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Abstract

We present a simple proof that self-avoiding fermionic strings solutions solve formally

(in a Quantum Mechanical Framework) the QCD(U(Nc)) Loop Wave Equation written

in terms of random loops.

Introduction

We aim, in this paper, to present a formal interacting string solution for the Migdal-

Makeenko Loop Wave Equation for the colour group (U(Nc)) (Ref. [1] and references therein).

Our main tool to solve the Migdal-Makeenko Loop Wave Equation is based on the remark

made in the Section 1 of this note, where we address the problem of solving critical string wave

equations by string functional integral by applying simple rules of the operatorial calculus of

Quantum Mechanics. We thus apply the results of Section 1 to present a string functional

integral solution for the Migdal-Makeenko Loop Wave Equation for the colour group U(Nc).

1 The critical area-diffusion string wave equations

Let us start this section by briefly reviewing our general procedure to write diffusion string

wave equations for bosonic non-critical strings2. The first step is by considering the following

fixed area string propagator in 2D induced quantum gravity string quantization framework.

G[Cout, C in, A] =

∫
Dc[gab]D

c[Xµ]× δ

(∫
D

dσdτ
√
g(σ, τ)− A

)
× exp(−I0(gab, Xµ, µ

2 = 0)). (1)
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Here the string surface parameter domain is taken to be the rectangle D = {(σ, τ).−π ≤ σ ≤ π,

0 ≤ τ ≤ T}. The action I0(gab, Xµ, µ
2 = 0) is the Brink Di Vecchia-Howe covariant action with

a zero cosmological term and the covariant functional measures Dc[gab]D
c[Xµ] are defined over

all cylindrical string world sheets without holes and handles with the initial and final string

configurations as unique non-trivial boundaries: i.e. Xµ(c, 0) = C in. Xµ(σ, T ) = Cout.

In order to write an area diffusion wave equation for Eq. (1), we exploit an identity which

relates its area variation (the Mandelstam area derivative for strings) to functional variations

on the conformal factor measure when one fixes the string diffeomorphism group in Eq. (1) by

imposing the conformal gauge gab(σ, τ) = ρ(σ, τ)δab (see Refs. [1], [2]). This procedure yields,

thus, the following area diffusion string Euclidean wave equation

∂

∂A
G[Cout, C in, A] =

∫ π

−π

dσ

(
− δ2

2e2in(σ)δC in
µ (σ)δC in

µ (σ)
+

1

2
C in

µ (σ)2

+
26−D

24π
lim

r→0+
[R(ρ(σ, τ)) + C∞]

)
× G[Cout, C in, A] (2)

At this point a subtle difficulty appears when the theory described by Eq. (1) is at its

critical dimension D = 26 since the conformal field ρ(σ, τ) decouples from the theory, making

it subtle to implement the fixed area constraint in Eq. (1). It is instructive to point out that

for a cylinder surface without holes and handles with non trivial boundaries, the argument

that the fixed area constraint is simply fixing the modulus λ of the (torus) conformal gauge

gab(σ, τ) = ρ(σ, τ) ((dσ)2 + λ2(dτ)2) is insufficient to cover the case of “string creation” from

the vacuum as we will need in Section 2. This is because in this case λ = 0 and the string

world sheet still has a non-zero area. Note that the topology of this string world sheet creation

process is now a hemisphere which again makes impossible the use of the modulus λ as an area

parameter.

However, it makes sense to consider the limit of the parameter D = 26 directly in our

string diffusion Eq. (2) which reproduces the usual critical string wave equations (Eq. (2) with

D = 26 and ρ(σ, τ) = 1).

In this short section we intend to show that the following critical string propagator:

G[Cout, C in, A] =

∫
DF [Xµ(σ, τ)]

Xµ(σ, 0) = C in
µ (σ), Xµ(σ,A) = Cout

µ (σ)

exp

{
−1

2

∫ A

0

dτ

∫ π

−π

dσ

[(
∂Xµ

∂σ

)2

+

(
∂Xµ

∂τ

)2
]

(σ, τ)

}
(3)
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where the intrinsic string time parameter A is identified with the area diffusion variable, satisfies

the string critical diffusion wave equation.

To show this simple result we evaluate the A-derivative of Eq. (3) by means of Leibnitz’s

rule
∂

∂A
G[Cout, C in, A] =

−1

2

{
lim

τ→A−

〈∫ π

−π

dσ

[(
∂Xµ

∂σ

)2

+

(
∂Xµ

∂τ

)2
]

(σ, τ)

〉}
, (4)

where the surface average 〈 〉s is defined by bosonic path-integral in Eq. (3).

In order to translate the path integral relation Eq. (4) into a operator statement, we use

the usual Heisenberg Commutation Relations for two-dimensional (2D) free fields on D (with

the Bidimensional Plänck constant = Regge slope parameter set to the value one)

[Πµ(σ, τ), Xν(σ
′, τ)] = iδ(σ − σ′)δµν (5)

and its associated Schrödinger representation for τ = A (that are the quantum mechanial

definition of the lopp derivatives operators ([1]).

Πµ(σ,A) = lim
τ→A

〈
∂

∂τ
Xµ(σ, τ)

〉
s

= +i
δ

Cout
µ (σ)

(6)

∣∣∣∣dCout
µ (σ)

dσ

∣∣∣∣2 = lim
τ→A

(
∂Xµ(σ, τ)

∂τ

)2

(7)

After substituting Eqs. (6)-(7) into Eq. (4) we obtain the desired result

∂

∂A
G[Cout, C in, A] = −

(∫ π

−π

dσ

[
− δ2

2δCout
µ (σ(δCout

µ (σ)
+

1

2
|Cout

µ (σ)|2
])

× G[Cout, C in, A]. (8)

Let us point out that general string wave functionals (the Schrödinger representation for

the theory’s quantum states) may be formally expanded in terms of the eigenfunctions of the

quantum string Hamiltonian (the string wave operator in Eq. (8))

−∆cψE[c] = −
{∫ π

−π

dσ

(
− δ2

2δCµ(σ)δCµ(σ)
+

1

2
|C ′

µ(σ)|2
)}

ψE(c) = EψE[c] (9)

ψ[c] =
∑
{E}

ρ(E)ψE[c] (10)

The functionals endowed with the (formal) inner product given by

〈ψ[c] | Ω[c]〉 =

∫
DF [c] · ψ∗[c] · Ω[c] (11)

constitute a Hilbert space where the string Laplacian −∆c is formally a Hermitean operator.



CBPF-NF-006/09 4

It is worth remarking that an explicit expression for the Green’s Function

(−∆c)
−1(Cout, C in) =

∑
{E}

ψE[Cout]ψ∗E[C in]/E

of the string Laplacean in terms of the cylindrical string propagator Eq. (3) may be easily

obtained.

In order to deduce this expression we integrate both sides of Eq. (8) with respect to the

A-variable. Considering now the Asymptotic Behaviors

lim
A→∞

G[Cout, C in, A] = 0 (12)

lim
A→0

G[Cout, C in, A] = δF (Cout − Cinn) (13)

we obtain the relationship

δF (Cout − C in) = −∆c

(∫ ∞

0

G[Cout, C in, A]

)
(14)

leading thus to the following identiy

(−∆c)
−1[Cout, C in] =

(∫ ∞

0

G[Cout, C in, A]

)
(15)

2 A bilinear fermion coupling on a self-interacting Bosonic

Random surface as solution of QCD(U(Nc)) Migdal-

Makeeko Loop Equation

Let us start this section by considering the (non-renormalized) Migdal-Makeenko Loop Equation

satisfied by the Quantum Wilson Loop in the form of Ref. [3] for the colour group U(Nc)

−∆c〈Wl`[CX(−π)X(π)〉 = (g2Nc)

∫ π

−π

dσ

∫ π

−π

dσ′
dXµ(σ)

dσ
· dX

µ(σ′)

dσ′

× δ(D)(Xµ(σ)−Xµ(σ′)〈Wkp[CX(−π)X(σ)]Wp`[CX(σ)X(π)]〉 (16)

The Quantum Wilson Loop is given by

〈Wk`[CX(−π)X(π), Aµ(x)]〉 =
1

Nc

〈
T

(c)
R

(
exp−

∫ π

−π

dσ(Aµ(Xµ(σ)) ·X ′µ(σ)

)〉
k`

. (17)
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As usual, Aµ(x) denotes the usual U(N) colour Yang-Milss field which possesses an addi-

tional, not yet specified intrinsic global “Flavor” group O(M) represented by matrix indices

(k, `). The average 〈 〉 is given by the U(N)-colour Yang-Milss field theory.

Let us consider the following critical non-linear interacting Fermionic String theory first

considered in Ref. [4]

S[Xµ(σ, τ), ψ(k)(σ, τ)] =
1

2

∫ A

0

dτ

∫ π

−π

dσ

[(
∂Xµ

∂τ

)2

+

(
∂Xµ

∂σ

)2
]

(σ, τ)

+

∫ A

0

dτ

∫ π

−π

dσ[ψ̄(k)(γ
a∂a)ψ(k)](σ, τ) +

β

2

∫ A

0

dτ

∫ A

0

dτ ′
∫ π

−π

dτ ′
∫ π

−π

dσ′

× (ψ(k)ψ̄(k))(σ, τ)× T µν(Xα(σ, τ))δ(D)(Xα(σ, τ)−Xα(σ′, τ ′))Tµν(Xα(σ′, τ ′)). (18-a)

The notation is as follows: the string vector position is described by the 2D-fields Xµ(σ, ζ)

with the Dirichlet boundary condition Xµ(σ,A) = CX(−π),X(π) ; i.e., the surface S = {Xµ(σ, ζ),

−π ≤ σ ≤ π, 0 ≤ ζ ≤ A) has a unique boundary the fixed Lopp CX(−π)X(π) of Eq. (16). The

surface orientation tensor where it is defined is given by

Tµν(Xµ(σ, τ)) =
εab

√
2

∂aX
µ∂bX

ν

√
h

(18-b)

with h = det{hab} and hab(σ, τ) = ∂aX
µ∂bX

µ. Note that S possesses self-intersecting lines

such that Xµ(σ, τ) = Xµ(σ′, τ ′) with 0 < {τ, τ ′} < A has non-trivial self-intersecting lines

solutions. For τ = A = τ ′, Xµ(σ,A) = Cout
µ (σ) posseses solely simple isolated self-intersections

points (eights loops), however with T µν(Xα(σ,A))Tµν(Xβ(σ′, A)) = 0 for σ 6= σ′ (the Fermion

Exclusion Pauli Principle). Additionally we have introduced a set of single-valued intrinsic

Majorana 2D-spinors on the surface domain parameter D = {(σ, τ), 0 ≤ τ ≤ A; −π ≤ 0 ≤ τ}.
They are chosen to belong to a real representation of the flavor group O(22) since for this group

we have cancelled exactly the theory’s conformal anomaly (26 = 4 + 22), which in turn leads

to the vanishing of the kinetic term associated to the conformal factor ρ(σ, ζ) see Ref. [1]). We

further impose as a boundary condition on these Fermions the vanishing of the Fermion energy-

tensor projected on the Loop CX(−π),X(π) . Let us point out that the Weil symmetry makes sense

to speak in conformal anomaly in our theory Eq. (16) which preservation at quantum level by

its turn will determine the string flavor group to be the “String” Weinberg-Salam group O(22)

(see Ref. [1]).

Associated to the non-linear string’s theory Eq. (18) we consider the following Fermionic



CBPF-NF-006/09 6

propagator for a fixed string world sheet {Xµ(σ, τ)}

Zk`[CX(−π)X(π);Xµ(σ, ζ), A] =

∫
DF [ψk(σ, τ)](ψ(k)(−π,A)ψ̄(`)(π,A)

× exp

{
−
∫ A

0

dτ

∫ π

−π

dσ(ψ̄(k)(γ
a∂a)ψ(k))(σ, τ)

}
× exp

{
− β

2

∫ A

0

dτ

∫ π

−π

dσ

∫ A

0

dτ ′
∫ π

−π

dσ′(ψ̄(k)ψ(k))(σ, τ)

× T µν(Xα(σ, τ))δ(D)(Xα(σ, τ)−Xα(σ′, τ ′))Tµν(Xα(σ, τ ′))

}
. (19)

The basic idea of our string solution for QCD(U(Nc)) is a technical improvement of Ref.

[1] and consists in showing that the surface averaged propagator Eq. (19)

〈Zk`[CX(−π)X(π), Xµ(σ, τ), A]〉s = Gk`(CX(−π)X(π), A),

when integrated with respect to theA-parameter as in Eq. (15), now satisfies the full U(Nc) non-

linear Migdal-Makeenko Loop Equation (16) instead of the factorized Loop equations associated

to the T’Hooft limit Nc →∞.

The surface average 〈 〉, is defined by the free bosonic action piece of Eq. (18) as in Section

1. In this context we consider Gk`(CX(−π)X(π), A) as the non-linear string propagator describing

the “creation” of the Loop CX(−π)X(π) = Cout from the string vacuum, which is represented

here by a “collapsed” point - like string initial configuration C in ≡ (x) (x denotes an arbitrary

point of the surface which may be considered as such initial string configuration).

Let us thus, evaluate the A-derivative of G(CX(−π)X(π), A)

∂

∂A
〈Zk`(CX(−π)X(π), A〉s

=

∫
DF [Xµ(σ, τ)]

∫
DF [ψ(k)(σ, τ)] exp[(−S[Xµ(σ, τ), ψ(k)(σ, τ))]× ψ(k)(−π,A)ψ̄(`)(+π,A)

(−1)× ∂

∂A

{∫ A

0

dτ

∫ π

−π

dσ

[
1

2
(∂Xµ)2 + ψ̄(k)(γ

a∂s)ψ(k)

]
(σ, τ)

+
β

2

∫ a

0

dτ

∫ π

−π

dσ

∫ A

0

dτ ′
∫ π

−π

dσ′(ψ(k)ψ̄(k)(σ, τ)T
µν(Xα(σ, τ))

× δ(D)(Xα(σ, τ)−Xα(σ′, τ ′)Tµν(Xα(σ′, τ ′)

}
(20)

The free Bosonic term in the right-hand side of Eq. (20) leads to the string Laplacean as

in Eq. (4) of Section 1. The free Fermion term

lim
τ→A−

ψ̄(k)(σ, τ)(γ
a∂a)ψ(k)(σ, τ)
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vanishes as a consequence of our imposed vanished energy - momentum tensor boundary con-

ditions on the intrinsic Fermion field. The evaluation of the boundary limit on β-term requires

explicitly that the surface {Xµ(σ, τ)} does not possesses self-intersections of the type

Xµ(σ,A) = Cout
µ (σ) = Xµ(σ′, τ ′). The result of this boundary limit evaluation is given

explicitly by the expression below (Ref. [1] - Appendix B)∫
DF [Xµ(σ,A)]

∫
DF [ψk(σ, τ)]

{∫ π

−π

dσ

∫ π

−π

dσ′δ(D)(Xµ(σ)−Xµ(σ′)

}
× dXµ(σ)

da
· dX

µ(σ′)

da′

[
22∑

p=1

ψk(−π,A).ψ̄`(+π,A)× (ψp(σ, 0)ψ̄p(σ, 0))

]
exp(−S[Xµ(σ, τ), ψk(σ, τ)])

= β

∫ π

−π

do

∫ π

−π

dσ′δ(D)(Xµ(σ)−Xµ(o′)
dXµ(σ)

da
· dX

µ(σ′)

da′

× 〈Zkp[CX(−π)X(σ), Xµ(σ, τ)]× Zp`[CX(σ)X(π), Xµ(σ, τ), A]〉s (21)

Note that either crucial result below:

lim
ε→0
ε>0

[∫ A

0

dτ

∫ A

0

dτ ′
∫ σ−ε

−π

dξ

∫ π

σ+ε

dξ′[(ψ̄kψk)(ξ, τ)]Tµν(X(ξ, τ))×δ(D)(X(ξ, τ)−X(ξ′, τ ′))Tµν(X(ξ′, τ ′))

]
≡ 0,

(22-B)

since our orientation tensor strings world-sheet {X(ξ, τ)} is such that for ξ 6= ξ′ and ζ, ζ ′ ∈ [0, A]

Tµν(X(ξ, τ)) · Tµν(X(ξ′, τ ′)) ≡ 0 (22-C)

(these “string fixed-time” loop Xµ(ξ, ζ̂) ≡ e
(ζ̂)
µ (ξ) possesses solely simple isolated self-intersections points

(“eights” loops) where the non-trivial tangent lines at theses self-intersect points are supposed to be always

orthogonal to each other: Tµν(X(ξ, ζ))Tµν(X(ξ′, ζ)) ≡ 0 as a remnant of the Fermion Exclusion Pauli Principle

still acting for these bosonic pieces Cµ(ξ) of the full fermionic “quark trajectores”).
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22∑
p=1

∫  ∏
−π≤ξ≤π
0≤τ≤A

dψ(ξ, τ)

 exp

{∫ A

0

dτ

∫ π

−π

dξ(ψ̄k(γ
a∂a)ψk)(ξ, τ)

}

× exp

{
− β

2

∫ A

0

dτ

∫ A

0

dτ ′
∫ π

−π

dξ

∫ π

−π

dξ′(ψ̄kψk)(ξ, τ)Tµν(ξ, τ))

× δ(D)(Xα(ξ, τ)−Xα(ξ′, τ ′))T µν(X(ξ′, τ ′))

}
× (ψk(−π,A)ψ̄`(π,A)ψp(σ,A)ψ̄p(σ,A)

=
22∑

p=1

[ ∫  ∏
−π≤ξ<σ
0≤τ≤A

dψ(ξ, τ)

 exp

{∫ A

0

dτ

∫ σ

−π

× dξ(ψ̄k(γ
a∂a)ψk)(ξ, τ)

}
(ψk(−π,A)ψ̄p(σ,A))

× exp

{
− β

2

∫ A

0

dτ

∫ A

0

dτ ′
∫ σ

−π

dξ

∫ σ

−π

dξ′(ψ̄kψk)(ξ, τ)Tµν(X(ξ, τ))

× δ(D)(X(ξ, τ)−X(ξ′, τ ′))T µν(X(ξ′, τ ′))

}]

×
[ ∫  ∏

σ<ξ<π
0≤τ≤A

dψ(ξ, τ)

 exp

{∫ A

0

dτ

∫ π

σ

dξ(ψ̄k(γ
a∂a)ψk)(ξ, τ)

}

× exp

{
− β

∫ A

0

dτ

∫ A

0

dτ ′
∫ π

σ

dξ

∫ π

σ

dξ′(ψ̄kψk)(ξ, τ)Tµν(X(ξ, τ))

× δ(D)(X(ξ, τ)−X(ξ′, τ ′))T µν(X(ξ′, τ ′))

}
× (ψp(σ, 0)ψ̄`(π, 0))

]
(22)

and its unity normalization condition

Zpp[CX(σ)X(σ), Xµ(σ, ξ), A] = 1. (23)

By imposing the identification g2Nc = β between the QCD(U(Nc)) gauge coupling con-

stant and our non linear stgring theory described by Eq. (3) we obtain the identification

between the QCD(U(Nc)) Wilson Loop Eq. (17) and the surface averaged Fermion Propagator

Eq. (19)〈
Wk`[CX(−π)X(π), Aµ(x)]

〉
Yang Mills U(Nc)

=

∫ ∞

0

dA

〈
Zk`[Cx(−π′)X(π), Xµ(σ, ξ), A]

〉
s

. (24)
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The above equation is the main result of this note and generalizes to the case of U(Nc)

colour group our previous studies made for the T’Hooft limit of Ref. [1].

Finally we remark that by considering an ultra-violet cut-off on the space-time, ∆Xµ(σ, τ) ≥
1/Λ, our proposed self-avoiding string theory Eq. (18) in the case of non dynamical 2D-

Fermions (〈(ψkψ̄k〉 = µ = constant) produces the extrinsic string with the topological invariant

of string world-sheet self-intersection number as an effective string theory for the proposed

QCD string as conjectured in the first Ref. [5] (see Ref. [6] for this study and the enclosed

appendix).

Finally it is worth re-write eq. (19) in a form where appears an interaction with an external

white-noise Gaussian auxiliary anti-symetric tensor field as suggested in ref. [1]. Namely:

exp

{
−β

2

∫ A

0

dτ

∫ A

0

dτ ′
∫ π

−π

dξ

∫ π

−π

dτ(ψ̄(k)(ξ, τ)ψ(k)(ξ, τ))× T µν(Xα(ξ, τ))

}
× δ(D)(X(ξ, τ)−X(ξ′, τ ′))Tµν(Xβ(ξ′, τ ′)) =

=

∫
DFBµν(x) exp

{
−1

2

∫
B2

µν(x)d
Dx

}
× exp

{
i

∫
Bµν(x)J

µν(x, S)

}
(25)

with the dynamical string world-sheet current

Jµν(x, S) = β

∫ π

−π

dξ

∫ A

0

dτ T µν(X(ξ, τ))

(
22∑

p=1

ψ̄(p)ψ(p)

) 1
2

× δ(D)(x−X(ξ, τ))

 (26)
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APPENDIX A

A reduced covariant string model for the extrinsic string

Our aim in this appendix is very modest: we write a covariant action for the elastic string

and quantize in the Polyakov’s path integral framework a truncated version of the covariant

writen theory.

Let us start our study by considering the classical action for the elastic string in the con-

formal gauge.

S0 =
1

2πα′

∫
d2zρ+ γ

∫
d2zρ

[(
−1

ρ
∂2X

)2

+ i
λab

ρ
(∂aX∂bX − gab)

]
(1)

The string surface is described by X = X(z), where X is the surface vector position in D

Euclidean dimensionas; za (a = 1, 2) are the coordinates of the world sheet. The first term in eq.

(1) is the Nambu term with the string tension equal to 1/2πα. The second term is the square of

the extrinsic curvature with the rigidity coupling constant denoted by γ (γ = lim
Nc→∞

(g2Nc)!) and

λab(z) is a Lagrange multiplier which insures that the metric (gab) coincides with the intrinsic

metrics (∂aX∂bX).

Let us consider a covariant version of action eq. (1) by promoting ρ(z) = gab(z) to be a

dynamical field. This procedure yields the following action

S1[X)z), gab(z), λab(z)] =
1

2πα

∫
d2z

√
g

+

∫
d2z

√
g[γ(−∆gX)2 + iλab(gab − ∂aX∂bX)] (2)

Here
√
g(z) = Det(gab(z)) and −∆g = − 1√

g
∂a(g

ab∂b) is the Laplace-Beltrami operator

associated to the intrinsic metric gab(z).

In the Polyakov’s path integral quantization effective framework the partition functional for

the theory eq. (1) should be given by

Z =

∫
Dc[gab]D

c[X]Dc[λab]× exp−S1[X(z), gab(z), λab(z)] (3)

where the functional measures are the De-witt covariant functional measures ([1]).

Let us suppose that the constraint field in approximated by the intrinsic metric λab(z) =

〈λ〉gab(z). (The covariant version of the usual mean field approximation λab(z) = i〈λ〉δab with
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〈λ〉 a positive fixed value). As a consequence of this hypothesis we get the truncated theory

Z(T ) =

∫
Dc[gab]D

c[X] exp−S(T )[gab(z), X(z)] (4)

where the truncated action theory is written as

S(T )[gab, X] =
1

2πα′

∫
d2z
√
g(z) + γ

∫
d2z[(−∆gX)2]

+ 〈λ〉
∫
d2z

√
ggab∂aX∂bX + 〈λ〉

∫
d2z
√
g(z). (5)

For the evaluation of the X-functional integral in eq. (4) we consider the non-local variable

change

Xµ(z) = (−i(∆g)
1/2 ϑµ)(z) µ = 1, . . . , D.

Here −i(∆g)
−1/2 is a well defined self-adjoint (pseudo-differential) operator. The truncated

action takes the following form similar to a massive scalar field in the z domain:

S(T )[gab, ϑ] =

(
1

2πα′
− 〈λ〉

)∫
d2z

√
g + 2〈λ〉

∫
d2z

1

2
ϑ2 + 2γ

∫
d2z

1

2
(
√
gϑ(−∆g)ϑ)(z). (6)

The change in the (covariant) functional measure Dc[x] is given by

Dc[x] = (Det(−∆g)
−1)D/2 ×Dc]ϑ]. (7)

The main step in our calculation is to define the above written functional determinant as

Det−D/2(−∆g). By choosing the conformal gauge gab = eϕ δab and evaluating the covariant

Gaussian ϑ-functional integral we obtain the partial result ([1])

Z(T ) =

∫
D[ϑ] exp

(
−26−D

48π

∫ [
1

2
(∂aϕ)2 + µ2

R e
ϕ d2z

])
Det−D/2(−2γ∆g + 2〈λ〉) (8)

where

µ2
R = lim

ε→0

2−D

4πε
+

1

2πα
= 〈λ〉

may be though as a renormalization of the bare string thension 1/2πα′.

We analyze now the unrenormalized functional determinant

exp−SEFF [ϕ] = Det−D/2

(
−∆g +

〈λ〉
γ

)
.

By defining it by a propertime prescription we obtain the counterterms of the above written

action. Explicitly

SEFF [ϕ] = lim
ε→0

−D
2

∫ ∞

ε

dT

T
Tr

(
exp−T

(
−∆g +

〈λ〉
γ

))
. (9)
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Now it is well known that the counterterms of SEFF [ϕ] are determined by the asymptotic

expansion of the diagonal part of massive Laplace-Beltrami operator which is tabulated

lim
T→0

Tr

(
exp

(
−T

(
−∆g +

〈λ〉
γ

)))
=

∫
d2z

{
eϕ

2π
lim

T→0+

(
1

T

)
− 1

2π
∆ϕ+

1

2π
eϕ · 〈λ〉

γ

}
(z). (10)

By substituting eq. (10) in to eq. (9) we get straightforwardly the following counterterms

associated to the two-dimensional intrinsic “mass” 〈λ〉/γ

D

2
· 1

2π
· 〈λ〉
γ

lg

(
1

ε

)∫
d2z eϕ(z). (11)

So, on the basis of the counter term eq. (11) we have the following renormalization law for

the inverse of the rigidity β = 1/γ (by choosing 〈λ〉 = 1)

1

βR

=
1

β0

− D

2
· 1

2π
lg(ε). (12)

Eq. (12) yields the intrinsic two-dimensional momentum dependence of the running coupling

constant β.

βR(p2) = β0(p
2 = 0)/1− D

2

β0

2π
· lg
(
ε

p2

)
. (13)

It is instructive point out the D/2 factor in eq. (13) which appears in a natural way in our

calculations.

Since it is naively expected that the string perturbative phase p2-small (p ∈ R2) would cor-

responds to the underlying QCD field theory at its non-perturbative phase k2 → +∞ (k ∈ R4),

one can see that eq. (13) suggests a natural explanation from the QCD’s String Representation

for the “strange” QCD field theory description of the asymptotic behavior for the coupling

constant at large Nc , namely

lim
k2→∞

(
lim

Nc→∞
(g2Nc)ren(k

2)

)
= 0. (14)

As a general conclusion, one can see that still exists a great deal of not completely un-

derstood phenomena in QCD out of non-analytical field theoretic continuum aproaches-lattice

approximations.
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APPENDIX B

The Loop Space Program in the bosonic λφ4 −O(N)-field theory

and the QCD triviality for RD. D > 4

Let us start our study by considering the (bare) generating functional of the Green’s func-

tions of the O(N) (symmetric phase) λφ4 field theory in a D-dimensional Euclidean space-time

Z[Ja(x)] =

∫ N∏
a=1

dµ[Φa(x)] · exp

{
− λ0

4

∫
dDx

(
N∑

a=1

Φa(x)2

)2

(x)

−
∫
dD x

(
N∑

a=1

Ja(x)Φa(x)

)}
(1)

where Φa(x) denotes a N -component real scalar O(N) field, (µ0, λ0) the (bare) mass and cou-

pling parameters and the Gaussian functional measure in eq.(1) is

N∏
a=1

dµ[Φa(x)] =
N∏

a=1

[( ∏
x∈RD

dΦa(x)

)
exp

{
− 1

2

∫
dDx

(
N∑

a=1

(∂µΦa)

)2

(x)

+ µ2
0

N∑
a=1

(
Φa
)2

(x)

}
. (2)

Now, in order to get an effective expression for the functional integrand eq.(2), where we can

evaluate the Φa functional integrations, we write the intersection λφ4 term in the following form

exp

−λ0

4

∫
dDx

(
N∑

a=1

(
Φa(x)

)2)2
 =

∫
dµ[σ] · exp

{
−i
∫
dDx σ(x)

(
N∑

a=1

(
φa(x)

)2)}
(3)

where σ(x) is an auxiliary scalar field and the σ functional measure in eq.(3) is given by

dµ[σ] =

( ∏
x⊂RD

dσ(x)

)
exp

{
−1

2

∫
dDx

2

λ0

σ2(x)

}
(4)

with covariance

〈σ(x1)σ(x2)〉σ =

∫
dµ[σ]σ(x1)σ(x2) =

λ0

2
δ(D)(x1 − x2). (5)

The last result alows us to consider the δ(x) field as a random gaussian potential with noise’s

strenght
λ0

2
·
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After substitution of eq.(4) into eq.(2), we can evaluate explicitly the Φ-functional integra-

tions since they are of gaussian type. We, thus, get the result

Z[Ja(x)] =

∫
dµ[σ] Det−N/2(−∆ + µ2

0 − 2iσ)

exp

{
1

2

∫
dDx dDy Ja(x)(−∆ + µ2

0 − 2iσ)δab J
B(y)

}
. (6)

At this point of our study we implement the main idea: by following Symanzik’s analysis,

we express the σ-functionals integrands in eq.(6) as functional defined on the Feynman-Kac-

Wiener space of Random paths by making use of the well known random path representation

for the non-relativistic euclidean propagator of a particle of mass µ0 in the presence of the

external random guassian potential σ(x):

(−∆ + µ2
0 − 2iσ)−1(x, y) =

∫ ∞

0

dζ G(x, y, σ)(ζ) (7)

log Det(−∆ + µ2
0 − 2iσ) = −

∫ ∞

0

dζ

ζ

∫
dDxG(x, x, σ)(ζ) (8)

where the non-relativistic propagator is given by

G(x, y, σ)(ζ) =

∫
dµ{w(ζ)

xy } e
i

R
dD σ(z)j

(
w

(ζ)
wy(z)

)
(9)

with the Feynman-Kac-Wiener path measure

dµ
[
w(ζ)

xy

]
= (Πdw[α])

0<α<ζ
w(0)=x
w(0)=y

exp

{
−1

2

∫ ζ

0

(
dw

dα

)2

− 1

2
µ2

0ζ

}
(10)

ane the (random) world-line currents defined by

j
(
w(ζ)

xy

)
(z) =

∫ ζ

0

δD
(
z − w(ζ)

xy (α)
)
dα. (11)

So, we obtain the proposed reformulation of λφ4O(N)-theory as a theory of random paths{
w

(ζ)
xy (α)

}
in the presence of a random gaussian potential

Z[Ja(x)] =

∫
dµ[σ] · exp

{
N

2

∫ ∞

0

dζ

ζ

∫
dDx

∫
dµ
[
w(ζ)

xx

]
exp

(
i

∫
dDz σ(z)j

(
w(ζ)

xx

)
(z)

)}
exp

{
1

2

∫
dDxDy

N∑
s=1

Ja(x)

[ ∫ ∞

0

dζ

∫
dµ
[
w(ζ)

xy

]
exp

(
i

∫
dDz σ(z)j

(
w(ζ)

wy

)]
δab · Jb(y)

}
(12)
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We shall use the random path formulation eq.(12) to analyse the correlation functions of

the λφ4 theory. As a useful remark, we note by using eq.(12) that the general k-point (bare)

correlation function possesses the general structure

〈Φi1(x1) . . .Φik(xk)〉Φ =
0 if k = 2j + 1∑
(2j+1)

〈Φi1(x`1)Φi2(x`2)〉Φ . . . 〈Φik−1
(x`2j−1

)Φik(x`2j
)〉Φ

`− pairings if k = 2j

(13)

where the quantum averages 〈 〉Φ in eq.(13) are defined by the λφ4 partition functional Z[0]

(see eq.(1) with Ja(x) ≡ 0).

Because of this result, we have solely to study the properties of the 2-point correlation

function

〈Φi1(x1)Φi2(x2)〉Φ = δi1i2〈
∫ ∞

0

dζ dµ
[
w(ζ)

x1x1

]
· exp

{
i

∫
dDz σ(z) · j

(
wζ)

x1x2

)
(z)

}
exp

{
N

2

∫ ∞

0

dζ

ζ

∫
dDx

∫
dµ
[
x(ζ)

xx

]
· exp

[
i

∫
dDz σ(z)j

(
x(ζ)

xx (z)
)]}

〉σ (14)

Let us evaluate the σ-functional averages 〈 〉σ in eq.(14) (see eq.(4) and eq.(5)). For this

task we expand the “close path term” in powers of N . Explicitly

〈Φi1(x)Φi2(y)〉 = δi1i2

∞∑
k=0

(
N

2

){ k∏
`=1

∫ ∞

0

dζ`
ζ`

∫
dDx`∫

dµ
[
w(ζ`

x`x`

]
·
∫ ∞

0

dζ ·
∫
dµ
[
w(ζ)

xy

]}
· 〈exp

{
i
∑
`=1

k

∫
dDz` σ(z`) · j

(
w(ζ`)

x`x`

)
(z`)

+ i

∫
dD σ(z)j

(
w(ζ)

xy

)
(z)

}
〉 (15)

and since the σ-average in eq.(15) is of the gaussian type we can perform it exactly. The result
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reads:

〈Φi1(x)Φi2(y)〉 = δi1i2

∞∑
k=0

(
N

2

){ k∏
`=1

∫ ∞

0

dζ`
ζ`

∫
dDx`

∫
dDx`

∫
dµ
[
w(ζ`)

x`x`

]
∫ ∞

0

dζ ·
∫
dµ
[
w(ζ)

xy

]
· exp

{
− λ

4

[(
2 ·

k∑
` 6=`′

∫ ζ`

0

dα` ·
∫ ζ`′

0

dα`′ · δ(D)
(
w(ζ`)

x`x`
(α`)− w(ζ`′ )

x`′x`′
(α`′)

)
+

(
k∑

`=`′

∫ ζ`

0

dα`

∫ ζ`

0

δ(D)
(
w(ζ`)

x`x`
(α`)− w(ζ`)

x`x`
(α`′)

))

+

(
2 ·

k∑
`=1

∫ ζ`

0

dα` ·
∫ ζ

0

dα δ(D)
(
w(ζ`

x`x`
(α`))− w(ζ)

xy (α)− w(ζ)
xy (α))

))

+

(∫ ζ

0

dα

∫ ζ

0

dα′ δ(D)
(
w(ζ)

xy (α)− w(ζ)
xy (α1)

)]}
. (16)

The above expression is the two-point correlation function of the λΦ4 − O(N)-theory ex-

pressed as a system of interacting random paths with a repulsive self-interaction at these points

where they crosses themselves.

Now we can offer a topological explanation for the theory triviality phenomenon for D > 4.

At first, we note that the correlation function eq.(17) will differ from the free one, namely

〈Φi1(x)Φi2(y)〉FREE = δi1i2

(∫ ∞

0

dζdµ
[
w(ζ)

xy

])
(17)

if the path intersections implyed by the delta functions in eq.(16) are non-empty sets in the RD

space-time. We intend to argument that those intersection sets are empty for space-time with

dimensionality greater than four. At first we recall some well-known concepts of topology: the

topological Hausdorff dimension of a set A embedded in RD is d (with d being a real number)

if the minimum number of D-dimensional spheres of radius γ needed to cover it, grow like γ−d

when r → 0. The rule for (generical) intersections for sets A and B (both are embeddeds in

RD) is given by

d(A ∩B) = d(A) + d(B)−D (18)

where a negative Hausdorff dimension means no (generical) intersection or equivalently the set

A ∩B is empty.

As is well know the Hausdorff dimension of the random paths in eq.(16) is 2. A direct

application of the rule eq.(18) gives us that the intersection sets in eq.(16) possesses a Hausdorff

dimension 4−D. So, for D > 4 these sets are empty and leading to the triviality phenomenon

(see eq.(17)).
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Finally we make some comments on the analyses of the divergencies in the random path

expression eq.(16) for D ≤ 4. As a first observation we note that all the path inegrals involved

in eq.(16) can be exactly evaluated by making a power series in λ0 . The resulting proper-

times ζ integrals will in general be divergents. By using a regularization (such as a cut off for

small proper-times) one can show that the divergencies can be absorbed by a renormalization

of the bare mass µ0 and the action path term in eq.(16) (or equivalently, a wave-function and

λ0-coupling renormalization in the field formulation eq.(1)).

At this point of our remarks and comments, it is worth to point out that there is no simple

relation between our random loop space approach for QCD where the loop defining the string

world-sheet boundary is a non-differentiable path and representing rigorously the functional

determinant associated to the matter content E [this means that there is no pure Yang-Mills

quantum theory without matters source in our approach (no rings of Gluons!)]; and others

approach based on suitable supersymmetric σ-models formulations for conformal superstrings

moving in non quantum back-grounds (see E.S. Fradkin and A.A. Tseytlin, PLB ISS, 316,

(1981) and M. Maldacena, Phys. Rev. Lett 80, 4859, (1988)). Note that in this case there is

still no true derivation of this string/gauge field duality from first principles.

In our string representation for Bosonic QCD as we have proposed in this note, one can see

that the Hausdorff dimension of the continuous manifolds sampled by the (euclidean) quantum

string vector position is four (a very rough Brownion Bosonic Surface filling up any four-volume

in R4). However, it is expected that the Hausdorff dimension of the manifold sampled by the

2D-Fermion Field should be minus two. Combining these results one can see that the effective

Hausdorff dimension of the QCD string world-sheet is two, so allowing one applies all concepts

of classical smooth Differential Topology and Geometry. If all these results turn out to be

rigorous, one can see that our self-avoiding fermionic string representation gives a “proof” that

QCD(U(Nc)) should be expected to be a trivial quantum field theory (with on infrared cut

off!) for space-times dimension greater than four.

Finally, we should remark that our proposal for string representations in QCD has no

apparent overlap with those proposals relying heavily in the existence of the string Liouville

field theory as a bonafide 2D Field Theory as proposed in S.S. Gibson, I.R. Klebanov and

A.M. Polyakov “Gauge Theory Correlators from Non-Critical String Theory - arXiv: hep-

th/980210902; even if they can be interpetred as an extra (unphysical) five dimension coordinate

after some conformal impositions in the non-critical string theory.

It appears interesting to remark that these Kaluza-Klein string representatoins for N = 4
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Supersymmetric QCD may be considered as “modern/geometrical/topological” version of the

old beautiful result in String Theory that Strings with U(N) Chan-Paton factors leads formally

to Massless and Massive Yang-Mills scattering amplitude in its low energy limit of vanishing

Regge Sloppe limit (Luiz C.L. Botelho - PRD35,4,1515/1518 (1987).


