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SUMMARY: A perturbative expansion for Chirgwin and Coulson's and Lowdin's
definitions of bond order is obtained, introducing explicity the  commu-
tator [H, 8]. Projection operator formalism is used in the development of
the perturbation theory. Recurrence formulae are obtained for the correc-
tions up to any order. The relation between both definitibns'is given.
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INTRODUCTION

In a previous paper 1, we have calculated charges and
bond orders for pyridine following the LCAO-MO method, taking
into account all the overlap integrals, and using Chirgwin and
Coulson's formulae 2. These results are apprecilably different
from these obtained neglecting overlap (see table). It is well
known © that, if H and S (H, hamiltonlan matrixj S,  overlap
matrix) commute, both calculations must yield the same results.
In our case H and § did not commute; we therefore attempted to
analyse qualitatively the commutator's role in these circum-

stances. We calculated the commutatorts eigenvalues, and saw

how many common principal directions H and S had.

Lowdin ° has proposed alternative definitions for
charges‘(q) and bond orders (p) including overlap. When H and
S commute, these formulae reduce also to the well-known defini
tions of charges and bond orders used on neglecting overlap. In
the table, we show q and p for pyridine, as obtained from Low

din's treatment.

Both treatments suggest further developments for the case
when H and S do not commute. This seems worth doing psecially
because, unlike to what is said in reference 2, charges and bord
orders calculated with and without overlap, may be quite dif-

ferent even in simple cases, as we mentioned above for the pyri

dine.

Therefore, wve shall apply perturbation theory to Chirgwin
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and Coulson‘’s bond order formulae, and also to Lowdin's, taking
for the perturbation the non-diagonal part of S. To see more
closely the relation between, bond order and the commutator EH,S__}3

we shall introduce it explicitly in the expansion.

For this perturbation theory, we shall use-~with the Chir
gwin and Coulson'ts definitions - the projection operator, fol-
lowing a formalism somewhat different from that utilized by Loy
din 4. In this way, simple formulae may be.obtained, which per
mits calculate the correction to the bond order up to any desired

order.

PERTURBATION EXPANSION WITH CHIRGWIN AND COULSON'S FORMULAE

Bond orders are defined by these authors as:
- 1 N\
Pe =3 > ni(S|x1><xi| + lxi/ (inS) (1)
i <

where Ixi)>is determined by:

(H~ 4, 8) Ixi> = 0 (2)
with the condition
Cxylslxgd = 5y, . (3)

We shall develop a perturbation expansion for p in power

of St by writing:
s=1+8’ (4)

as done by Lowdin 3. Let us define the auxiliary operators
by = S|X5> <xii (5)

The orthogonality condition (3) is equivalent to:
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PyPy = 934 Py
that 1is, Py is idempotent

(6)

(73

Let us now transform equation (2) so as to become an e~

quation for p;. We have A, ==<x1lHIxi>. Then,; multiplying (2)

on the right by (x,|S one obtainst
T T _
Hpi - p1Hp1 =0
and taking the transpose:
pH - pyHp; =0

A comparison of these two equations give:

T
psH = Hpy

Let us now write: t
RN o !
Py =Py *Py
where pz = ng)<kil, the projection operator into the
state |xg of Hy satisfies the equation:
Hpi = 19 1P4
and the orthogonality relation

0.0 _ o
P1P5 T %14%3
Then (8) becomes:

pH = HpiT
which shows that we can write:
t
By =E T

where TTE = Tri Then equation (9) becomes:

(8)

(9)

eigen-
(10)

(11)

(12)
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lx><xy | = s7H(pg + HTT,)

and since the left hand side is symmetric we obtain:

-1,.0 = (0 -1
57 (py + HTl'i) (pi+TTiH)S

which upon multiplication on both sides by S gilves:
is+1:1'|']'is = Spi + 8TT,H

and , , '
HIT;S-sTT,H = Sp‘i’ - pgs (13)

which is the fundamental equation for Tri‘ In addition Tl'i must
satisfy condition (7):

(Pi + HTri)Z pi+ HTTi

which gilves:

H'lTiHTri = HTTi - szTTi - HTTi'pg | (14)

®
Now we make a perturbation expansion for TTig that 1s JJ,= L___T]';_n

Then (13) ana (14) give: | n=t
T - TTiR = s'p) - ps’ o (15)

=TT M- TT“"lH s'TTRu-HTPs" (16)

BTy ~ p§ETT, - EITy pg = 0 a7

H-H- n+l _ OHTI' n+l HTT n+l o - : HIT 4 HTT nt+l-q (18)

Equation (16) is a simple recurrence formula which, as we shall
seey allows us to determine the correction to the bond order
up to any desired order, once the first order correction is

known.
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The orthonormality relations (11) are equivalent to:
Zypy = (19)
Zj pj 1 9

Then we can write:

Zj,k pj Trnpk (20)

Equations (15) to (18) give, on multiplying by pJ on the

left, and by pi or pk on the right:'

p] S'p}

(3#1) Ps Mo = ——— (21)
' A2 A0
b i

(1-854-04) p] TMim=0 (22)

(§#k) P? m+l p}_O(_= 10 .,‘10 E {(pj S pl)(po‘ﬂ- pk)ll? -
3
- (B3TT, g )(pLS o33} (23)

(1=8y5 =&y 095 T, 5 :%ij‘r (g T4 g
| 971 (24)

Knowing the first order correction to p, formulae (23)
and (24) lead to the higher'bfdef corrections.

With equations (21) and- (22), and remembering (20), the

first order correction is easily obtained:

lg’*li ,
t o
E _'1 ol Pj S Py (25)
J .

Let us calculate theé expressions (23) and (24) for the
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second order correction:
o 2 (ij pi)(pi pk) | .
(J2k)(3,k# i)pjﬂ (26)

O A0 0 o
(lj-li)(lk-»)ti)

¢

1
(3£1) = (pSp)(pSp3~
3#1) pTT{ 8§ e ﬁo{%}‘i"li 3° PplipgS Py

AO

- 53 (P3P pi)} (27)
37N .

O c _ D% 0 0,7_0
pi-lTj.Zpi = = 7 (lz_—l"(;"")'z" (Pis pl)(pQS pi). (28)

For the corresponding bond order correction:

29 |
Azpz%ﬁ L ag- x‘;);o_x") [(lg R gt A O d)ikJil"
?
; & o 0,40
% 1 ;0 }0)2[li¢iji+('lj+li)(¢jii+4)iij{l’
' (29)
where

49311("(1)38 pi)(p pk) = <x°|S ixi> <x°iS le) |x°><xk| (30)

The operator pgsapﬁ whit § # k may be related to the commutator

H, §' ‘
[ '] by p?[H,S ]PE

0,' O
p:S = (31)
j Py o o
Aj"Ak
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Since the first order correction to Py depende only on
operators of this form, then from the recurrence relations (23)
and (24) it follows that the corrections to all orders contain
the commutator {through the operator (31) as a factor. However
one can verify that higher order correction also depend on s'

through terms p? S'ﬁ%.

PERTURBATTON EXPANSION WITH LOWDINt'S FORMULAE

Here the hamiltonian H 1s replaced by

H'=(1+S')_%H(1+S')-%EH-% (s'H+ HS')+% s'Hs' +'§ (s'2g+m3'2) =

= HeV'+ V' (32)

' 1
to second order. The term (V'-+V ) represents the perturbation,

. as suggested by Léwdin 3.

With classical perturbation theory, we have in first order:

i\ - (1) . (1) _ 4 . 1) o .
Ixy> = 2, Ci s o’ =05 o) =gl 53
33

(o] !
o) = SV x> A1)
ik o 0 ’ 1
Ay - Ak

It

<xg|V'|xg>

The bond order operator p is now defined by
= il o
Py =2y mylx) {xyle p°+A1p+Asp

where [x1>ﬁ satisfies the secular equation (H' - Ai)lxi> = 0. We

have then, in first order
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Alp = zi 3 {lxi> <xol+ |Xi> <xi|}

. (1) 0 (¢ o o

= zi,k nyCyy {xk> Cxgl+ 123 <Xk|} (34)
with:
<x§[s'H+ HS'lxi) A9 +42
Cg-%) - l .':-é— o‘ik

2 (o) ) Te) (o}

Mo =My A =M
o = (xpl8'1x7) | (35)

That is, as has been pointed by Davies 5, in first order
both definition of p are equivalent, for formulae (34), (35)are
identical with formula (25).

Let us see what happens in second order
o0y1.2 .1 "o (1)1 (2)y 0o\ -
(E=-ADIET I+ VgD + Vx> = 47 Ixg = 4% Ix5> =0
From normalization

2
e - o3,

Multiplying by <x°l, and taking |x§> = Zk (2)|xo> .
|v lxi>+<x1‘§lv 1 o> 1(1) (1)

(2)
Ci&'= (36)
ik 0 ]
A°(311+5).°)+). (:L °) 5,1°A°+3A°3 292
BZJ 13%9k% K - ! &2ls[xD o
. o o) i i7 74k

C§_§)= a—r—— — li - 11 Loeaim S(li:ulk)

Q 0 :

A = Ay

Hence
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8,0 =5 gy {1225 51+ 19D G2+ 1 <t}
that is,
Bp = 4n i{ L Ot [}x xy 1 +1x3 xk{] * S O Ciy IE }
(37)
Let us note that the matrix elements of the commutator
which appear in these expansions, are different from the elgen
values which we calculated in reference l, for the present
matrix elements refer to the representation where H is diagonal,
which is in general distinct from that for which [H,8] is di-

agonal.

RELATION BETWEEN CHIRGWIN AND COULSON'S AND LOWDIN'S DEFINITIONS
BOND ORBERS

The above definitions of bond order are related as follows:

1 . - 1
Pe =2 [S%PLS%"S%PL 32]
To second order:

As we already sawy Pa and Py, coincide up to first order.

The second order terms of py, can also be determined from

(29) and (%9). The result is:

1
=4 : o O\, 0
23 "n, {35 (AF+ ADAZ+ A, +

Q o] .
G - (A3 G-AD 3

0, 30310 _ L (10_10y(10 oyl
+[(lj+li))ti 7 (A3 ADA - Ai)J(q)jki"' ¢ikj)}-



1

(22 +29)2 0C - 22}
pn byt |
-2 0y 134

. 0 02
J#L (Aj—li)

2

which may be verified to be equivalent to (37).

Straighforward numerical calculation of q and p-starting
from their original expressions the results of which are shown
in the table, throws light on these formulae. It is seen that
the value of g and p obtained according to Chirgwin and Coulson's
or Lowdin's method, are much closer them than they are to those
obtained supposing 8= 0. This is of course expected, for both
definitions differ between them only in second order, while they
differ in first order from the difinitions without overlap. With
S=0, for instance, the results for p under iii) would predict
that the distance 3-4 is smaller than the distance 2~ 3, in
disagreement with i) and 1i).

From the point of view of the results, both treatments seem
to be equivalent, even when overlap is far from negligible.
Chirgwin and Coulsonts is perhaps somewhat easier for calcula=-
tion, On the other hand, to Lowdints bond order it could Dbe
assigned a physical meaning, that is the matrix electron density;
its diagonal elements (charges) would represent the probability

of finding an electron in one of the orthonormal states.
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TABLE; Charges (q), bond crders (p), and free valance numbers
(£), for pyridine, calculated following Chirgwin and
Coulson (i), Lowdin (ii) and without overlap (iii) *.

.
Z[:j]z (1) (11) (111)
1
aq 1.20% 1.153 1.435
a4 0,936 0,960 0.947
a5 0.969 0.973 0,882
Qy 0.986 0.981 0,907
D1, 0.640 0.64% 0.609
By 0,701 0.693 0.638
Psy 0.649 0.652 0.671
£y 0.500 0.500 0.525
£, 0,461 00444 0.699
£5 0.314 0.340 =0,005
£, 0.446 00427 0,105

* The matrices H and S which we have used for the calculation
are taken from reference (1),

S is obtained using Kohlrausch’s nuclear effective charges.
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