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Abstract

In this paper we review some recent developments in the understanding of the supersym-
metric quantum mechanics for large-N values of the extended supersymmetries. A list of the
topics here covered includes the new available classification of the finite linear irreducible rep-
resentations, the construction of manifestly off-shell invariant actions without introducing a
superfield formalism, the notion of the “fusion algebra” of the irreducible representations, the
connection (for N = 8) with the octonionic structure constants, etc. The results presented
are based on the work of the author and his collaborators.

1 Introduction

The supersymmetric quantum mechanics is a more than twentyfive years old topic [1] with

fascinating mathematical (Morse theory, index theorems) and physical (nuclear physics, con-

densed matter [2, 3]) applications. In the recent years several groups have investigated, see

e.g. [4, 5, 6, 7, 8, 9, 10, 11, 12], with different methods and focusing on various interrelated

aspects, one-dimensional large-N supersymmetric quantum mechanical systems (N denotes the

number of the extended supersymmetries). The main motivation behind this activity is traced

on the problem of understanding the supersymmetric unification of the interactions. Indeed, the

11-dimensional maximal supergravity (the low-energy limit of the conjectured M -theory), when
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dimensionally reduced to D = 1, produces an N = 32 supersymmetric quantum mechanical

system. It seems unlikely that any progress towards the understanding of the M -theory could

be made if we do not comprehend the features of its one-dimensional setting. An example for

all: the construction of an off-shell invariant action (in comparison with the on-shell action). In

this paper we review the results obtained by the author and his collaborators in a very recent

series of works [13, 14, 15, 16]. They deal with very fundamental properties of the algebra of

the supersymmetric quantum mechanics and its representation theory. The list of the topics

here discussed includes, in order, the introduction of the algebra of the one-dimensional N -

extended supersymmetric quantum mechanic as a fundamental mathematical structure allowing

to “interpolate” between Clifford and Grassmann algebras. Next, the finite linear irreducible

representations will be classified, both in terms of the dimensionality of the fields (bosonic and

fermionic) entering the irreducible multiplets, as well as the graphical properties of the super-

symmetry transformations. The results will be applied to construct manifestly supersymmetric

off-shell invariant actions without introducing the superfield formalism. The N = 4 cases and a

non-trivial N = 8 example where the octonionic structure constants enter the action as coupling

constants will be presented. The fusion algebra of the irreducible representations of the super-

symmetric quantum mechanics will be introduced and explicitly computed forN = 2. It contains

information concerning the construction of off-shell invariant actions. For what concerns vari-

ous other important aspects of the present activity on supersymmetric quantum mechanis (for

instance, the investigations concerning its non-linear realizations) which are not covered here,

reviews are available (see e.g. [17, 18]).

2 The D = 1 N-extended supersymmetry algebra

The algebra of the one-dimensional N -extended supersymmetry (from now on the “N -susy

algebra”) is a Z2-graded algebra presenting a total number of N odd generators Qi (i = 1, . . . , N)

and a single even generator, a central extension z. The N -susy algebra is defined by the (anti-

)commutation relations

{Qi, Qj} = δijz,

[Qi, z] = 0 (1)

The central extension z plays an important role. In physics it is usually denoted with “H” and

called the hamiltonian.

The mathematical importance of the above algebra (which is, technically, not a simple super-

Lie algebra due to the presence of the central extension) can be understood by the following

reasoning. In formulating for the hamiltonian H an eigenvalue problem, we are led with two

possibilities. Either the eigenvalue is zero, in the case of a vacuum solution, or it is a positive real

number. In the first case we are reduced with the Grassmann algebra, which is the enveloping
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algebra generated by the N generators θi (i = 1, . . . , N) satisfying the relations

θiθj + θjθi = 0 (2)

for any i, j pair.

In the second case, for a fixed z > 0, after a suitable rescaling of the odd generators Qi’s, we

are led to the fundamental relation among the generators γi (i = 1, . . . , N) of the N -dimensional

Euclidean Clifford algebra, namely

γiγj + γjγi = 2δij1. (3)

In a loose sense we can say that the supersymmetric quantum mechanics interpolates between

the Grassmann algebra and the Clifford algebra. The above remark makes transparent the deep

connection between the supersymmetric quantum mechanics and the irreducible representations

of the Clifford algebra. It is not surprising that the linear finite irreducible representation of

the N -susy algebra are classified with the help of the Clifford irreps. On the other hand, the

N -susy irreps contain more information. The hamiltonian H acts as a time-derivative(H ≡ i ddt).

The finite linear irreps of (1) consist of an equal finite number n of bosonic and fermionic fields

(depending on a single coordinate t, the time) upon which the supersymmetry operators act

linearly.

The time-derivative can now be used to introduce a grading, corresponding to the mass-

dimension, to the fields entering the irreps. This is the crucial difference between irreps of the

N -susy algebra and the Clifford irreps. In [13] it was proven that all (1) irreps fall into classes of

equivalence determined by the irreps of an associated Clifford algebra. As one of the corollaries,

a relation between n (the total number of bosonic, or fermionic, fields entering the irrep) and

the value N of the extended supersymmetry was established.

A dimensionality di = d1 + i−1
2 (d1 is an arbitrary constant) can be assigned to the fields

entering an irrep. The difference in dimensionality between a given bosonic and a given fermionic

field is a half-integer number. The fields content of an irrep is the set of integers (n1, n2, . . . , nl)

specifying the number ni of fields of dimension di entering the irrep. Physically, the nl fields

of highest dimension are the auxiliary fields which transform as a time-derivative under any

supersymmetry generator. The maximal value l (corresponding to the maximal dimensionality

dl) is known as the length of the irrep. Either n1, n3, . . . correspond to the bosonic fields

(therefore n2, n4, . . . specify the fermionic fields) or viceversa. In both cases the equality n1+n3+

. . . = n2+n4+. . . = n is guaranteed. A multiplet is bosonic (fermionic) if its n1 component fields

of lower dimensions are bosonic (fermionic). The representation theory does not discriminate

the overall bosonic or fermionic nature of the multiplet.
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3 Irreducible representations: the classification based on the

fields-dimensions

There is a well-known relation between extended supersymmetries (for the values N = 1, 2, 4, 8)

and the division algebras of the real, complex, quaternionic and octonionic numbers.

For the one-dimensional supersymmetry this relation can be understood in terms of the

connection of the (1) N -susy algebra with the Clifford algebras. Clifford algebras irreps are

infact classified in terms of division algebras [19, 20, 21] and, some of their specific properties,

like the Bott’s 8 periodicity, are in consequence of the octonions. The finite linear irreps of the

(1) algebra are given by multiplets of fields discussed in the previous section.

A fundamental problem in the classification of the irreducible representations consists in

determining, for any given N , the set of admissible ordered integers

(n1, n2, n3, . . . , nl)

which correspond to irreducible multiplets with ni fields of dimension di. An equivalence relation

can be introduced s.t. all such multiplets specify one and only one irrep in the given class [16].

This classification was presented in [14]. For N ≤ 10 the computations were explicitly carried

on. The admissible multiplets, for a given N , are recovered from the “root multiplets” of type

(n, n), which carry a representation of the N -susy algebra expressed by the generators

Qi =
1√
2

⎛
⎝ 0 σi

σ̃i ·H 0

⎞
⎠ (4)

where the σi and σ̃i are matrices entering a Weyl type (i.e. block antidiagonal) irreducible

representation of a D-dimensional (with D = N) Clifford algebra relation

Γi =

⎛
⎝ 0 σi

σ̃i 0

⎞
⎠ , {Γi,Γj} = 2δij (5)

The Qi’s in (4) are supermatrices with vanishing bosonic and non-vanishing fermionic blocks.

The total number 2n of bosonic plus fermionic fields entering a multiplet is given by the size of

the corresponding gamma matrices. The remaining multiplets, for l ≥ 3, are obtained through

a “dressing procedure”, see [13], obtained by repeated applications of the transformations,

Qi �→ Q̂
(k)
i = S(k)QiS

(k)−1
(6)

realized by diagonal matrices S(k)’s (k = 1, . . . , 2n) with entries s(k)ij given by

s(k)ij = δij(1 − δjk + δjkH) (7)

The “dressed” supersymmetric operators Q̂i have entries with integral powers of the hamiltonian

H. On the other hand, only the regular dressed operators, admitting no entries with poles 1
H , are
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genuine supersymmetry operators, linearly acting on a finite multiplet of bosonic and fermionic

fields.

For irreps of the N -extended supersymmetry the total number of bosonic (fermionic) fields

is given by n, with N and n linked through

N = 8p+ q,

n = 24pG(q), (8)

where p = 0, 1, 2, . . . and q = 1, 2, 3, 4, 5, 6, 7, 8. G(q) appearing in (8) is the Radon-Hurwitz

function [13]

q 1 2 3 4 5 6 7 8

G(q) 1 2 4 4 8 8 8 8

(9)

Notice the appearance of the modulo 8 Bott’s periodicity.

We present now the [14] classification of the admissible multiplets. For any N , all length-3

multiplets of the type (n−k, n, k) are an irrep of the N -susy. On the other hand, length-4 irreps

exist for N = 3, 5, 6, 7 and N ≥ 9, while length-5 irreps are present starting from N ≥ 10.
Up to N = 8, the list of length-4 irreps is, e.g., given by the multiplets

N = 3 (1, 3, 3, 1)

N = 5 (1, 5, 7, 3), (3, 7, 5, 1), (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)

N = 6 (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)

N = 7 (1, 7, 7, 1)

(10)

For N = 9 there are 28 length-4 irreducible multiplets given by the set of numbers

(h, 16 − k, 16 − h, k),

with h, k constrained to satisfy

h+ k ≤ 8.

For N = 10 the length-4 irreducible multiplets are given by the set of values

(h, 32 − k, 32 − h, k),

where the integers h, k are constrained to satisfy

h+ k + r ≤ 24,

with r given by

r = min(h, k).
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The classification of the N = 10 length-5 irreps and the length-4 irreps of the N = 11, 12

extended supersymmetries are found in [14].

Some properties of the classification of the irreps are easily recognized. For instance, a dual

multiplet specified by the “reversed” numbers

(nk, nk−1, . . . , n1) is an irreducible multiplet iff (n1, n2, . . . , nk) is an irrep.

4 Irreducible representation: the classification of the different

connectivities of the supersymmetry transformations

Quite recently it has been pointed out in [11, 12] that certain irreps admitting the same field

content can be regarded as inequivalent. These results were obtained by analyzing the “con-

nectivity properties” of certain graphs associated to the irreps. A notion of equivalence class

among irreps (spotting their difference in “connectivity”) was introduced. In [12], two examples

were explicitly presented. They involved a pair of N = 6 irreps with (6, 8, 2) fields content and

a pair of N = 5 irreps with (6, 8, 2) fields content. In [12] the classification of the irreps which

differ by connectivity was left as an open problem.

Using the technology developed in [14], in [15] the connectivity properties of the N ≤ 8 irreps

were classified. For length-3 irreps the connectivities can be expressed by the ψg symbol defined

below. Any given field of dimension d is mapped, under a supersymmetry transformation, either

a) to a field of dimension d+ 1
2 belonging to the multiplet (or to its opposite, the sign of the

transformation being irrelevant for our purposes) or,

b) to the time-derivative of a field of dimension d− 1
2 .

If the given field belongs to an irrep of the N -extended (1) supersymmetry algebra, therefore

k ≤ N of its transformations are of type a), while the N−k remaining ones are of type b). Let us

now specialize our discussion to a length-3 irrep. Its fields content is given by (n1, n, n−n1), while

the set of its fields is expressed by (xi;ψj ; gk), with i = 1, . . . , n1, j = 1, . . . , n, k = 1, . . . , n−n1.

The xi’s are 0-dimensional fields (the ψj are 1
2 -dimensional and the gk 1-dimensional fields,

respectively). The connectivity associated to the given multiplet is defined in terms of the ψg
symbol. It encodes the following information. The n 1

2 -dimensional fields ψj are partitioned

in the subsets of mr fields admitting kr supersymmetry transformations of type a). We have∑
rmr = n. Please notice that kr can take the 0 value. The ψg symbol is expressed as

ψg ≡ m1k1 +m2k2 + . . . (11)

As an example, the N = 7 (6, 8, 2) multiplet admits connectivity ψg = 62 + 21. It means that

there are two types of fields ψj . 6 of them are mapped, under supersymmetry transformations,

in the two auxiliary fields gk. The two remaining fields ψj are only mapped into a single auxiliary

field.
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Please notice that an analogous symbol, xψ, can be introduced. It describes the supersym-

metry transformations of the xi fields into the ψj fields. This symbol is, however, always trivial.

An N -irrep with (n1, n, n− n1) fields content always produce xψ ≡ n1N .
We report here the results of [15]. It was proven that the only values of N ≤ 8 allowing the

existence of multiplets with the same field content but inequivalent connectivities are N = 5
and N = 6. Moreover, the connectivity can be defined for multiplets of any length, however
only length-3 multiplets admit inequivalent connectivities (each given multiplet of length-2 and
length-4, for N ≤ 8, is connected in only one possible way). The following table presents the
admissible ψg symbols (connectivities) for the N = 5 and N = 6 length-3 multiplets. We have

N = 6 N = 5

l = 3 ↙ ↘ ↙ ↘
N = 6A N = 6B N = 5A N = 5B

(7, 8, 1) 61 + 20 51 + 30

(6, 8, 2) 62 + 20 − 42 + 41 42 + 21 + 20 − 22 + 61

(5, 8, 3) 43 + 22 + 21 − 23 + 62 43 + 31 + 10 − 13 + 52 + 21

(4, 8, 4) 44 + 42 − 83 44 + 41 − 43 + 42

(3, 8, 5) 25 + 24 + 43 − 64 + 23 15 + 34 + 42 − 24 + 53 + 12

(2, 8, 6) 26 + 64 − 45 + 44 25 + 24 + 43 − 64 + 23

(1, 8, 7) 26 + 65 35 + 54

(12)

The (7, 8, 1) and (1, 8, 7) length-3 multiplets are connected in one possible way only. In the

remaining length-3 cases, the multiplets are connected in two ways, specified by the ψg symbol.

They are labeled with the subscript A and B, respectively.

The above result provides the complete classification of the N ≤ 8 irreps admitting inequiv-

alent connectivities. The result is also interesting because it produces a counterexample to the

[12] claim that different connectivities can be uniquely spotted by (for length-3 multiplets) two

sets of three ordered numbers, S = [s1, s2, s3] and T = [t1, t2, t3], known as the “sources” and

“targets” respectively. The integer si gives the number of fields of dimension di = i−1
2 which do

not result as an

a )-supersymmetry transformation of at least one field of dimension di− 1
2 . The integer ti gives

the number of fields of dimension di = i−1
2 which only admit supersymmetry transformations of

type b).

Sources and targets can be computed in terms of the ψg symbols of the original (k, n, n− k)

multiplet and its dually related (n − k, n, k) partner. Sources and targets are given by the
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following tables. For N = 6 we have

N = 6 : connectivities sources targets

(6, 8, 2)A 62 + 20 S = [6, 0, 0] T = [0, 2, 2]

(6, 8, 2)B 42 + 41 S = [6, 0, 0] T = [0, 0, 2]

(5, 8, 3)A 43 + 22 + 21 S = [5, 0, 0] T = [0, 0, 3]

(5, 8, 3)B 23 + 62 S = [5, 0, 0] T = [0, 0, 3]

(4, 8, 4)A 44 + 42 S = [4, 0, 0] T = [0, 0, 4]

(4, 8, 4)B 83 S = [4, 0, 0] T = [0, 0, 4]

(3, 8, 5)A 25 + 24 + 43 S = [3, 0, 0] T = [0, 0, 5]

(3, 8, 5)B 64 + 23 S = [3, 0, 0] T = [0, 0, 5]

(2, 8, 6)A 26 + 64 S = [2, 2, 0] T = [0, 0, 6]

(2, 8, 6)B 45 + 44 S = [2, 0, 0] T = [0, 0, 6]

(13)

For N = 5 we have

N = 5 : connectivities sources targets

(6, 8, 2)A 42 + 21 + 20 S = [6, 0, 0] T = [0, 2, 2]

(6, 8, 2)B 22 + 61 S = [6, 0, 0] T = [0, 0, 2]

(5, 8, 3)A 43 + 31 + 10 S = [5, 0, 0] T = [0, 1, 3]

(5, 8, 3)B 13 + 52 + 21 S = [5, 0, 0] T = [0, 0, 3]

(4, 8, 4)A 44 + 41 S = [4, 0, 0] T = [0, 0, 4]

(4, 8, 4)B 43 + 42 S = [4, 0, 0] T = [0, 0, 4]

(3, 8, 5)A 15 + 34 + 42 S = [3, 1, 0] T = [0, 0, 5]

(3, 8, 5)B 24 + 53 + 12 S = [3, 0, 0] T = [0, 0, 5]

(2, 8, 6)A 25 + 24 + 43 S = [2, 2, 0] T = [0, 0, 6]

(2, 8, 6)B 64 + 23 S = [2, 0, 0] T = [0, 0, 6]

(14)

The following irreps differ by connectivity, while admitting the same number of sources and

targets:

N = 6 : (3, 8, 5)A ↔ (3, 8, 5)B

N = 6 : (4, 8, 4)A ↔ (4, 8, 4)B

N = 6 : (5, 8, 3)A ↔ (5, 8, 3)B

N = 5 : (4, 8, 4)A ↔ (4, 8, 4)B (15)

It is useful to explicitly present the supersymmetry transformations (depending on the εi global

fermionic parameters) in at least one case. We write below the unique pair of N = 5 irreps

(the (4, 8, 4)A and the (4, 8, 4)B multiplets) differing by connectivity, while admitting the same

number of sources and the same number of targets.

The supersymmetry transformations are given by
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i) The N = 5 (4, 8, 4)A transformations:

δx1 = ε2ψ3 + ε4ψ5 + ε3ψ6 + ε1ψ7 + ε5ψ8

δx2 = ε2ψ4 + ε3ψ5 − ε4ψ6 − ε5ψ7 + ε1ψ8

δx3 = −ε2ψ1 − ε1ψ5 − ε5ψ6 + ε4ψ7 + ε3ψ8

δx4 = −ε2ψ2 + ε5ψ5 − ε1ψ6 + ε3ψ7 − ε4ψ8

δψ1 = −iε2ẋ3 − ε4g1 − ε3g2 − ε1g3 − ε5g4

δψ2 = −iε2ẋ4 − ε3g1 + ε4g2 + ε5g3 − ε1g4

δψ3 = iε2ẋ1 + ε1g1 + ε5g2 − ε4g3 − ε3g4

δψ4 = iε2ẋ2 − ε5g1 + ε1g2 − ε3g3 + ε4g4

δψ5 = iε4ẋ1 + iε3ẋ2 − iε1ẋ3 + iε5ẋ4 + ε2g3

δψ6 = iε3ẋ1 − iε4ẋ2 − iε5ẋ3 − iε1ẋ4 + ε2g4

δψ7 = iε1ẋ1 − iε5ẋ2 + iε4ẋ3 + iε3ẋ4 − ε2g1

δψ8 = iε5ẋ1 + iε1ẋ2 + iε3ẋ3 − iε4ẋ4 − ε2g2

δg1 = −iε4ψ̇1 − iε3ψ̇2 + iε1ψ̇3 − iε5ψ̇4 − iε2ψ̇7

δg2 = −iε3ψ̇1 + iε4ψ̇2 + iε5ψ̇3 + iε1ψ̇4 − iε2ψ̇8

δg3 = −iε1ψ̇1 + iε5ψ̇2 − iε4ψ̇3 − iε3ψ̇4 + iε2ψ̇5

δg4 = −iε5ψ̇1 − iε1ψ̇2 − iε3ψ̇3 + iε4ψ̇4 + iε2ψ̇6 (16)

ii) The N = 5 (4, 8, 4)B transformations:

δx1 = ε5ψ2 + ε2ψ3 + ε4ψ5 + ε3ψ6 + ε1ψ7

δx2 = −ε5ψ1 + ε2ψ4 + ε3ψ5 − ε4ψ6 + ε1ψ8

δx3 = −ε2ψ1 − ε5ψ4 − ε1ψ5 + ε4ψ7 + ε3ψ8

δx4 = −ε2ψ2 + ε5ψ3 − ε1ψ6 + ε3ψ7 − ε4ψ8

δψ1 = −iε5ẋ2 − iε2ẋ3 − ε4g1 − ε3g2 − ε1g3

δψ2 = iε5ẋ1 − iε2ẋ4 − ε3g1 + ε4g2 − ε1g4

δψ3 = iε2ẋ1 + iε5ẋ4 + ε1g1 − ε4g3 − ε3g4

δψ4 = iε2ẋ2 − iε5ẋ3 + ε1g2 − ε3g3 + ε4g4

δψ5 = iε4ẋ1 + iε3ẋ2 − iε1ẋ3 − ε5g2 + ε2g3

δψ6 = iε3ẋ1 − iε4ẋ2 − iε1ẋ4 + ε5g1 + ε2g4

δψ7 = iε1ẋ1 + iε4ẋ3 + iε3ẋ4 − ε2g1 + ε5g4

δψ8 = iε1ẋ2 + iε3ẋ3 − iε4ẋ4 − ε2g2 − ε5g3

δg1 = −iε4ψ̇1 − iε3ψ̇2 + iε1ψ̇3 + iε5ψ̇6 − iε2ψ̇7
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δg2 = −iε3ψ̇1 + iε4ψ̇2 + iε1ψ̇4 − iε5ψ̇5 − iε2ψ̇8

δg3 = −iε1ψ̇1 − iε4ψ̇3 − iε3ψ̇4 + iε2ψ̇5 − iε5ψ̇8

δg4 = −iε1ψ̇2 − iε3ψ̇3 + iε4ψ̇4 + iε2ψ̇6 + iε5ψ̇7 (17)

5 The N = 4 off-shell invariant actions

We show here how to use the knowledge of the irreducible representations of the supersymmetry

in order to produce manifestly off-shell invariant actions without introducing the superfield

formalism. We discuss the N = 4 case, because in this case the lagrangians entering the off-shell

invariant actions have the correct d = 2 mass-dimension of a kinetic term. We remember that

N = 4 admits four irreps, given by the (4, 4), (3, 4, 1), (2, 4, 2) and (1, 4, 3) multiplets. The

lowest-dimensional fields are assumed to have 0 dimension. They correspond, physically, to

coordinates of a target manifold whose dimension is given, respectively, by 4, 3, 2 and 1.

We construct the associated invariants using the fact that the supersymmetry generators

Qi’s act as graded Leibniz derivatives. Manifestly invariant actions S of the N -extended super-

symmetry can be obtained by expressing them as

S =
∫
dt (Q1 · . . . ·QNf(x1, x2, . . . , xk)) (18)

with the supersymmetry transformations applied to an arbitrary function of the 0-dimensional

fields xi’s, i = 1, . . . , k entering an irreducible multiplet. It is only for N = 4 that the manifestly

supersymmetric lagrangian density has the correct dimension of a kinetic term (the supersym-

metry generators, the “square roots” of the hamiltonian, have mass-dimension d = 1
2).

The k variables xi’s can be regarded as a coordinates of a k-dimensional manifold. The

corresponding actions can therefore be seen as N = 4 supersymmetric one-dimensional sigma

models evolving in a k-dimensional target manifold. For each N = 4 irrep we get the following

results. In all cases below the arbitrary α(xi) function is given by α = ∇f(xi). We get

i) The N = 4 (4, 4) case:

Qi(x, xj ;ψ,ψj) = (−ψi, δijψ − εijkψk; ẋi,−δij ẋ+ εijkẋk)

Q4(x, xj ;ψ,ψj) = (ψ,ψj ; ẋ, ẋj) (19)

The most general invariant lagrangian L of dimension d = 2 is given by

L = α(	x)[ẋ2 + ẋ2
j − ψψ̇ − ψjψ̇j ] +

∂xα[ψψj ẋj − 1
2
εijkψiψj ẋk] +

∂lα[ψlψẋ+ ψlψj ẋj +
1
2
εljkψjψkẋ− εljkψj ẋkψ] −

−∇α1
6
εljkψψlψkψk (20)
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ii) The N = 4 (3, 4, 1) case:

Qi(xj;ψ,ψj ; g) = (δijψ − εijkψk; ẋi;−δijg + εijkẋk;−ψ̇i)
Q4(xj ;ψ,ψj ; gj) = (ψj ; g, ẋj ; ψ̇)

(21)

The most general invariant lagrangian L of dimension d = 2 is given by

L = α(	x)[ẋ2
j + g2 − ψψ̇ − ψjψ̇j ] +

∂iα[εijk(ψψj ẋk +
1
2
gψjψk) − gψψi + ψiψj ẋj] −

−∇α
6
εijkψψiψjψk (22)

iii) The N = 4 (2, 4, 2) case:

Q1(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (ψ0, ψ3; ẋ,−g, h,−ẏ;−ψ̇1, ψ̇2)

Q2(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (ψ3, ψ0; ẏ,−h,−g, ẋ;−ψ̇2,−ψ̇1)

Q3(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (−ψ2, ψ1;h, ẏ − ẋ,−g;−ψ̇3, ψ̇0)

Q4(x, y;ψ0, ψ1ψ2, ψ3; g, h) = (ψ1, ψ2; g, ẋ, ẏ, h; ψ̇0, ψ̇3) (23)

The most general invariant lagrangian L of dimension d = 2 is given by

L = α(x, y)[ẋ2 + ẏ2 + g2 + h2 − ψψ̇ − ψjψ̇j ] +

∂xα[ẏ(ψ1ψ2 − ψ0ψ3) + g(ψ2ψ3 − ψ0ψ1) + h(ψ1ψ3 + ψ0ψ2)] +

∂yα[−ẋ(ψ1ψ2 − ψ0ψ3) − g(ψ1ψ3 + ψ0ψ2) + h(ψ2ψ3 − ψ0ψ1)] −
−∇αψ0ψ1ψ2ψ3 (24)

iv) The N = 4 (1, 4, 3) case:

Qi(x;ψ,ψj , gj) = (−ψi; gi,−δij ẋ+ εijkgk; δijψ̇ − εijkψ̇k),

Q4(x;ψ,ψj ; gj) = (ψ; ẋ, gj ; ψ̇j) (25)

The most general invariant lagrangian L of dimension d = 2 is given by

L = α(x)[ẋ2 − ψψ̇ − ψiψ̇i + gi
2] +

α′(x)[ψgiψi − 1
2
εijkgiψjψk] − α′′(x)

6
[εijkψψiψjψk] (26)
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6 An example of an N = 8 off-shell invariant action

The N = 4 invariant actions for the (4, 4), (3, 4, 1), (1, 4, 3) multiplets presented in the previ-

ous section are expressed in terms of the δij and εijk quaternionic tensors. This is of course a

consequence of the relation between N = 4 supersymmetry and quaternions. This information

allows us to construct N = 8 off-shell invariant actions by exploiting the connection with the

octonions. Indeed, according to [14], the N = 8 supersymmetry is produced from the lifting

of the Cl(0, 7) Clifford algebra to Cl(9, 0). On the other hand, it is well-known [22], that the

seven 8× 8 antisymmetric gamma matrices of Cl(0, 7) can be recovered by the left-action of the

imaginary octonions on the octonionic space. As a result, the entries of the seven antisymmetric

gamma-matrices of Cl(0, 7) (and, as a consequence, of the N = 8 supersymmetry transforma-

tions) can be expressed in terms of the totally antisymmetric octonionic structure constants

Cijk’s which generalize the quaternionic εijk antisymmetric tensors. The non-vanishing Cijk’s

are given by

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 . (27)

and are associated with the seven lines of the Fano’s projective plane, the smallest example of a

finite projective geometry, see [23]. A strategy can be adopted to construct N = 8 off-shell in-

variant actions. We illustrate it in the simplest example, the N = 8 (1, 8, 7) multiplet, admitting

seven auxiliary fields. This multiplet preserves the octonionic structure since the seven auxiliary

fields are related to the seven imaginary octonions. The supersymmetry transformations are

given by

Qi(x;ψ,ψj , gj) = (−ψi; gi,−δij ẋ+ Cijkgk; δijψ̇ − Cijkψ̇k),

Q8(x;ψ,ψj ; gj) = (ψ; ẋ, gj ; ψ̇j) (28)

for i, j, k = 1, . . . , 7. We construct the most general N = 8 off-shell invariant action with the

dimension of a kinetic term for the (1, 8, 7) multiplet by requiring an octonionic covariantization

principle. When restricted to an N = 4 subalgebra, the invariant action should have the form

of the N = 4 (1, 4, 3) action (26). This restriction can be done in seven inequivalent ways (the

seven lines of the Fano’s plane). The general N = 8 action should be expressed in terms of

the octonionic structure constants. With respect to (26), an extra-term could in principle be

present. It is given by
∫
dtβ(x)Cijklψiψjψkψl, where Cijkl is the octonionic tensor of rank 4

Cijkl =
1
6
εijklmnpCmnp (29)

(εijklmnp is the seven-indices totally antisymmetric tensor). Please notice that the rank-4 tensor

is obviously vanishing when restricting to the quaternionic subspace. The term∫
dtβ(x)Cijklψiψjψkψl breaks the N = 8 supersymmetries and cannot enter the invariant action.
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For what concerns the other terms, starting from the general action (with i, j, k = 1, . . . , 7)

S =
∫
dt{α(x)[ẋ2 − ψψ̇ − ψiψ̇i + gi

2] +

α′(x)[ψgiψi − 1
2
Cijkgiψjψk] − α′′(x)

6
[Cijkψψiψjψk]} (30)

it is easily proven that the invariance under the Qi generator (i = 1, . . . 7) is broken by terms

which, after integration by parts, contain at least a second derivative α′′. The full N = 8 in-

variance (the invariance under Q8 is automatically guaranteed) requires imposing the constraint

α′′(x) = 0. Therefore α is a linear function in x (we recall that α is unconstrained for the

corresponding N = 4 case). The most general N = 8 off-shell invariant action of the (1, 8, 7)

multiplet is given by

S =
∫
dt{(ax+ b)[ẋ2 − ψψ̇ − ψiψ̇i + gi

2] + a[ψgiψi − 1
2
Cijkgiψjψk]}

(31)

It is quite remarkable that the octonionic structure constants enter the N = 8 invariant actions

as coupling constants. It is worth pointing out that the non-associativity of the octonions plays

no role here. The supersymmetry transformations are ordinary (associative) transformations,

the octonionic structure constants expressing the non-vanishing entries of ordinary matrices.

7 The fusion algebra of the irreps

The notion of fusion algebra of the supersymmetric vacua of the N -extended one dimensional

supersymmetry was introduced in [14]. The fusion algebra encodes information concerning the

decomposition into irreps of the tensor products of irreps. This information can be relevant

in constructing multilinear invariants; we recall in fact that in any given multiplet the field(s)

with highest dimension is mapped, under the supersymmetry transformations, into the time-

derivative of a lower-dimensional field. Its integral can furnish an invariant term of the action.

The fusion algebras can also be nicely presented in terms of their associated graphs, see [18].

The tensoring of two zero-energy vacuum-state irreps (irreps associated with the zero energy

eigenvalue of the hamiltonian operator H) can be symbolically written as

[i] × [j] = Nij
k[k] (32)

where Nij
k are non-negative integers specifying the decomposition of the tensored-products

irreps into its irreducible constituents. The Nij
k integers satisfy a fusion algebra with the

following properties

1) Constraint on the total number of component fields,

∀ i, j
∑
k

Nij
k = 2n (33)
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where n is the number of bosonic (fermionic) fields in the given irreps.

2) The symmetry property

Nij
k = Nji

k (34)

3) The associativity condition,

[i] × ([j] × [k]) = ([i] × [j]) × [k] (35)

which implies the commutativity of the (Ni)kj ≡ Nk
ij fusion matrices.

In a graphical presentation of the fusion algebra the irreps correspond to points. Nk
ij oriented

lines (with arrows) connect the [j] and the [k] irrep if the decomposition [i]× [j] = Nij
k[k] holds.

The arrows are dropped from the lines if the [j] and [k] irreps can be interchanged. The [i]

irrep should correspond to a generator of the fusion algebra. This means that the whole set of

Nl = Nlj
k fusion matrices is produced as sum of powers of the Ni = Nij

k fusion matrix.

It is particularly instructive to present explicitly the N = 2 case. It admits four irreps (if we

discriminate their statistics, bosonic or fermionic), given by

[1] ≡ (2, 2)Bos; [2] ≡ (1, 2, 1)Bos ; [3] ≡ (2, 2)Fer ; [4] ≡ (1, 2, 1)Fer (36)

The corresponding N = 2 fusion algebra is realized in terms of four 4× 4, mutually commuting,
matrices given by

N1 =

⎛
⎜⎜⎜⎜⎝

1 2 1 0
0 2 0 2
1 0 1 2
0 2 0 2

⎞
⎟⎟⎟⎟⎠ ≡ X ;

N2 = N4 =

⎛
⎜⎜⎜⎜⎝

0 2 0 2
0 2 0 2
0 2 0 2
0 2 0 2

⎞
⎟⎟⎟⎟⎠ ≡ Y ;

N3 =

⎛
⎜⎜⎜⎜⎝

1 0 1 2
0 2 0 2
1 2 1 0
0 2 0 2

⎞
⎟⎟⎟⎟⎠ ≡ Z. (37)

The fusion algebra admits three distinct elements, X,Y,Z and one generator (we can choose

either X or Z), due to the relations

Y =
1
8
(X3 − 2X) , Z = −1

4
(X3 − 6X2 + 4X). (38)

The vector space spanned by X,Y,Z is closed under multiplication

X2 = Z2 = ZX = X + 2Y + Z,

XY = Y 2 = Y Z = 4Y. (39)

This fusion algebra corresponds to the “smiling face” graph of [18].
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8 Conclusions

The supersymmetric quantum mechanics is a fascinating subject with several open problems.

The potentially most interesting one concerns perhaps the construction of off-shell invariant

actions whose lagrangians have the correct dimensions of a kinetic term, for large values of

N (let’s say N > 8). These types of actions could provide some hints towards an off-shell

formulation of higher-dimensional supergravity andM -theory. We recall that, up to now, no one-

dimensional sigma model with non-trivial action (namely, possessing a non-constant background

metric) was found for N > 8. Even for N ≤ 8 the program of classifying the whole set of off-shell

invariant actions for each given irreducible multiplet has not been completed yet. A large class

of N = 8 off-shell actions was produced in [6]. However, the action of the N = 8 (1, 8, 7) model

here discussed was not contained in that list.

To complete this program could be particularly valuable in the light of the recent results

(discussed in Section 4) concerning the different connectivities of some N = 5 and N = 6 ir-

reducible multiplets. Indeed, multiplets presenting fields with different mass-dimensions have

an obvious physical meaning. The number of 0-dimensional bosonic fields corresponds to the

dimensionality of the target manifold of the one-dimensional sigma models. It would be inter-

esting to understand the possible physical implications of the multiplets with same content of

fields of given dimension which, nevertheless, differ in connectivity. The N = 5 and N = 6 cases

which present these features have not been studied in the literature yet. The manifestly super-

symmetric “linear approach” of constructing off-shell invariants, that we outlined in Section 6,

looks promising in addressing this problem.

It should be mentioned that the classification of the irreducible multiplets of the one-

dimensional N -extended supersymmetry finds application not only in the construction of the

off-shell invariant actions of the one-dimensional supersymmetric quantum mechanics, but also

in the two-dimensional supersymmetric quantum mechanical models (because we can decompose

the problem in terms of the light-cone coordinates).

We conclude by pointing out that the supersymmetric quantum mechanics presents several

interesting open questions which have still to be clarified. One of the most puzzling concerns

the similarities shared by both linear and non-linear representations of the N -extended one-

dimensional supersymmetry algebra.
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