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Properties of Dirac equation on the GRK geometry are
studied. Bound states solutions are obtained. Their physical

significance is discussed.

The GRK (General Relativistic Kink) is a natural general-
ization, to the 4-dimensional space-time, of the 2-dimensional
kink solution of nonlinear k¢4 model as shown by Kodamal. It
is a completely singularity-free, finite energy solution and has
some interesting aspects. One of them is the topology which

permits to associate conservative numbers with it. It was also

shown to be stable, at least against radial perturbations

The geometrical structure of the GRK resembles that of
the Rosen-Einstein bridge3 of the Schwarzschild geometry, but
with an essential difference in that such a structure becomes
similar to the Wheeler's wormhole4, as was discussed in the

references 1 and 2.

The GRK was thus introduced,as a natural consequence,

in a scheme analogous to Wheeler's idea. This scheme consists



essentially in considering that any kind of field flux can pass
through the wormhole, and if it remains inside the geometry, the
complete set (GRK+field) can be seen as a mass concentration due
to the GRK, together with properties inherent to the fields. A

solution was shown for the eletromagnetic cases.

Another important property besides the charge is the
spin one-half. We shall then investigate the Dirac's field,

studying it in a GRK background.

In order to perform this task we shall treat the spinor
field in a generalized space-time. We write it in the following

6
way

U . =
y (3, =T ) + impy = 0, (1)

where y“ are Dirac matrices satisfying anti-commutation relations,
u_v VU Y
Yoy ey tyE = 2g" 1

Fu are Fock-Ivanenko coefficients, ¢ 1is the spinorial field

and mp can be considered as a parameter.

The spherically symmetric line element is written as

dsz _ eZn(r) (dXO)Z _ eZcx(r) (dr)z _ I‘2 dQZ , (2)
while the Fock-Ivanenko coefficients are given by
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where Au is an arbitrary real vector field, and {ai} the usual



Christoffel symbol. We can take Au = 0 without loss of gene-

rality7
Eq. (1) is reduced to
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where
(er.§) = send cos¢ ?1 + senb send ?2 + cos®O %3 ,
(ee.y) = cos6 cos¢'§1 + cosf senod ?2 - senb %3 s
(e¢-v) = -sen¢ y1 + cos¢ ?2 .
and the %,s are the Dirac's matrices in flat space.

Now, we can separate the radial and angular parts of

eq. (4) through standard procedures8 and then

%% = % - g G + (Be " + mD)éI (5)
and
F T -
%? = g% '5 F - (Ee n o mD)éI ) (6)

where F, G are radial functions and « 1s the eigenvalue

of (0.2 + 1). In order to obtain eqs. (5-6) we used the ansatz

1 '% n(r) -iEt
Y = T © o(r) e 1



Let us make the coordinate transformation

(dr/dr)? = ¢ %% |

. . . 2
for which the coordinate system itself is singularity-free

Eqs. (5-6) become

déc _ [ « .- , =

T x G + (Ee ' + mD)#] (7)
and

dfF _ € ¢ _ (Fe™" - 736!
where ﬁb = mD/u, F=E/u and u = pR, x = yr are dimension-

less variables.

Eqs. (7-8) are quite similar to the usual Dirac radial

equation in a central field.

The gravitational field generated by the GRK localizes
the Dirac field around the bridge, if there is a non-singular

solution satisfying the following boundary condition:

|G| and |F| - 0 for |u| » = . (9)

In this way, eqs. (7-8) with the boundary condition eq. (9)

constitute an eigenvalue problem for E.

To solve this problem, it is useful to analize some
properties of the solutions. We know that the GRK static
solution x(u) and n{u) are even functions of u, and their

asymptotic properties are



x + Jul and e " +1 for |u|] »e .

It is easy to verify that the asymptotic forms of the solution

are given by

G,F = e . Ju] » e . (10)

Therefore, for E > ﬁb, the boundary condition Jeq.(9) J
is always satisfied and the spectrum of E is continuous. How-

ever, for E < HD, we must find a value of E for which the

wave functions take the asymptotic form:

G,F v e for u > +o

and
G,F v e for u -» -»

In such a case the spinor field is localized around u = 0.

For simplicity, we restric ourselves to ground state
solutions, «k =1 case. The problem is completely similar for
the k <0 case, because the substitution « =+ -k 1is equi-

valent to the transformation
u > -u , G » -G R F-+F |, (11)

which obviously does not change the spectrum of E.

Since eqs. (7-8) are linear, we can fix, without loss of



generality, one of initial values, say G(0), to any finite

constant. We put then

G(o) = 1 . tlZ)

Any other choice changes only the normalization of F and G.

Hence, we have to determine the two parameters E and

F(0), for the ground state eigenfunction.

From eqs. (7-8) it is easy to show that, if G tends to
zero for u =+ +», then F tends also to zero. Likewise, if G
diverges when u - +», F also diverges. Therefore, there is no
possibility of one of them converge and the other diverge for
u » +», The same happens when u -+ -~., Then, there exists a
particular value of F(0) for which G and F tend simultaneous-
ly to zero when u » +w, Obviously such F(0) is a function
of E. Call this value FS(F). However, this does not necessarily

imply that G and F tend to zero for u - -w.

On the other hand, there exists another value of F(0),
say F?(F), so that G and F tend to zero when u - -»., In
this way, the boundary condition Eq. (9) is expressed as the

following equation for E:

FO(F) = FO(E) . (13)

Therefore eigenvalues of E are given by the inter-
sections points of two curves Yy = F?(E) and Y, = F?(F).

In fig. 1 we show Fg and F? plotted against E/HD,

for the cases my = 1 and 10 (with [«| = 1), where the GRK



geometry corresponding to f = 1.25 is takenl.

The Y1 and y, curves can intersect several times.
The first intersection provides the ground state energy eigen-

values, while the others, up to the value E = my provide

the excited bound states.

In fig. 2 we show the wavefunctions corresponding to
the ground state (for k = 1) of the solution shown in fig. 1 at
the ﬁb = 1 case. Such functions are shown in fig. 3, with
k = -1. In this figure the transformations given by eq. (11)

become evident.

It is Verified9 that there is no bound states, for the

case of f = 1.25, if m, 1is smaller than 0.65.

D
Hence, we see that the GRK can localize the Dirac field

around the bridge, for > 0.65. Therefore,a distant observer

p
interpretes such a configuration as a massive particle of spin
one-half: the mass is given by GRK geometry, while the spin is

given by the localized Dirac field.

Such an approach, together with the electromagnetic
field, would provide a pure theoretical-field, singularity-free
model of elementary particles including anti-particles, at least

at the classical level.
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FIGURE CAPTIONS

FIG. 1 - Fg and F? plotted against E/ED.

FIG. 2 - G(u) and F(u) functions corresponding to the

ground state with: ﬁb =1 and « = 1.

FIG. 3 - G(u) and F(u) functions corresponding to the

ground state with: my = 1 and Kk = -1.
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