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Phase space can be constructed for N equal subsystems that could be (probabilistically) either
independent or correlated. If they are independent, Boltzmann-Gibbs entropy SBG ≡ −k

∑
i pi ln pi

is strictly additive in the sense that SBG(N) = NSBG(1). If they have (collectively) special scale-
invariant correlations, the entropy Sq ≡ k [1−∑

i pq
i ]/(q−1) (with S1 = SBG) satisfies, for some value

of q �= 1, Sq(N) = NSq(1), and is therefore additive, hence extensive. We exhibit two paradigmatic
systems (one discrete and one continuous) for which the entropy Sq is additive, whereas SBG is
neither strictly nor asymptotically so. We conjecture that this mechanism is deeply related to the
nearly ubiquitous emergence, in natural and artificial complex systems, of scale-free structures.

The entropy Sq [1], the basis of “nonextensive statis-
tical mechanics” [2], generalizes Boltzmann-Gibbs (BG)
entropy SBG = −k∑W

i=1 pi ln pi, which is recovered for
q = 1. For q �= 1, Sq is nonadditive – hence nonextensive
– in the sense that for a system composed of (probabilis-
tically) independent subsystems, the total entropy differs
from the sum of the entropies of the subsystems. How-
ever, the system may have special probability correlations
between the subsystems such that additivity is valid, not
for SBG, but for Sq with a particular value of the index
q �= 1. In this Letter, we address the case where the sub-
systems are all equal and the correlations exhibit a kind
of scale-invariance. We may regard this situation of cor-
related probabilities as related to the remark (see [3] and
references therein) that Sq for q �= 1 can be appropriate
for nonlinear dynamical systems that have phase space
unevenly occupied. We return to this point later.

We shall consider two examples. The first one involves
N binary variables (N = 1, 2, 3, ...), and the second one
involves continuous variables (N = 1, 2). In both cases,
scale-invariant correlations create an intrinsically inho-
mogeneous occupation of phase space, strongly reminis-
cent of the so called scale-free networks [4], with their
hierarchically structured hubs and their nearly forbidden
regions.

In dealing with our first example (discrete case), we
start with two equal and distinguishable binary subsys-
tems A andB (N = 2). The associated joint probabilities
are, with all generality, indicated in Table I, where κ is
the correlation between A and B. Let us now impose [5]
additivity of Sq, defined as follows:

Sq ≡ k
1− ∑W

i=1 p
q
i

q − 1
(q ∈ R; S1 = SBG). (1)

In other words, we choose κ(p) such that Sq(2) = 2Sq(1),
where (forW = 2) Sq(1) =

1−pq−(1−p)q

q−1 , and (for W = 4)
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A\B 1 2

1 pA+B
11 = p2 + κ pA+B

12 = p (1 − p) − κ p

2 pA+B
21 = p (1 − p) − κ pA+B

22 = (1 − p)2 + κ 1 − p

p 1 − p 1

A\B 1 2

1 2p − 1 1 − p p

2 1 − p 0 1 − p

p 1 − p 1

TABLE I: Top: Joint and marginal probabilities for two bi-
nary subsystems A and B. Correlation κ and probability p
are such that 0 ≤ p2 +κ, p (1−p)−κ, (1−p)2 +κ ≤ 1 (κ = 0
corresponds to independence, for which case entropy addi-
tivity implies q = 1). Bottom: One of the two (equivalent)
solutions for the particular case for which entropy additivity
implies q = 0.

Sq(2) = 1−(p2+κ)q−2[p (1−p)−κ]q−[(1−p)2+κ]q

q−1 . We focus on
the solutions κq(p) for 0 ≤ q ≤ 1 indicated in Fig. 1 [6].

With the convenient notation

r10 ≡ pA
1 = p

r01 ≡ pA
2 = (1− p)

r20 ≡ pA+B
11 = p2 + κ

r11 ≡ pA+B
12 = pA+B

21 = p(1− p)− κ

r02 ≡ pA+B
22 = (1− p)2 + κ , (2)

we can verify

r20 + 2r11 + r02 = 1 ,
r20 + r11 = r10 = p ,

r11 + r02 = r01 = 1− p . (3)

Let us now address the case of three equal and dis-
tinguishable binary subsystems A, B and C (N = 3).
We present in Table II probabilities that are not the
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FIG. 1: Curves κ(p) which, for typical values of q, imply
additivity of Sq. For −1/4 ≤ κ ≤ 0 we have

√−κ ≤ p ≤
1 − √−κ. For 0 ≤ κ ≤ 1/4 we have (1 − √

1 − 4κ)/2 ≤ p ≤
(1 +

√
1 − 4κ)/2 .

most general ones, but rather general ones for which
we have scale invariance, in the sense that all the as-
sociated marginal probability sets exactly reproduce the
above N = 2 case. Notice how strongly this construction
reminds us of the one that occurs in the renormalization
group procedures widely used in quantum field theory,
the study of critical phenomena, and elsewhere [7].

A\B 1 2

1 p3 + κq(p)(2 + p) p2(1 − p) − κq(p)(1 + p)

[p2(1 − p) − κq(p)(1 + p)] [p(1 − p)2 + κq(p) p]

2 p2(1 − p) − κq(p)(1 + p) p(1 − p)2 + κq(p) p

[p(1 − p)2 + κq(p) p] [(1 − p)3 + κq(p)(1 − p)]

TABLE II: Scale-invariant joint probabilities pA+B+C
ijk

(i, j, k = 1, 2): the quantities without (within) [ ] correspond
to state 1 (state 2) of subsystem C.

With the convenient notation r30 ≡ pA+B+C
111 ; r21 ≡

pA+B+C
112 = pA+B+C

121 = pA+B+C
211 ; r12 ≡ pA+B+C

221 =
pA+B+C
212 = pA+B+C

122 ; r03 ≡ pA+B+C
222 , we can verify

r30 + 3r21 + 3r12 + r03 = 1 ,
r30 + r21 = r20 = p2 + κq(p) ,
r21 + r12 = r11 = p(1− p)− κq(p) ,
r12 + r03 = r02 = (1− p)2 + κq(p) . (4)

Let us complete our first example by considering the
generic case (arbitrary N). The results are presented
in Table III, where we have merged, through the nota-
tion (lN−n,n, rN−n,n), the Pascal triangle and the present
Leibniz-like harmonic triangle [8]. For the left elements,
we have the usual Pascal rule, i.e., every element of the
N -th line equals the sum of its “north-west” plus its

(N = 0) (1, 1)
(N = 1) (1, r10) (1, r01)
(N = 2) (1, r20) (2, r11) (1, r02)
(N = 3) (1, r30) (3, r21) (3, r12) (1, r03)
(N = 4) (1, r40) (4, r31) (6, r22) (4, r13) (1, r04)

TABLE III: Merging of Pascal triangle with the present
Leibniz-like triangle. The particular case r10 = r01 =
1/2; r20 = r02 = 1/3; r11 = 1/6; r30 = r03 = 1/4; r31 =
r13 = 1/12; r40 = r04 = 1/5; r31 = r13 = 1/20; r22 = 1/30,
..., recovers the Leibniz triangle [8]. However, not correspond-
ing to scale invariance, it does not satisfy Eqs. (5).
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FIG. 2: rN−n,n(p) for q = 0.75 and N = 1, 2, 3, 4, 5 (from top
to bottom).

“north-east”elements. For the right elements we have
the property that every element of the N -th line equals
the sum of its“south-west” plus its “south-east” elements.
In other words, for (N = 1, 2, 3, ...; n = 0, 1, 2, ..., N), we
have that rN−n,n + rN−n−1,n+1 = rN−n−1,n, and also
that

∑N
n=0 lN−n,n rN−n,n = 1 (N = 0, 1, 2, ...). These

two equations determine

rN,0 = pN + κq(p)
[N(1 − p)− (pN − 1)]

(1− p)2
,

rN−1,1 = pN−1(1 − p)− κq(p)
1− pN−1

1− p
, (5)

rN−n,n = pN−n(1− p)n
[
1 +

κq(p)
(1− p)2

]
(2 ≤ n ≤ N) ,

illustrated in Fig. 2.
Summarizing, this interesting structure takes automat-

ically into account (i) the standard constraints of the the-
ory of probabilities (nonnegativity and normalization of
probabilities), and (ii) the scale-invariant structure which
guarantees that all the possible sets of marginal probabil-
ities derived from the joint probabilities of N subsystems
reproduce the corresponding sets of joint probabilities of
N − 1 subsystems. Hence Sq is strictly additive. In this
way, the correlation κq(p) that we introduced between
two subsystems will be preserved for all N , up to infinity
(thermodynamic limit).

Let us now address the following question: how de-
formed, and in what manner, is the occupation of the
phase space (N -dimensional hypercube) in the presence
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FIG. 3: ηN,0(p) (left), ηN−1,1(p) (center), and ηN−n,n(p)
(right), for q = 0.75, and N ≤ 5. We see that, in the N → ∞
limit, only the N axes touching the (1, 1, ..., 1) corner of the
hypercube remain occupied with an appreciable probability.

of the scale-invariant correlation κq(p) determined once
and for all? (See Fig. 1) The most natural comparison is
with the case of independence (which corresponds to κ =
0, hence to q = 1). It is then convenient to define the rela-
tive discrepancy ηN−n,n ≡ {rN−n,n/[pN−n(1− p)n]} − 1.
Since n = 0, 1, 2, ..., N , we may expect in principle to
have N + 1 different discrepancies. It is not so! Quite
remarkably there are only three different ones, namely
ηN,0, ηN−1,1, and all the others, which therefore coincide
with η0,N . They are given by

ηN,0 =
κq(p)

(1− p)2
[
1 +

N(1− p)− 1
pN

]
≤ 0 ,

ηN−1,1 =
κq(p)

(1− p)2
(
1− 1

pN−1

)
≥ 0 , (6)

ηN−n,n =
κq(p)

(1− p)2
≤ 0 (2 ≤ n ≤ N) ,

where the inequalities hold for 0 ≤ q < 1, for which
κq(p) ≤ 0. Of course, the equalities in (6) correspond to
q = 1 (i.e., κ = 0). See Fig. 3. We see that, for arbitrary
N ≥ 2, only three different types of vertices emerge in the
N−dimensional hypercube. These can be characterized
by the (1, 1, ..., 1) corner, the N sites along each cartesian
axis emerging from this corner, and all the others. As N
increases, the middle type predominates more and more,
with increasingly uneven occupation of phase space.

Let us now address our second example (continuous
case) and consider the following probability distribution:

p(x) =
2√

π(2 + a)
e−x2

(1 + ax2) (a ≥ 0) (7)

We can verify that
∫ ∞
−∞ dx p(x) = 1 .

Let us now compose two such subsystems. If they are
independent (q = 1) we have

P1(x, y) = p(x)p(y) =
4

π(2 + a)2
e−(x2+y2)

×[1 + a(x2 + y2) + a2x2y2] (8)

Of course,
∫ ∞
−∞

∫ ∞
−∞ dxdy P1(x, y) = 1. For the general

case, we propose the following simple generalization of

q=0.95

q=0.99

q=1

a

A q=0.90

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  0

 5

 10

 15

 20

 25

 30

 0.9  0.92  0.94  0.96  0.98  1q

A/a - 1

a=1

a=0.5

FIG. 4: (a, q)-dependence of A (A = a for q = 1). Left: For
typical values of q. Right: For typical values of a.

p(x)p(y):

Pq(x, y) =
4

π(4 + 4A+B)
e−(x2+y2)

×[1 +A(x2 + y2) +Bx2y2] , (9)

which satisfies
∫ ∞
−∞

∫ ∞
−∞ dxdy Pq(x, y) = 1. Of course, for

q = 1, we expect (A,B) = (a, a2). Let us now calculate
the marginal probability, i.e.,

∫ ∞

−∞
dy Pq(x, y) =

2(2 +A) e−x2

√
π(4 + 4A+B)

[
1 +

2A+B

2 +A
x2

]
(10)

We want this marginal probability to recover the original
p(x), so we impose (2A+B)/(2 +A) = a, which implies
B = aA+2(a−A) and

∫ ∞
−∞ dy Pq(x, y) = p(x). It follows

that

Pq(x, y) =
4

π[4 + 2(a+A) + aA]
e−(x2+y2)

×{1 +A(x2 + y2) + [aA+ 2(a−A)]x2y2} . (11)

Finally, to have A as a function of (q, a), we im-
pose, as for the binary case, Sq(2) = 2Sq(1), where
Sq(1) = {1 − ∫ ∞

−∞ dx [p(x)]q}/(q − 1) and Sq(2) = {1 −∫ ∞
−∞

∫ ∞
−∞ dxdy [Pq(x, y)]q}/(q − 1). Both integrals can

be expressed in terms of hypergeometric functions and
calculated: see Fig. 4. Finally, the relative discrepancy
η ≡ Pq(x,y)

P1(x,y) − 1 is illustrated in Fig. 5 for a typical set
(a, q).

For higher values of N we need to follow a procedure
similar to the one in our discrete example. Although
details will be given in a future paper, let us mention the
N = 3 case. We assume Pq(x, y, z) ∝ e−(x2+y2+z2)[1 +
A3(x2+y2+z2)+B3(x2y2+y2z2+z2x2)+C3x

2y2z2], and
determine (A3, B3, C3) (which equal (a, a2, a3) for q = 1)
such that

∫ ∞
−∞ dzPq(x, y, z) reproduces the N = 2 case,

i.e., Eq. (11). In this manner, the correlation illustrated
in Fig. 5 will remain through all scales (i.e., ∀N), and,
as desired, we will consistently have Sq(N) = NSq(1).

Let us now critically re-examine the physical entropy,
a concept which is intended to measure the nature and
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FIG. 5: η(x, y; a, q) for (a, q) = (0.5, 0.95) (hence A = 2.12);
x = y is a plane of symmetry. The two bold straight lines
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amount of our ignorance of the state of the system. As
we shall see, extensivity may act as a guiding principle.
Let us start with the simple case of an isolated clas-
sical system with strongly chaotic nonlinear dynamics,
i.e., at least one positive Lyapunov exponent. For al-
most all possible initial conditions, the system quickly
visits the various admissible parts of a coarse-grained
phase space in a virtually homogeneous manner. Then,
when the system achieves thermodynamic equilibrium,
our knowledge is as meager as possible (microcanon-
ical ensemble), i.e., just the Lebesgue measure W of
the appropriate (hyper)volume in phase space (contin-
uous degrees of freedom), or the number W of possi-
ble states (discrete degrees of freedom). The entropy
is given by SBG(N) ≡ k lnW (N) (Boltzmann principle
[9]). If we consider independent equal subsystems, we
have W (N) = [W (1)]N , hence SBG(N) = NSBG(1). If
the N subsystems are only locally correlated, we expect
W (N) ∼ µN (µ ≥ 1), hence limN→∞ SBG(N)/N = µ,
i.e., the entropy is extensive. In connection with this
property, let us mention that such systems exhibit a fi-
nite entropy production per unit time (essentially a finite
Kolmogorov-Sinai entropy rate). If we consider, for in-
stance, many initial conditions within a small part of
the phase space, the system quickly explores the entire
admissible phase space, and its time dependent entropy
SBG[t] satisfies limt→∞ SBG[t]/t =

∑
r λr, where {λr} is

the set of positive Lyapunov exponents.
Consider now a strongly chaotic case for which we have

more information, e.g., the set of probabilities {pi} (i =
1, 2, ...,W ) of the states of the system. The form SBG ≡
−k∑W

i=1 pi ln pi yields SBG(A+B) = SBG(A)+SBG(B)
in the case of independence (pA+B

ij = pA
i p

B
j ). This form,

although more general than k lnW (corresponding to
equal probabilities), still satisfies additivity. It frequently
happens, though, that we do not know the entire set {pi},
but only some constraints on this set, besides the trivial
one

∑W
i=1 pi = 1. The typical case is Gibbs’ canonical

ensemble (Hamiltonian system in longstanding contact
with a thermal bath), in which case we know the mean
value of the energy (internal energy). Extremization of
SBG yields, as well known, the celebrated BG weight,
i.e., pi ∝ e−βEi, with β ≡ 1/kT and {Ei} being the set
of possible energies. This distribution recovers the mi-
crocanonical case (equal probabilities) for T → ∞.

Let us address now more subtle physical systems (still
within the class of strong chaos), namely those in which
the particles are indistinguishable (bosons, fermions).
This new constraint leads to a substantial modification
of the description of the states of the system, and the en-
tropy form has to be consistently modified, as shown in
any textbook. These expressions may be seen as further
generalizations of SBG, and the extremizing probabilities
constitute, at the level of the one-particle states, gener-
alizations of the just mentioned BG weight, recovered
asymptotically at high temperatures. It is remarkable
that, through these successive generalizations (and even
more, since correlations due to local interactions might
exist in addition to those connected with quantum statis-
tics), the entropy remains extensive. Another subtle case
is that of thermodynamic critical points, where correla-
tions at all scales exist. There we can still refer to SBG,
but it exhibits singular behavior.

Finally, we address the completely different class of
systems for which the condition of independence is
severely violated (typically because the system is only
weakly chaotic, i.e., its sensitivity to the initial condi-
tions grows slowly with time, say as a power-law, with
the maximal Lyapunov exponent vanishing). In such
systems, long range correlations exist that unavoidably
point toward generalizing the entropic functional, essen-
tially because the effective number of visited states grows
with N as something like a power law instead of expo-
nentially. We exhibited here two such examples (discrete
and continuous) for which scale-invariant correlations are
present. There the entropy Sq for a special value of q �= 1
is strictly additive, whereas SBG is neither strictly nor
asymptotically so.

Weak departures from independence make SBG lose
strict additivity, but not extensivity. Something quite
analogous is expected to occur for scale-invariance in
the case of Sq for q �= 1. Amusingly enough, we have
shown (see also [5]) that this “nonextensive” entropy Sq

— indeed nonextensive for independent subsystems —
acquires extensivity in the presence of suitable collective
scale-invariant correlations. Thus arguments presented
in the literature that involve Sq concomitantly with the
assumption of independence should be revisited. In con-
trast, those arguments based on extremizing Sq, without
reference to the composition of probabilities, remain un-
affected. While reference to “nonextensive statistical me-
chanics” still makes sense, say for long-range interactions,
we see that the usual generic labeling of the entropy Sq

for q �= 1 as “nonextensive entropy” can be misleading.



The scale invariance on which we focus appears to be
connected with the scale-free occupation of phase space
that has been conjectured [1] to be dynamically gener-
ated by the complex systems addressed by nonextensive
statistical mechanics (see also [10]). Extensivity — to-
gether with concavity, Lesche-stability [11], and finiteness
of the entropy production per unit time — increases the
suitability of the entropy Sq for linking, with no major
changes, statistical mechanics to thermodynamics.

Last but not least, the probability structure of our dis-
crete case is, interestingly enough, intimately related to
both the Pascal and the Leibniz triangles. We are grate-
ful to R. Hersh for pointing out to us that the joint-
probability structure of the discrete case is analogous to
that of the latter.
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