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SUMMARY,  Energy accumulation effects near the open end of a parallel-plate wave-
guide, due to the diffraction of an incident pulse travelling within the waveguide,
are investigated. The Dbehaviour of the reflected pulse at large distances from
the open end provides information about the times taken for the formation and de-
pletion of the energy reservoir near the edges. The effects of low-frequency and
of high-frequency components are separately discussed. The low-frequency conm-
ponents are related with the retardation and width of the reflected pulse, whereas
the high-frequency components determine its behaviour in the immediate neighbour-
hood of the wave front. The asymptotic behaviour of the reflection coefficient of
the principal mode at high frequencies is derived. The effect of higher-order

modes is briefly discussed.

-

%  To appear in Il Nuovo Cimento.
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1. Introduction

Bnergy accumulation effects play an important role in
transient phenomena associated with emission and scattering
processes.l’2 Energy can be temporarily stored in free space, in
the neighbourhood of a curved surface. This process can be under

stood in terms of inertial forces.l

Effects of this kind also play an important role in the
theory of diffraction of pulses. In this case one should expect
the formation of energy reservoirs around the diffracting object,
especially in the neighbourhood of sharp edges. The energy con-~
tained In these reservoirs must gradually leak out, giving rise

to the diffracted pulse.

In the present paper, as well as in a companion one,3 we
shall study energy accumulation effects in diffraction theory.The
emphasis will be placed on the description of these effects, rath

er than in their connection with inertial forces.

The problem that will be considered in this work is the
diffraction of an electromagnetic pulse at the open end of a semi
-infinite parallel-plate waveguide. Two different approaches to
the solution of this problem are described in Section 2. The
first one is the application of the Fourier method, starting from
the well-known solution for the monochromatic caseo4’5’6 The
other approach, which is due to Chester,7 applies only to an inci
dent pulse with a sharp wave front. Immediately after the arrival
of the lncident pulse at the open end, the two plates behave in
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dependently, each of them giving riSe to a diffracted wave which
can be derived from the well-known solution of the half~plane

problemas After the diffracted wave originating from each edge
meete the opposite one, multiple diffraction effects must be

taken into account.

The behaviour of the solution near the open end immed i~
ately after the arrival of the incident pulse, which leads to the
formation of energy reservoirsaround the edges, will not be dig
cussed here; a detailed discussion of an entirely similar problem
is given in another paperBo We shall be concerned only with the
asymptotic behaviour of the reflected pulse in the neighbourhodd
of the wave front, at large distances from the open end. We shall
employ chiefly the Fourier method, because this provides greater
insight into the role of low-frequency and high-frequency COm=
ponents in the energy accumulation process. The main contribution
to the reflected puise arises from the refiection coefficient of
the principal mode. In Chester's method, it suffices to consider

the first few successive diffractions.

The low=frequency accumulation effects are discussed in
Section 3. They give rise to a retardation and a width  of the
reflected pulse, which are related respectively to the times spent

in forming and in depleting the energy reservoir.

The effect of high~frequency components is discussed in
Section 4, by considering a delta-type incident pulse. The be=-
haviour of the reflected pulse in the immediate neighbourhood of

the wave front is determined by the asymptotic behaviour at high
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frequencies of the reflection coefficient of the principal mode.
This behaviour is derived in section 5, directly from Sommer-
feld's monochromatic solution9 of the half-plane problem. The
result. indicates a capacitive effect of the open end, which is
another manifestation of the energy accumulation process. The
contributions from higher-order modes are briefly considesred in

section 6.

2. FPFormulation of the problem.

The coordinate system is shown in figure 1. The two per
fectly conducting piates are represented by x>0, y = + a. The
incident pulse travels between them towards the open end, wheré
it is diffracted, giving rise to a reflected pulse and to radig

tion into free space.

T p
--—- TNCIDENT
d =2a ! = X -—

l 0 «+—— PULSE

-——

Fig. 1 - The coerdinate system.
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We shall consider only the case of transverse magnetic
wavess which can be deseribed by a scalar function u(x,y,t).The

field components are

.ﬁ‘-: (0’ 0, u), E--‘: (Ex’ H ] O)’ (l)

y

with the boundary condition Ex =0 for x>0, y =+ a,

The golution within the waveguide, in the monochromatie

case, for the incldent wave exp -i(kx4wot}J, is of the fornm
uk(x,y) = exp(=-ikx) + a, exp(ikx) +

00
4—222 a cos(kyn ¥v) exp i(ka-kgn)% %], (2)
n=1 '
where kyn = nw/a, y[(kz—kin)%j >0, and the time factor exp(-iwt)
has been omitted. The coefficients a (k) (n = 1,2...) .~ are the
amplitudes of the modes excited by the incident wave. They comprise
both travelling modes (kyn~<k) and evanescent modes (kyn > k).

A rigorous expression for these coefficients, in the form
of an infinite product, has been given by Vajnshtejn4. This ex
pression lends itself to computation only for values of q = ka/m=
= d/A not much larger than unity. The absolute value of a, and
a; and the phase of a(a = laolexp(i $)), for 0 < g < 2y are
repregented graphically in figures 2 and 3, respectively. For

0 <4< 1, |a | = exp(~rg.

Let us now consider the solution for an arbitrary inci-

dent pulse F(x+ ct). The solution can be derived from (2) by
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expanding F into arFourier integral. A specilally simple case 1is
‘that of the pulses Fs(x*+ct) having Fourier coefficients C (k)

given by

Cs(k) 1 for - sm/a <k <sw/a,

0 for x| > sw/a, (3)

where s is an integer. The corresponding incident pulses are

given b& +00
ot) = o [, ] =
Fs(x-Fct) 2#\[\ Cs(k) exp ik(x +ct)|dk
=00

sin(sw(x + ct)/a]

= % . (4)
x + ¢t
1-
'Iao‘l
0.5 =
iall
T T T — ™ q
0 0.5 1 1.5 2

Fig. 2 = The absolute values of a, and a, as a function of q.

1
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Fig. 3 - Behaviour of ‘Po ~ 7 as a function of g, where ¢ 1s the phase of s .
exact solubion.
_______________ approximation employed in the calculation.

The form of these pulses for s =1 and s = 2 is shown in figures

4 and &, respectively.

The reflected pulse is obtained by replacing exp(-ikx),
in the integral in (4}, by the last two terms on the right-hand

side of (2). The modes for which n>s are all evanescent, whereas,

for n < s, they are travelling for k?_n < k2

pad e
for k™ < kyn'

2 .
< %s and evanescent

It would be very difficult to derive the form of the
reflected pulse for all values of time by this method, owing to
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§ Fy(x+ct)

== x+ct

Fig. 4 - The incident pulse F;(x+ct).

' Fz(x-bct)
2

a

o j

/2 [\

-a.v 0 \/a —» X+t

Fig. 5 - The incident pulse Fz(x+ct),
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the complicated expressions of the coefficients an(k). However,
some characteristlic effects, due to the energy accumulation near
the open end, can be studied without following the complete evo-
lution of the reflected pulse. It suffices to consider 1ts asymp
totic behaviour for X ~ect>>sa. Under these conditions, we can
disregard the contribution from the evanescent part of all modes,
as well as that of the travelling part for n # O, since the group
velocity is then smaller than c¢. The only remalning contribution
is that of the principal mode (n = 0), so that the reflected pulse

in the domain under consideration is approximately glven by

+00

Gs(x_ ct) = Cs(k) an{k) exp[ik(x- ct)]dk, (5)

=3
2

=00
which is a plane wave, as ought to be expected. The application

of these results to incident pulses of the form (4) will be dis~-

cussed in the next section.

A different method of solution, for incident pulses 6f
the form H(x + ct) F(x+ ct), where H(x) 1s the Heaviside step
funetion, H(x) = 1 for x>0, H{x) = O for x < 0, has been given
'by Chester7. This method consists in considering first the
diffraction of the incident pulse by each plate separately. This
provides the corregt solution for O<ct «2a. In fact, for these
values of the time, the two plates behave independently, one
plate not yet having had time to feel the presence of the other.
For ct = 2a, the diffracted pulse originated at the edge of each

plate reaches the opposite one, where it is reflected and dif
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fracted. Thus, to obtain the correct solution for 2a <et ¢4a, two
new reflected and diffracted waves must be added. This procedure is
repeated again and again, the solution being modified whenever a

diffracted wave reaches one of the plates.

For ¢t >»a, the envelope of each diffracted wave and 1itg
successive reflections within the waveguide will be plane. Thus,
the contritutions from each diffraction will be limited by  two
plane wave fronts separated by a distance 2a., If we want to Xknow
the form of the reflected pulse for =2a<x=-ct <0y only the contri
butions of the first two diffracted waves (ome for each edge) and
their reflections at the plates must be taken into account; there
are no multiple-diffraction effects, For =4a<x-ct <=2a, we
must take into account the effect of one additional diffraction at

each edge, and sC on.

3. Retardation and width.

Let us consider the time behaviour of the solution cor-
responding to the incident‘pulses showni in fig. 4 and fig. 5. The
main part of the diffraction process wiil take place after the
crest of the pulse reaches a distance of the order of a from the
open end.As the pulse travels past the edge of each half-plane, part

of its energy becomes attached to it, giving rise to an energy res
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ervolr of a quasi-electrostatic type. The energy accumulated in
this reservoir is then reemitted, giving rise both to the
reflected wave (backward radiation) and to the wave diffracted
around the edge. This process is studied in detail elsewhere3
for the entirely simiiar case of perpendicular incidence of a

pulse on a half-plane.

The effect of the aceumulation process on the shape of
the reflected pulse at large distances from the open end can be
derived by inserting (3) into (5). The form of the reflected
pulse for x~ct»a, and for s = 1 and 2, is shown in figures 6
and 7, respectively. To derive these results, thé exact ex~-
pression for Iaol for O0<q <1 quoted in section 2 was employed,
together with a ladder-type approximation for 1<gq <2, while the
phase ¢g was approximated by the polygonal line shqwn dashed
in fig. 3. The curve shown in fig. 6 represents roughly the

le(x-ct_)

-4a 38 -2a -a 0 a
Nl [l '] 1 i L :__x.ct

ma

Fig. 6 - The reflected pulse Gl(x-ct).
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r =]
function -(a/w)LgZ + (X«»et4-a)%] .

The shape of the reflected pulse differs from that of the
incident one, the amount of distortion depending on the behaviour
ofrao(k) in the domain where the Fourler transform of the incident
pulse differs significantly from zero {(cf. {(5)). As iao(k)l varies
from 1 to O when k goes from O to oco; the longest wave lengths in
the Fourier spectrum are mostly reflected, whereas the shortest ones

are mostly transmitted.

A G (x-
2(2{ ct)
-4a <3 <22 . o & 22
) — 1 A i [ - ch‘t’
|
Ta

Fig, 7 = The reflechted pulse Gz(xe at).

The form of the reflected pulse,; shown in figures 4 and 7,
suggests the introduction of two concepts related with the energy
accumulation near the edges: retardaticon and width. The retardation
may be defined as the distance (for ct>yal between the maximum of
the reflected pulses and the maximum of a virtual reflected bulse,

which would be obtained if a perfect mirror were placed at the open
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end of the waveguide.

The retardation is a measure of the time delay between the
arrival of the maximum of the incident pulse at the open end and
its reemission. It should be emphasized that this is only an as-
ymptotic description: the behaviour of the field near the open end
can only be obtained by +taking into account the contributions of
all travelling and evanescent modes. However, in so far as the as-
ymptotic form of the reflected pulse 1is concerned, we can imagine
that the incident pulse arrives at the open end with veloclty ¢, 1is
trapped there during a time of the order of a/c, and then reemitted

again with velocity c.

Cn aécount of the deformation of the reflected pulse, the
concept of retardation is significant only if its value is at leasta
large fraction of the width of the inecident pulse.‘“This is so in
figs 6 and 7, where the retardation is of the order of a for an
incident pulse of width a or 2a, respectively. The value of the

10 by the derivative of the phase

retardation is essentially given
#B with respect to k for ka << 1, which corresponds to the slope of
the dashed line through the origin in fig. 3. The fact that the
retardation is approximately the same for two incident pulses of
different widths indicates that this effect is largely due to the

geometry of the waveguide itself.

After the reflected energy has reached its maximum, there
still remains near the edge a certain amount of energy, which will
gradually vanish with the time. This gives rise to a tail in the
reflected pulse, in addition to that which is due to the reflection
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of the tail of the incicdznt one. The width of ths reflected pulse

roit.This

o
3
<l

w

is therefore related to the "lifetimeY of the energy res
interpretation can be applied only if the width of the reflected
pulse 1s appreciably larger than that of the iacident one. This
is again “rue in the case of figures 6 and 7 (ccmpare with figures
4 and 5).

There is no clear-cut distinetlion between the concepts of
retardation and width,the separation being more or less clear ac-

cording to the type of inecident pulse which is considered,

e

4, Delta-type incident pulise

We shall now consider the limiting case s —2-w . in (5),

According to (4J, this corresponds to taking an incident pulse

FOO{X"FG‘C} = §ix+eb). L6}

The corresponding solution u(x. vy, t) follows from {2)s

E )
: _ r 3
u(x,y,t) = d{x+et) + — | aoik} expi@k{chtﬁi i +
2 J =
=30
Q© +w I~ - 2 ) i ‘)(
+ _ ¢ . i d{:.‘ T P YNNI B .
S cosskyny) an&k) exlexK Kynj £~*K;?j ax } o (73}
:l )

e Ty
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We can now consider the wvalues of (5) for s =1 and s = 2,
which are sh~wn in figs. 6 and 7, as two successlve approximations
to the first integral on the right-hand side of (7). This integral

represents the main contribution to the reflected pulse for x~ctr-a.

The solution must obviously satisfy the causality condition
u{x,yst) = 0 for x»ect. (8)

As the second member of (7) is a Fourier series in y, this condition
must hold for each of its terms separately, and in particular for

the second term Goo(x~ct) (See (5)).

The fact that the curves in figures 6 and 7 fail to vanish
for x> ¢t is of course due to the cut-off in the Fourier spectrum
introduced in (3). The causality condition will be fulfilled only

in the 1limit as s — o,

The correct form of the asymptotic solution (x~ct>»a) for
the incident pulse (6) can be derived from the results contained in

L}
Chester's paper’. We geib:

1 1 o/ 2a
Goo(x=ct) = w= ~— H(ct-x) + —  cos H(ct-x-Za)+,;.,
4a 2mra, ct-=-x ' (9)
g

where the first tuo terms give the correct asymptotic solution for
-4a¢x = ct <0, These two terms are shown in fig. 8, where Ches-
ter's results have been emnloyed to represent the asymptotic solu-~

tion for x - ¢t > - 6a.

On comparing fig. 8 with figures 6 and 7, wve can sece that,
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| Gogx-ct)

= X0t

Fig, 8 - The reflected pilse Gm(x -ct).

besides leading to the fulfilment of the causality condition (8),
the effect of high-frequency components is to flatten the peak at
X~-ct ¥ - a, glving rise to a plateau which extends from x- ct =
=0 to x-ct = ~ 2a. A tendency to this effect can already be
noticed in the transition from fig. 6 to fig. 7. The flattening

of the peak of course introduces some arbitrariness in the defini
tion of the retardation; however, the value of the retardation can
still be defined as the wvalue of et =X at the center of the pla-

teau region, which again leads to a retardation ¢t =x = a.

The discontinuity at x=ct in fig. 8 is due to the strongly
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singular character of the incident pulse (6}, It has been shown by
Chester’ that, for an incident pulse H(x+ct) F(x+ct), the reflected

pulse for ct > 8, =-2a{x=cty, 1s given by

ctex
H(et =x)

=

F(§) ag, (10)
4a
0
which leads to the first term of (9), in the case (6)., If we had
taken the incident pulse H(x+ ¢t); as was done by Chester, the

reflected pulse would present a linear increase from x-c¢ct = 0 to

X-¢t = =2a, and thereafter it would decrease.

The form of the result (10) shows that the open end of the

waveguide has an integrating effect on the pulse, which can be
likened to that of a capacitor in electric circuit theory. This
again reflects the existence of a quasi-electrostatic energy ace

cumulation near the open end. This effect is closely related with
the high-frequency behaviour of ao(k)a%as will be shown in the next
sectlion. In the case of a delta-type pulse, the effect of high
frequencies Iis enhanced, because of the equal weight given +to all

frequencies in the incident pulse.
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5. Agymptotic behavio of a (k) at high freguencies.

According to (3) and (5), we have
+o0
1
Gy (x-= et — ao(k) exp[ik(x-ct)]dk, (11)
ar
=00
for x~ectya. It follows from (9), on the other hand, that G, has
a discontinulty of =1l/4a at x = et. It is well known in the theory
of Fourier integrals that this behaviour is directly related with

the asymptotic behaviour of ao(k) at high frequencies.

Although (11) is no longer valid at large distances from
the wave front, we can write
A+ . 0
a (k) % Goo(5) exp(-ik§) at = G oo (§lexp(~1kE)AE,
=00 =00 (12)

because Goois a rapidly decreasing function, so that the contribu-
tlon from large distances is very small. The last equality in (12)
follows from the causality condition (8).

In order to derive from (12) the asymptotic behaviour of
a (k) for large values of ka, it suffices to apply partial integra-
tion: - :
Goo(0 ) 1
a k)~ = {(for ka»1l), (13)
=ik 4ika

where the last equality follows from (9).

Conversely, the behaviour of Goo in the neighbourhood of
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the wave front is determined by the behaviour of ao(k) for ka»l.

It will now be shown that this aymptotie behaviour can be derived
directly from Sommerfeld‘s well-known solution for the diffraction
of a monochromatic plane wave by a halfaplane,9 without making use

of Chesterfs results.

For this purpose, let us consider the monochromatic soly
tion (2) for x = O:

00
uk(Ogy) -1 =a, + E a, cos(nry/a),
n=l1

It follows that a

1
ao(k) = E‘ [ﬁk(ogy) = %]dyo (14)
2a

This integral cannot be evaluated,in general; because the exact solution
uk(O,yO i51nﬂmowno However, we are only interested in the behavior
of ao(k) for ka>>1l. This corresponds to a wavepguide, the plates
of which are far apart (as compared with the wavelengthl. Under
these conditions, it may be expected that each plate diffracts the
incident wave independently of the other one, so that multiple~

~diffraction effects can be neglected.

It was shown by Vajnshtejn4 that, for an arbitrary inci-
dent mode cos(kyny) exp(mikxnx)9 the angular distribution of the
radiation emitted into free space,; for ka> 1, 1is approximately
given by the superposition of two Sommerfeld-type solutions: one
of them representing the diffraction of the plane wave

1 [ . -
3 exp i(kyny kxn;) by the upper plate, and the other one the
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1 -
diffraction of the plane wave > exp[ i (kyny + kxn;é] by the lower
plate. In view of the well=-known reciprocal relation between an-
gular distribution and aperture distributionsll the same must hold
for the aperture distribution uk(O,y)a

It follows that uk(O,y), for ka>> 1, must be approximately
given by the superposition of Sommerfeld's solutions for the dif-
fraction of the plane wave % exp(=ikx) by the upper plate and for
the diffraction of the plane wave % exp(=ikx)} by the lower plate.
EBach half-plane gives rise to a diffracted wave corresponding to its
excitatlon by one half of the incident mode. The factor 1/2 may ap
pear: strange at first sight, for one might expect that the ampli-
tude of the diffracted wave arising from each edge would correspond
to an excitation by the full amplitude of the incident mode. However,
it must be kept in mind that the incident mode exp({-ikx) is a limit
ing case of an incident mode cos(kyny) exp(mikxnx)3 as the "angle of
propagation® Gn = tanml(kyn/kxn) tends to zero. The splitting is
quite natural for 6 # O, and the transition to the case ©, = 0 can
be rendered practically continuous by taking the diameter of the

waveguide sufficiently large, in which case the discrete spectrum of

the modes approaches a continuous one.

If we introduce two coordinate systems, (x', y') and (x",
y"), with origins at the two edges (fig. 9), we can therefore re=-
place (14), for ka> 1, by

Ea_ 2a ,
J |2 uSto,yh) - 1] ayr» (2 w0,y - 1 Jayr
0 0

(k) -
a (k)= —
° 2a

where uﬁ(xfgy“) is Somerfeld's solution for an incident wave exp(-ikx?).



The two integrals are obviously equal, so that, finally,
2a

1
ao(k)':t..‘ ;— [u}s{(o,y‘) - 1}dy'. (18)
a
0

on

Ol

Fig. 9 - Coordinate system with origins at the edges.

In polar coordinates, x! = r! ¢cos @, y' =r!' sin ' (cf.

fig. 9), we have?’

1
ui(r',lP') = %(L—i) exp(-ikr' cos lp'){ F[Z(kr /7)° cos ‘P'/Z] =F (=00 )} )

(16)

where W

P(W) = exp(i g 2%) av (17)

is Fresnel's integral.

Taking @' = w/2, we get
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s 1 /- 1 I 1
u (O, = % (1:»1)% F|(2ky /7 ;mF(=0@)f .
L ' :

Noting that F(co) = % (1+1) = = F(=00}, we obtain

wi0,y1) = 1 = - % (1-1) {F(oo3=F[(2ky“/v)%:l} 0

L
(18)
Substituting (18) into (15) and making ky® = Ny we get,
taking into account (17),
ke ~ O
a (ki = — | dn explir/2 ¢~} av.
o ‘
4Kk a, J N
© {2n/m)* (19)

The asymptotic expansicn of (19) for ka) 1 will be carried out in

the Appendix. The result is, according to (4 3):

=

r - 3
a (k) = v O Hka) 2 (20)
L i

4ika
in exact agreement with (13).

The behaviour of the reflected pulse in the neighbourhood
of the wave front is closely commected with {(20), as we can see on
comparing it with (10), and noting that (1x)~t corresponds tc the
integration operator fer Fourier transforms. The wvalidity of (10)
in the domain =2a <{x-ct <0, where multiple diffraction does not ap

pear, is directly related with the approximaticn (15).
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6. Co utions from the other modes.

Let us now consider the contribution from the modes n = 1424000

in (7)y for ct >>a. It suffices to consider a typical case, such as that

+00 : _&_
cos(my/a) aq (k) exp[i (kz - 122“) X = ikct}dko (21)

a

o

The integrand of (21) corresponds to a travelling wave for q = ka/w>1,
and to an evanescent one for 0<qg<1. Let us first consider the contri-

bution from g > 1. As c¢t>> a, we can apply the stationary-phase methodlzc

The stationary-phase point is q = ct(c:Zt2 - XZS%O In the evaluation of

fhe” integral, we have considered only the contribution from 1<Lq<«<Z2, on

account of the rapid decrease of Iall for q>2. Thus, the stationary-

=phase point falls outside of the domain of integration for x ?/:'/; ct,
V3

and the contribution from (23:) is then much smaller. For x < 5 cty we

get

w,z (a/ct)% cos(my/a) f(x/ct) = L t[l - (x/ t)z}%-ﬂ- 8(x,ct)+ X

1¥ 2 my. c cos 5 Ct x/c XyC al ?
(22)

where

¥
£(§) = §(1- 5)“1(1~§2)‘”’3/4 exp|- %(%’EE) 7 (23)

and 6(x,ct), the contribution from the phase of al(k)g is a cqmpli.ifatedg
but slowly-varying function, as compared with (vct/a)[lm (x/ct)? ]do_ The
behaviour of £(£) as a function of £ 1is shown in fig. 10. The 1last
cosine factor in (22) is a rapidly oscilating function, because ct>> a.

Taking into account the factor (a/ et)%, we see that the contribution of
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(22) is much smaller than that ¢f the principal mode.

The contritution of (21} for 0<q<1l is even smaller: it is
2

of the order of a/eot; as can easily be shown by Laplace’s method™ ™.

A f{&)

001 ]

[
)
W

|
|
|
|
|
|
|
o 0.5 vE)
2

Fig. 10 - Behaviour of f({£} as a funvbkion of 50
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APPEND IX
_Asymptotic expansion of ao(k).
The domain of integration in the (%,%) plane associated with

‘the double integral (19) is shaded in fig. 11. Inverting the order of

integration, we get:

(4ka/1r)% oo
ao(k) z - i‘k-'-g_‘ [%J 't:a exp(in/2 ’t:a) av + &aJ exp(in/2 'ca)d't:l .
0 (4ka/1r)%
T
A
|
[
]
i
i
(4ka/m) |
!
X I
t= (29/m) :
|
[
|
i >
0 2ks

Fig. 11 - The domain of integration.
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Integrating the first integral by parts, we are led tos

tv1 STy 31 3
a (k) = 7 oxp(2tka) - Ji= r'L(é:ka/‘n') ~ % (1-1{F (0 )-F | (aka/m)¥| b,
{4nka)
(A-1)
For ka> 1, we can employ the asymptotic expansion of the Fresnel inte-
gra19
1 exp(in/2 Wa) :
F(W) = 5 (1+1) + 1+ + .. (W] 1), (A=2)
' in W iwwz

Substituting this result in (4=1) and expanding up to terms of order

(ka)'B/Z, we finally get

a,o(k) = +Q [(ka)“’ya]o (4=3)

4ika
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