipersion rela

tions as derived from (18). As it will be shown below the band model (19)

provides a simple and analytical results for the density of states.
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3. CALCULATION OF THE DENSITY OF STATES

In this part we generalize Kishore and Joshi 5

procedure to calculate
the state density for hybridized bands. Let wﬁl), wéz) and w£3) be the
roots of equation (18); the ff propagator for instance, may be rewritten in
terms of simple fractions as:

1 oEhERh vl
G

= 1 2), . (3]
2m (w-w& ))(w-m£ ))(w-wﬁ'))
. , (1) (2) (3)
o 1 A A A
. e — kX, (20)
I 2n w-wél) w-wéz) w-w£3)

where the w(:()'s are the roots of the third degree equation (18) with Vdf(k)
« constant. The coefficients Akfs may be determined through equating the

right and left hand sides of equation (20). * If one introduces a as defined

-

by v
o =-(mél))Z(wﬁz)-mé3))+(w£2))2(w£3)-w£1))+(w£3))Z(mé])-wéz))' (21-a)
oﬁe §ets for these coefficients

- ule )

(

k
A2 Lol3) - u{ye (uf2)y (21-b)
A = g o o™

where fk(m) is the following auxiliary function

(@) = (el (wefD)- v g2 (21-c)
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The coefficients Ak!§ defined in (21-b) can be put in a simple form if one

notes that

a= - (w&l) - wéz))(wﬁz)- w£3))(w£3)-wé])) (21-d)

so that some simplifications occur; one gets finally the symmetric form:

f (o))
all) -
(0" - By a{V- uf®)
£ (wl?)
A2) . | (22)

({8 {1y ( w{B) i)

e
A(3) )
k =

(3 D) (Do)

Next step is then to calculate F_{6f'(w)} = 1 Tim (67 F(wrie) - 6fF(w-ie)} in
: e>0

order to obtain the density of states, one gets:

Fm{aif(w)} = fk(w)
(w-m&z))(w—w£3))

Fi (w)

f, ()

G(w-wﬁl)) + G(w-wéz))+

(")) (-

s(w-ut>)) | (23)

(wug ) ()

The absolute values ensuring that each term corresponds to the density of
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Finally substituting 1in expression (21-¢) thé.energies ei and Eég) by
the model band structure energies one gets a new function ?{w, ek); taking
this into account and using the definition N(w) = ) §(w-g, ) one gets final-
ly:

1 1w, oM (w)) ] 1
ntD () ] - ] Mg (w))
28} (g3 () - o8 () (a®) ()~ oV (w)]

o, 9@ ()]
{2 () N(a(?) (w)) (28)
a8] (93 (w) - 92 (w)) (oM (w) - ¢¢®)(w))]

1w, ¢(3 (W)
n$3)(w) = ] N9 (w))
28| (9?) (@) - o) (g M) - ¢ ()|

Equations (28) are the analytical expressions for the contributions of the
f electrons to the density of states of each of the three branches of the
hybrid bands *. It remains only to determine the equation which the func-
tions gi(“) must satisfy, in order to completely determine the state
density. From equations (25), (18) and (19) by equating  equal powers
of €, on the right and 1left hand sides one obtains relations among the

roots g;(w), namely

* Similar expressions hold for the s and d density of states, just chang--
ing the function (w, g(l)(w))-
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01 ()+9{2) () 4903 (u) = a(w) = g [w(A*B+AB) - (A'B + B'A)] (29-2)
o1 (0)g?) @)+ (090 (0492 ()93 (0) = 2 [t (AsB1)= (A'48" 4R8B4 '8)

- BJV - AJV - [Vyel? + A'B'] = B(w) (29-b)

2 2
sd| sf|

o'V ()¢ ()gl3 (0] = o5 [wP-w2 (A148) -l [Vgy | 241Vl 24 [Tyel2- A'BY)

+ B'lVSd|2 + A'|V5f|2]= Y(w) (29-c)

Using the properties of algebraic equations, from (29) one derives the follow

ing third degree equation for g(w):
9°(w) - a(w) g2(w) + Bw) g (w) - v(w) = O (30)

From (30), for a given value of w, which defines the functions a, 8, Yy oOne
gets the corresponding g's, and equation (30) tbgether with equations (28)

solve completely the'prob1em of determining the density of states.

4. NUMERICAL RﬁSULTS

Now we present some numerical results obtained from the model develop-
ped above. Since no attempt of self-consistency is made in this work, we
restrict ourselves to discuss the dispersion relations, band widths and

the shape of the density of states.

a) Dispersion Relations

Firstly using equation (18) we calculate the energy values in presence
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of hybridization; the new dispersion relations are directly obtained from:

w3f(e£5)+E£d)+E£f))m2 + (eés)Eég)+sés)E£§)+E£S)Eéz)—IVSdI2-|V5t|Z-IVhflz)m
* (gl 2ELD) + [vgel? EL) + [Vyql2ef®)-
- e gD gDy 2o (31)

where the eés), Eﬁg) and Eﬁg) are the unhybridized dispersion relations.

From (31) one obtains numerically, as a function of k, the energies asso-
ciated to the three branches of the hybridized bands. We adopt here the
approximation of homothetic bands (19), the spin dependence of the d and f
bands being incorporated in the constants A' and B' of (19). Fig. ] shows
the dispersion relations for non-overlapping d and f bands. ‘Such a situa-
tion was chosen in order to emphasize the role of [V;;l mixing in a pictorial
ly simpler situation, but in fact the physically interesting situation cor-
responds to overlapping d and f bands. Finally fig. 1 was constructed adopt

ing parabolic € curves.

In that figure one sees clearly the main effects of hybridization, na-

mely:

i) The crossing regions of the unperturbed bands (as expected
from general arguments)disappear when |V |? and [V .|%are fi-

nite. In the case they are zero the crossing regions persist.

ii) The top and.the bottom of the unperturbed band structure
are shifted.by the hybridization this effect is enhanced

due .to the .assumption of k .independent matrix elements

Veql2s [Vgel? and (V2.
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iii) In figure i one takes |.Vds|2= O.B,and [Vg¢l? = 0.1, consequently
one observes that the splitting of the bands at the crossing is
larger for .s-d than for sf crossing.. Then we take lvdsl2 = 0.1
and lvsfl2 = 0.8 and observe the opposite result, for the same

v 12
value of lVdfl .

In the curves of figuré 1, the only effect of [V;;lz is to repel the

unperturbed d and f bands, since these bands do not overlap.

’b) Solutions for the glw) Functions

In order to calculate the density of states, one needs as a function of
energy w the values of the function g(w) defined through equations (29) and
(30). The coefficients of the third order equation (30) are defined in (29)
as function of w in terms of the mixing coefficients, the "effective masses"
A, B and the band positions A', B'. .In.general one has to assign values to
these parameters and numerically solve equation (30) for several values of
w. It is however interesting to see the nature of the solutions of (30) in

the 1imit of zero hybridization.

One can easily check that for IVSdI2 = |st|2 = lvdfl2 = 0 one finds

three solutions for g(w):

¢ w) = w
=A!
9(2)(w) Bt (32-a)
A .
-B'
9(3)(w) 2
B

These solutions correspond to the three unperturbed bands namely:
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These solutions correspond to the three unperturbed bands namely:

W =€
w-A' ‘
——;—~ = g or w=Ag +A (32-b)
w-B'
-—E—— = g or w=B € + B

If one plots these solutions as a function of w one gets the straight lines
of fig., 2. These solutions will now be compared to those obtained in
presence of mixing. In this case one expects that the crossing of these
curves will disappear, and this is confirmed by numerical calculation (Fig.

2).
The interpretation of this fact goes as follows:

From Fig. 2 one sees that the first branch of the g(w) curve starts
following g(w) = w, which corresponds to s-~like states. When the cros-
sing point with the f-band is approached, f states begin to be admixed in
the band which becomes -~ gradually f-like. Tﬁis corresponds in the g(w)
curve to become parallel to the f-band straight line. Then in the first
band one passes continuously from s-like states to pure f-like states.
Consequently one expects that the s density of states will have important:
values at the beginning of the hybrid band and tends to zero at the end
where f states are predominant. The reverse behaviour is expected for f

states.

Now in the second branch one starts with a strong f-character, then
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s-like character and finally d-like behaviour. This corresponds to the

intermediate branch of fig. 2.

Finally in the third branch one passes from d-like character to s-like

character.

Using these results one can roughly describe the behaviour of the
density of states. The detailed calculations of the density of states made o
in part d) will confirm these predictions. We can observe also in this
figure the shift in the unperturbed d and f bands caused by the strong d-f
hybridization. We have analysed here the .non-physical case of non-over-

lapping d and f bands, which however clarifies the effects described above.

c) Determination 04 the Band Edges -

Firstly we recall that the density of states N(w) involved in equation
(28) is defined in a tertain.energy,range.and,zero outside it. Let us take
for this range the energies between 0 .and A. Since the density of states
for the perturbed bands involve N|g(w}| the important range of w is such
that g(w) in this range varies between 0 and A.. .This requirement defines
the band edges; in order to obtain.explicitlyAthe energies Eg and El one

proceeds as follows: The energies Eg are the solutions of the equation:
9(Ey) =0 (33-a)

If this condition is imposed in equation (30) it follows directly

Y(E;) =0 (33-b) -

which from (29) is a third degree equation whose roots determine the energy

of the bottom of the three sub-bands. Quite similarly, to obtain the




122

s-like character and finally d-like behaviour. This corresponds to the

intermediate branch of fig. 2.

Finally in the third branch one passes from d-like character to s-like

character.

Using these results one can roughly describe the behaviour of the
density of states. The detailed calculations of the density of states made o
in part d) will confirm these predictions. We can observe also in this
figure the shift in the unperturbed d and f bands caused by the strong d-f
hybridization. We have analysed here the .non-physical case of non-over-

lapping d and f bands, which however clarifies the effects described above.

c) Determination 04 the Band Edges -

Firstly we recall that the density of states N(w) involved in equation
(28) is defined in a tertain.energy,range.and,zero outside it. Let us take
for this range the energies between 0 .and A. Since the density of states
for the perturbed bands involve N|g(w}| the important range of w is such
that g(w) in this range varies between 0 and A.. .This requirement defines
the band edges; in order to obtain.explicitlyAthe energies Eg and El one

proceeds as follows: The energies Eg are the solutions of the equation:
9(Ey) =0 (33-a)

If this condition is imposed in equation (30) it follows directly

Y(E;) =0 (33-b) -

which from (29) is a third degree equation whose roots determine the energy

of the bottom of the three sub-bands. Quite similarly, to obtain the




123

energy of the tops of the bands one imposes.
| g(El) = A | (33-c)
ImposingJihié-coﬁditionin equation (30) one gets:
&% - o(E}) A% + B(ELA - Y(E) =0 (33-d)

From (29) one sees that (33-d) is a third order equation, determining the

three energies of the top of the three hybrid bands.

d) Density of States

In this paft of the work we intend to discuss the effect of d-f hybridi-
zation in the structure of the density of states and the consequent implica
tions on the condition for magnetism.in actinides, We consider two kinds of
band structure namely a square density of states (Figs. 3 and 4) and a para-
bolic one (Figs. 5 to 8). The square .density.of states is known to be a .
not very good one in analysing magnetic effects, however in a first approach
we can learn something about theueffect;ofpvdf., These figures are constructed

numerically evaluating expressions similar to (28) as a function of w.

In fig. 3 we show the unperturbed s, d and f bands together with the
new hybrid bands. In each branch of hybrid bands it is represented the
s, d and f contributions to the density of states of this band. We treat the
physical case of overlopping bands and here [V ,| = |vsf[ = 0.1 and l_hfl =
=0. - In figure 4 we have the same case but now there is a
strong hybridization (|Vaf| = 0.8) between d and f bands. The effect of
this hybridization is essentially to .create .a "repulsion" between the d and.

f density of states, distributing more uniformly the number of electron
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states over the range of values .of w. .When4|V;;|.vanishés these states are
concentrated in the energy region of . the .unperturbed band. This effect
becomes more clearly when we. treat the more realistic case of parabolic

bands. (Figs. 5 ‘to 8).

In Fig, 5 and 6 we have noneoverlapping d .and f bands. When IVhfI is
turned off the‘density?of states of the hybrid bands remains finite only
over the unperturbed bands. Turning..on .d-f hybridization the d and f bands
"“repel" each other, and its mechanism towers the density of states by spread

ing out these states ina a wider range of energy.

Figs. 7 and 8 describe the situation .of overlapping d-f bands. Compari-.
son between - figs. 6 and 8 show that the effects are much more spectacular

in the case of overlapping bands.

" Now we can see that the role Vdf is fundamental in alaysing the condi-
tions for‘magnetism. In another paper 6 we have obtained a Stoner like
criterion with an éffective,“exchange.interaction",for the occurrence of
"magnetism in actinides. In this approach we .can see that density of states
in the Ferﬁi'leVe1 is; together with the effective Coulomb repulsion, the
essential parameter in determining the conditions for magnetic instabili-

ties.

Now in turns out visible the role!of':vdf in studying magnetism, since
it lowers the density of states by distributing the e]éctronic states over
a range of energy. In fact if in fig;vs.the Stoner criterion is satisfied
for the unperturbed f dénsity.of'states,.evenvkeeping constant the value of
the Coulomb repulsion, (Ve mixing drastically reduces the density of
states. This reduction tends to inhibit magnetism, and the Stoner criterion

is only satisfied if the Coulomb repulsion is increased.
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* CONCLUSIONS

The above discussed numerical results confirm, even in_presence:of the

:bfbad s-band, the role of V in the study of the magnetic properties of

ﬁ df |
actinide metals. The presence of hybridization wifh“the s-band (though
IV;%F~§ﬁdAledl do not modify .the general behaviour :of the density.of ... .
statés,ktﬁis_supporting the approach of Jullien et a1.4. in considering

only d and-f gands. On the other hand, the .formalism set up in this work

can be uééd‘fo introduce spin-orbit effects. In fact, as shown by Jullien
et a]ig thé.behaViour of actinide impurities .in transition metals can be
explained if spin-orbit effects are introduced, and these effects seem to

be important also in purefme;als. In this context, a model is suggested

where two splitted f bands interact (through mixing and’Coulombzcorrela-

tion) with a d-band, and again a three band model is obtained. The only

difference respect to the present case .is that now the three bands are

Hartree-Fock renormalized, and consequently the self-consistency problem

“is a numerically very difficult one.
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