NOTAS DE FÍSICA VOLUME XV Nº 6

ON WAVE EQUATIONS IN DE - SITTER SPACE

by
A. Vidal

CENTRO BRASILEIRO DE PESQUISAS FÍSICAS

Av. Wenceslau Braz, 71

RIO DE JANEIRO

1969

ON WAVE EQUATIONS IN DE - SITTER SPACE

A. Vidal

Centro Brasileiro de Pesquisas Físicas

Rio de Janeiro

(Received July 8, 1969)

1. INTRODUCTION

Gürsey and Lee 1 have written the Dirac 2 equation for spin 1/2 particles in the de - Sitter space in the following convenient invariant form 3

$$(\beta^{1} \partial 1 - \frac{2}{\rho} \beta^{5}) \psi + m \psi = 0 \tag{1}$$

where ψ is a 4 - component spinor field, ρ is equal to the radius of the de - Sitter pseudosphere, the real number m is the mass of the particle, and

$$\beta^{\mu} = \frac{\partial x^{\mu}}{\partial \xi^{\nu}} \gamma^{\nu}$$

$$\beta^{5} = \frac{1}{\rho} (\xi_{\mu} \gamma^{\mu})$$

$$\beta^{5} \beta^{i} + \beta^{i} \beta^{5} = 0$$

$$\beta^{i} \beta^{j} + \beta^{j} \beta^{i} = g^{ij}$$

$$g^{ij} = \left(\frac{\partial x^{i}}{\partial \xi^{\mu}}\right) \left(\frac{\partial x^{j}}{\partial \xi_{\mu}}\right)$$

$$(2)$$

Also,

$$3\mu 3^{\nu} + 3\nu 3\mu = 2\eta \mu \nu \tag{3}$$

i.e., the five constant (4×4) Hermitian matrices γ^{μ} satisfy the relation (3), where $\gamma^{\mu\nu} = (1, 1, 1, -1, 1)$ diagonal.

Equation (1) becomes the ordinary Dirac equation if we restrict the de-Sitter space to be the neighborhood of a point as 1

$$(5^{1}, 5^{2}, 5^{3}, 5^{4}, 5^{5}) = (0,0,0,0,R)$$
 (4.1)
 $\rho = R, 5^{1} = x^{1}$

so that

$$\beta H = \beta H \tag{4.2}$$

in the usual space-time. The de - Sitter space goes over into the last one when R tends to infinity.

To describe free particles of arbitrary half-integral spin, we may consider the generalization of equation (1) that follows

$$\left[\left(\frac{\partial x^{1}}{\partial \xi^{\mu}} \gamma^{\mu}\right)_{\mathbf{a}' \mathbf{a}} \frac{\partial}{\partial x^{1}} - \left(\frac{2}{\mathbf{p}^{2}} \xi_{\mu} \gamma^{\mu}\right)_{\mathbf{a}' \mathbf{a}} + \mathbf{m} \delta_{\mathbf{a}' \mathbf{a}}\right] \gamma_{\mathbf{a} \mathbf{b} \mathbf{c} \dots} = \mathbf{0}$$
(5)

where 3 $\psi_{abc...}$ is a symmetric spinor, i.e., equations(5) are the Dirac-Gürsey-Lee equation (1) in each of the spinor indices (a,b,c,...). They constitute an extension of the Bergmann-Wigner equations to the de - Sitter space, and become the usual ones when the conditions (4) are imposed.

The purpose of the present note is to formulate equations (5) in tensor, and spin - tensor forms for the case of free particles of spins 1, 2, and 3/2 respectively. This will be

done by following a similar treatment to that employed in previous papers 5 , 6 . Then, the wave functions will be constructed with the aid of the ten Dirac symmetric operators and the original spinors $\psi_{\rm abc}, \ldots$. This enables us to obtain a formulation such that in the limit (4) when R $\rightarrow \infty$, it reduces to that developed in references 5 and 6. Since the latter 4-dimensional formulation is equivalent 5 to ordinary free particle formalisms 7 for spins higher than one half, we can use the simplest tensors and spin-tensors required for a suitable description of the particles. This we proceed to do.

WAVE FUNCTIONS 3, 8

The spin -l- wave functions are the vector and antisymmetric tensor defined by

$$\phi^{\mu} = (\overline{c} \gamma^{\mu})_{ab} \quad \psi_{ab} \tag{6.1}$$

$$\mathbf{F}^{\left[\mu\nu\right]} = \left(\overline{c}\,\gamma^{\mu}\gamma^{\nu}\right)_{ab}\,\psi_{ab} \tag{6.2}$$

where ψ_{ab} is the original symmetric spinor.

The spin 3/2 wave function is given by the spin-vector

$$\phi_{\mathbf{c}}^{\mu} = (\overline{c} \, \eta^{\mu})_{ab} \, \psi_{abc} \,, \tag{7}$$

while the symmetric second rank tensor

$$\phi^{\mu\nu} = (\overline{C}\gamma^{\mu})_{ab} (\overline{C}\gamma^{\nu})_{cd} \psi_{abcd}$$
 (8)

describes spin 2.

The inverse transformations of (6), (7) and (8) are

$$\Psi_{ab} = \frac{s_1}{4} \left(\gamma_{\mu} c \right)_{ab} \phi^{\mu} \tag{9}$$

$$\psi_{ab} = \frac{s_2}{8} (\gamma_{\mu} \gamma_{\nu} c)_{ab} F^{[\mu\nu]}$$

$$\psi_{abc} = \frac{S_3}{4} (\gamma_c c)_{ab} \phi_c^{fl}, \qquad (10)$$

and

$$\psi_{abcd} = \frac{s_4}{16} \left(\gamma_{\mu} c \right)_{ab} \left(\gamma_{\nu} c \right)_{cd} \phi^{\mu\nu}$$
 (11)

where S_{1} are the symmetrization operators acting on the spinor indices.

WAVE EQUATIONS 3

The wave equations for spin 1 particles are

$$\partial \mu \mathbf{F}^{[\mu\nu]} = -\left(\frac{2}{\rho}\beta^5 + \mathbf{m}\right) \phi^{\nu} \tag{12.1}$$

$$\left(\frac{2}{\rho}\beta^{5} + m\right) \mathbf{F}^{\mu\nu} = \partial^{\mu} \phi^{\nu} - \partial^{\nu} \phi^{\mu} \qquad (12.2)$$

which have been obtained from equations (5) for spin 1, and (6). They are the tensor form of (5), and become the usual Proca equations in the ordinary space-time. It can be seen also that, because of (9), equations (12) can be easily rewritten in the spinor form (5).

The set of equations

$$\left(\beta^{\frac{1}{2}} \partial i - \frac{2}{\rho} \beta^{5} + m\right) \phi_{c}^{\mu} = 0 \qquad (13.1)$$

$$\partial \mu \, \Phi_{\mathbf{c}}^{\mu} = 0 \tag{13.2}$$

$$\beta \mu \ \phi_{\mathbf{c}}^{\mu} = \mathbf{0} \tag{13.3}$$

follow from (5) for spin 3/2, and (7). They are the spin - tensor form of equation (5). These equations may be considered as an extension of the Rarita-Schwinger 7 equations to the de - Sitter space. Thus, they reduce to the usual ones if conditions (4) are imposed. It can also be noted that equation (5) for spin 3/2 follows immediately from the set (13) if ψ_{abc} is defined by (10). An equivalent description to (13) in terms of $F_c^{[\mu\nu]}$ can also be formulated.

The spin-2-wave equations are

$$\left[\Box - \left(\frac{2}{\rho}\beta^{5}\right)^{2} + m^{2}\right] \phi^{\mu\nu} = 0 \qquad (14.1)$$

$$\partial \mu \phi^{\mu\nu} = 0 \tag{14.2}$$

which in the 4-dimensional flat space become the ordinary Fierz-Pauli equations. In this case also the set of equations (14) implies (5) for spin 2 if ψ_{abcd} is given by (11).

Further, introducing the tensors $F^{[\mu\nu]\sigma}$ and $F^{[\mu\nu]}[\sigma\eta]$ we may obtain two equivalent sets of equations which also imply (14), and vice-versa. Therefore we conclude that the all three sets of equations are equivalent for free particles.

ACKNOWLEDGEMENTS

The author is grateful to Professors J. Leite Lopes and C. G. Oliveira for helpful discussions.

REFERENCES:

- 1. F. Gursey and T. D. Lee, Proc. N. A. S. 49, 179 (1963).
- 2. P. A. M. Dirac, Ann. Math. 36, 657 (1935).
- 3. Greek indices take the values 1, 2, 3, 4, 5, latin indices 1, 2, 3, 4 or as specified. All repeated indices are to be summed over. We use by convenience $\partial \mu = \frac{\partial x^i}{\partial \xi^{\mu}} \frac{\partial}{\partial x^i}$, $\partial \mathbf{i} = \frac{\partial}{\partial x^i}$. Here $\mathbf{f} = \mathbf{c} = 1$.
- 4. B. Bargmann and E. P. Wigner, Proc. N. A. S. 34, 211 (1948).
- C. G. Oliveira and A. Vidal, Anais Acad. Bras. Ciencias <u>35</u>, 181 (1963);
 A. Vidal and S. W. MacDowell, Nuovo Cimento <u>40</u>, 645 (1965), Notas de Física C.B.P.F., <u>10</u>, 273 (1963).
- 6. J. Leite Lopes, Lectures on Relativistic Wave Equations, C.B.P.F., Rio de Janeiro, 1960.
- 7. W. Rarita and J. Schwinger, Phys. Rev. <u>60</u>, 61 (1941); M. Fierz and W. Pauli, Proc. Roy. Soc. <u>A173</u>, 211 (1939).
- 8. The matrix C is such that

$$\gamma_{\mu}^{T} = -\overline{c} \gamma_{\mu} C \qquad (T = Transpose)$$

$$c^{T} = -C, \overline{C} = c^{-1}.$$

* * *