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In a rccente paperl the classical (non quanitum) relati -
vistic theory of a point particle with spin was developed by Proca
in a rather simple form using four component spinorss Hls equa-
tions are obtained from a varilational principle which 1s, however,
quite arbitrary.

In the present paper the relativistic theory of spinning
particles is developed starting from the non relativistic thoory
which i1s modificd in order to become invarlant under Lorentz trang
formations.

In Part I the non relativistic theory of spinning parti-
clcsa’3 is analyscd ond rceformulated in terms of @ 1wo component
spinors. A variatiomal principle is cstablished and written g
a form which is approprilate to the passage to an invariant forme.

In Port II the variation integral is made invariant in

the usual way. Two altcrnate possibilitics arc obtained. In the



first casc, which will be analysed in o forth coming paper, the in
variant Hamiltonian is cuadratic in the momentas In the seccond
casc the Hamiltonian is lincar in tho momonto. The theory ebtaipn
od in this sccond casc 1s asscentially tho same 28 the onc doweloped
by Proca.

Indced the cguations cro the same but we have two supplg
mentary conditions for the four spinor ’+’as in the non rolatl =
vistic thoory., These condltions, Qﬁ N 1. ond k+1ﬂ£ﬂ{ = O
pogtrict somchow the cllowed solutions of Proca oquwtiqn. For ing
tonco in the ccse of free perticles only those which satisfy the

following condition arc allowed:
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Tn Port IT the transition to quatum theory is porformod
with tho usual rules. The irreduciblae roprosentations of  the
obtainod cquation arc, for spin 1/2 and 1 rospectively,  cxactly

the Dirce cquation cnd tho Kommor = Proco =~ Yukawa cquatlon.

PART T. NON RALATIVISTIC CLASSICAL THEORY OF SPIN-
NING PARTICLES.

1 Homiltonian formalism

Thoe cquations of motion for partiélos with an intrinscec
-._')_. s
ongular momentum (3) discribed by o veetor > can be  obtalned

from the Hamiltonian

H = 57me +eV + U (?f,i,t) (1)



where
Pin: ?L"eAif o= 4,23 (2)
Now we write .
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the rotation which brings

(3)

vhere 6 and A arc the Euler
a system attachtod.___:;o the perticle with its 5 axis pointing along
the spin vector f* and the 4 axis olong the nodal line to coiz_‘_l_
cide with the fixed refercnce frome.

Using cquations (1)=(%) end the Hemilton cquations
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we obtain thoe cquations of motion viz
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From (4) it is clear thet the (\ component of the spin,

[_ % s is thc momoentum conjugate to the anguler veriable. @ R So

if we define the Poisson brocket (u, v) of two physicel quantities
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s and Y which cre functions of X, ;:) ’ z y 9 and T as

. %
(,0) = 2 (2% v - Qu ;zg*_\
. a)(l E")/\')i -3,,) }(/ (6)
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we have

Equations (5) orc cgain obtoined from (7) using (1) - (3).
Finally we should mention that the Hamilton cquations (),

and conscquontly the cquations of motion (5), may be obtained from

a variactionol principle(3).
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Hore orbitrery verictions are given to X. , .{’D , 26 and
2+ Spinor cquations,
Now we wish to show thot the Hamilton equations (L) can

boe written in sninor forrr{”t.

Lot 'us considcr the most goenercl spinor.
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where R and § are new real quantities depending only of t and

are the Panll matrices and u a unit spinor

o 1\ . o =) (. o\ . _ k&_) (10)
= Oy, = Wy = AN T
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It is casy to show that the components of the vector gquap
tity

- : L S Y SR |
S =1y"e y / v (11)

‘are given exactly by the cxpressions (3).

Now it can be proved that the equation

&Id‘i[ +_J._. yeV e Ul J(IG“ "(')] (12)
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where B 1s the erf“gy and ZJ is obtained from U by the subs-

titution of I CT‘ for 41_ y 1s oquivalent to the set of equations

di @y, 4REs - - 2RO (13)
4t ORI Jt 98
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Jt ()T h

L *dy _ d! ) -E
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Equation (I4) implics that R is a constant which should
be differcat of zzro:
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Equations (13) together with

ax; _OH . dPi __ OH
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are thus precisely the Hamilton equations (U).
Finally cquation (15) is only the definition of  the
funcion S. Now, for the actual motion of the particle we must have

H=E (18)

Soy in view of equation (15), we have to impose to  the

solution of cquation (12) the supplementary conditiom

v iﬂ;ﬁw o (19)

We have proved therofore that cquations (12) and (17) arc
cquivalent to the Hamilton oquations (4) if the supplomentary con-
dition (19) 1s imposed on the non vanishing solution of eéuation
(12).

3s Variotional principlo in spinor notation. .

It 1s casy to show that cquations (12) and (17) rosul+

from the followlng voriational principle
™~

;}] ; ' A (:\\

.9{.} _ *__, %. RETE. (30’
S (v 1T (PY -gety) | de




with

H= Eéj)/;wn +reV + W)%£2J,Hj//q)*iP

In this principle E: is taken as an independent wvariable

e I
and arbitrary variations are given to t, E, x, p, QJ and HJ g

Indeed the rosulting equations are

(21)
* N
D db Q!_j; \y (22)
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2:1 _\y_ - PRV b+ U)o
J&
Qilg :;izlti % (EL)
d G R A

Taking (21) in (22) we obtain ecquations (17). Equations

(23a - b) arc equivalent and have as consequences

JowRy Lo @)
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From (25) q) kr is an in*egral of motion, and if we

(26)

asgume
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cquation (23%a)heecones identical with cquation (12) in view of (21).

Bquation (2l) is a consequence of the remaining ones, if
B is thc cnergy
BE = H

Finally we should notice that if wo toke into account equa

tions (9), (21) and (27) the integral (20) become cqual to
t,

b odd a0 % ds _H> dt (28)
U’ d;% ’ 23 gt T a+ |

with

This differs from the variction integral (8) only by the
term in :Eljéﬁ which do not give any contribution to the varia=-
tional oquutigns because it is on oxaet differcncial as 2 is cong
tant., Expression (28) is, however, morc appropriatc than (8) for a
thoory which allow for a variation of 3{ « If H depends also on
Cown obtainB, besides cquations (L) the following Hamilton cqua~

tions:

iy

~RH - dx - _aM (29)
&“ﬁ o3 At DS

PART II. RBLATIVISTIC THEORY OF SPINNING PARTICLAS
(CLASSICAL)

i
SN )

le Relativistic invariont formalism.s

We shell now obtain the relativistic cquations starting
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from the non rclotivistic thecory in spinor form. Wc shall stert
fron the variational principle (20) and moke Lorentz invariant the
integral T.

N

If 5 1s a scalar the torms

- ) - P
_E_ \j T 4 L\ d X_. i ('J X (30)
Az 0 JB {“dz

are already invariant. Repeated upper and lower indices mean surma

tion from 0 to 3. Here

=t ) B2 E/: J ‘1))* = nv }Pv g
(31)
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If we usc 1nstcad of the two component spinors  four el

ponent ongs

R

4T _

will be invarient, with

. 2
WEWTE o, et (32)

if the matrix ﬁﬁ hos the property
+- .

fuw A= 5 0. (33)

Here ‘%ih}‘” “‘*~§ ¥y ore the Infinitesimal oporators

of tho Lorentz group and have, the commutotion rolations

{?fl‘-‘))i JPG"J = Z'A{(?ﬁ‘/ﬂ X‘ﬂs - %)io E);AW * %\d(j“ XP}IA - %Mou 6}/3”) (3l)

S



Instend of (11) we usce for the cxpression of the intrine-

soc cnpguler nenentun of the particle
TV W) (35)
Suy =1 wmw/w

Now ony four conponent spiner con ve written in the forn
Yogerife o4 P/e _ e;.,(s“ 7(/:.#
182 Oy %0 B2 LYz fr Kb Nt /e 59
L =& e C e
whero R, S. ﬁj 5 9, y 92, 7\,, A 2 ond X ere real nunberss

}( 5 s o motrix with the propertics

e N
35:1 ) E/Sﬁ;ﬂ@gS ) 555})0) = 'MUUS' (37)

and u o bosic spirer dofined by

K,,gz M"—:\&g o= }VL) M*M'-'-"—- i (%8)

If we vee the representation

T o N o>. (o \> (’ 0) (39)
K' = K ‘ = A = ‘ 5= -
*3 (OW/\&K &O..Q-k"ﬁ 10133 o -!
thea IO

Nowy 3£ we forn the complex spin veetor

- S ¢Lo)
Zi“ Sak ¥ /{.bk\o



we find L
5. T i A sin ()
0
e a _ = o ! . S < (f\%
Z‘\/“ AT Ia VYA CO\)\H_
' — (L)
Va

= l<!%—icd¥§ﬁ)

where

| Z |
" (L2)
() = D,
Whe have also N . . )
B N o X iﬂL‘n}j
o= L v = R sin X cos &
A
and
1 & dy 49 .4,):
47 A G
— (L5)




In Lxpression (U5)
S= 5, i ket X 6
, Gaz (hé)

represents the intrinsic rotation (complex) conjugate to the ro-

dulus of thé conplex spin, for jS%) =1

It is very interesting that in the relativistic case the
expression (I15) for the gyroscople energy allows for a variation of
the modulus of the spin 5% s in opposition to the non relativistic
ONe e

Finally we have to make invariant the remaining terms of

expression (20), viz
y . ¥ : "‘32 ETs ¥ . .
(E "H) \y wj = - (POC + ‘2!."%7) \}/ \'j — \}J 24 W L7)

MR p e lE reV

3]
The last term in (U7), the interaetion term, is mnade in=-

variant by the usual procedure. For Instange
N AL R S
YRy o T e
However othor invariant interactlons which have no simple
counter part in the non relativistic theory can be formed with the
othePs  covdriant quantities

M g
N - AW ‘f}}\qf (v.ctor) (h9)
A.

U ).A
(,\)M: j_ N 7{5 5( Y (pscudovector) (50)
A



where k ' S L
8°=,A, & = ipBy ¥0
i/
Now the remaining term in (47) is linear in P, but qua-
dratic In P, .
A
So we have two possibilities in crder to make it becones
relativistically invariant: either make it quadratic or linear both
inP, and P,. :
In the firs case we make the substitubion
., - Y
Vi (Re+ B2 ) 5 PT YWz (51)
Zm A ,
We shall not consider in the present paper the relativig=~

tic theory resulting from this substituiion.
In the sccond cage we make the substitution
* Z T M
YW Rer )y £ P TN (52
The resulting theory 1s essentially equivalent  to the

recent Proca theoryl and will be studied in the next sectione
2+« Proca theory.

Wo start with the lincarized variation integral

o [ b de- kT (T4 - 82 )i o

kel P, wY" Woam WY Py

AL -

where 2”1 is the 1ntoractlon invariant term, formed with  the co-
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M
variant operators and functions of "K We put C = 4

Now the variational principle

8T:& L))
wher'e /\fau , S

) W/ and (qj-are given arbitraty variations ’
laads to the cquationg:

e ——

dx_ oK _ dbw __ DK (51)

4T T Tha ) IT R

_insii ;(%ﬁg IR +wx+U)W’ (55)
ZAI ‘L\é s Q(_}-_ \GMP}A’?‘ ™ +U) (56)

Al
,(fY'y\ CJ/
If we put \(“5 &

\Kand 21= 1 we sce ‘that these
are exactly Proca equatlons .

However we have here a normalizatim
condition, similar to the corresponding

non rclativis$is one
Yy =1 (57)
consistent with cquations (55) and (56).

Besides we shall find a further supplementary condition,

similar to ecuation (19) for the non relativistic cases. If we mul-

tiply equation (55) by WV we f£ind
~2;‘I$%:Pf‘\{},i+w+¢uw =K (58)

Now it is en imrediate consequence of (5L) = (56) that K
is an integral of rnotion

ax - o ;o K= c onst (59
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There is no loss of generality if we take this constant

. , \ *
a8 zeroe Sp we have the condition

$ dY _ (60)
VY s - O

In order to have a better understanding of the fundamepn
tal solutions and of our supplementary conditions Wo shall consider

now the case of free particles.

Following Proca we find for the general solution of equa-

tion (55) .
. (- ) G/ZI ; C2T
\}/ =\, @ / F WZ_ ek("m J"/\D) /

\yl * (“": XM ”fp,uL - /i°> \P ) \f'jz * (‘ij: 5“,@)‘4_,\/:)\?(62)

where ‘ .
zfﬂM:Con:{f- ) %?:-\- V“Pﬂ/f}‘,\ ) _&_%:O

Q[H)Z :QZ k})" :‘_"..-O

(61)

Q

Now, in view of

wa find

~2i1 ¥ %T\g’ _ T meb) T, (m b)) (6

Tn view of condition (60) this should vanishe On  the

R p———— e i L R el T e e e

% We heve Intfoducedd the term 'mw in cquation (5%) in ordcr thot supplementary:
condition (60) would leod in the cgse [2 =z an v to porticles -of deéfinite
e M

rest mess me
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ether hand the normalization condition (57) gives

P+ VW, =1

S0 we find

A ”Vyﬁz*gf? WL, = 472;';ZL (&)

Now it is a result from (62) if ™M > O

Tyiro , BWco s hovo (@

qj; ¥, <o, QZWZ7O if bo <o (66)

This can be casily proved In the reference frame for
which  fo =O
Now, in view of (él1) these inequalities imply that

o< pz b, <|m| (67)

Inequality (67) is a consequence of our supplementary
conditions (57) and (60).
Solutions for p = o are excluded because condition
(60) would imply thet .
Wy =0

If J» = in] we obtain Proca's "harmonic solutions" for

o duim

which
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PART III. QUANTUM IHEORY

1. Non relativistic schr8dinger egquation.

The non relativistic theory of spinning particles can
be formulated in & generalised Hamiltonian form using the null

Yhamiltoniant,.

— Z
- E+nz -EreVaiP-gh) sy @

Z. ™

Indeed all the equations of motion are obtained, using

the Polsson Bracket formalism:

o (09

3
(M,U') = _(@W Qv - Q& Ju | +
=1 XX~ DpF Op OX”

oM DU am D _du Du“) (69)
+(@E Ot %—E> (ae Of3 6>,ae

The last term of (69) can be written as

where

Z —
a7 - r—-\ ‘W‘T Pl 1-\*‘

-~ &
this is what one should expect from the fact that -2 i1 NY
is the conjugate nmomentum of ‘ﬁf as can be seen from the variation

jntegral (20). The following Poisson brackets are consequences of

(69) and (70).
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(e, f’a) = 5,&() j (7‘1)-’%;) = (%, /19()):0
(E,{‘) = 1 (E,xx) -:,(E) fn;;) = (K,x,;) :("t}{y_)ﬁo (71)

. —_. . . — 2 # =iz U ]= 2 =
(2/!,;}:&)" Z'K)<z“,t)?(d)*(¢/\.) Fa') \‘"h)t) Za,f‘— O‘
The quentum theory is obbtained substituting the gquatim

- —_ "

K (} > 4, h ) L_- . = (71)

} /

by the equation
< % =0 (72)

where the classical quantitles are substituted Dby operators act-
ing on the wave function‘IP" with comrmtation reletions  obtained

from the Poisson brackets (71) by
[AJ-J-ir:' = ,__,/L‘k {}A”U‘) (73)

We only mention here that the irreducible representation
diseribing spin 1/2 particles of equation (72) is just Pauli evnas

tions
,ﬁ' ‘ —3 —> \)Z R ey
11% )+ @\/+(\/i grad + e M " +?A(Xjfjh.Q/i'WEC>
+ U
2. Relativistic eauations for the quantum theory of spirning pap

ticj..? Se

Following the same procedure we should start from the
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pnull Hamiltonian® (58) and substitute the equatlon
A o} o e (. N
K(X ) f|‘ \ v : (C.)\‘ pl oy 2 1_) = O

by the equation (72) with the commutation relaticns ('73)

for the
operator discribing the physical quantities.

The Poisson brackets
for the classical relativistic theory are obviously glven by

@ﬂ%:@M Qv _ D D
’@7(“‘ @1‘% faxff” CEaY

n Z (am B _ Du v (7h)
as the conjugate varlmble to‘ﬁins -2 37T #%K |
We obtain, for instance, the following Poisson Brackets
\/)u\ ) | S,L_.\})
CTE
M3 (?G\)w VN VO < P . ‘))F,_MG‘“—. JYS I
(§ ;2 “% S —% > +a 5 % S 75)
5~ R () I’:T A &= ‘0
v ) = eIy
( ;ST 3 %

So, for the casel) =

e M
v (_f;_v

q
2+ @ A ] W =0 -
- 2 > ‘ 4 (76)

The two irreducible representat101é of equations (76)
which discrite

equation

we obtain the quantum cquation

particles of spin 1/2 and 1 arn, respectively Dirac
and Kemmer-Proca-Yullawa cquation, as can be

casily
verified.,
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