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ABSTRACT

When calculating = bond orders of excited and superexci-
ted states of conjugated molecules, difficulties arise in
applying the variation method; besides, the convergence pro-
blems involved are well known. For pyridazine, chosen for’
discussion, 27 states are considered; the convergence pro-
blem is envisaged through two criteria in the choice of a
paramefer introduced in the compromise Hamiltonian. This
convergence\parameter is related to Fhe variation method.

There exist three particular solutions for bond orders,

which divide the 27 states into energetical regions.

Running title: = excited states convergence problems and

energetic regions.



I. INTRODUCTION

The grounds for thg success of effective PPP-type Hami&
tonians have been very‘recently studied [l], and their appli-
cation in different treatments of rp-electron model systems
persists [2]. In a series of papers, we have been cbncerned
about the direct calculation of the SC n bond order matrix P
for excited states without calculating first the wavefunc-
tions [3,4,5]. The wavefunctions and corresponding energy le
vels reproducing'these SC‘bond orders have been reported for
butadiene [6]. '

The convergence problems for excited states are, as is
well known, far from trivial. Our goal is,to.treat this ques
tion in its simplest possible form, and we have chosen to
keep the PPP approach with the half-electron approximation
for singly occupied levels [7,8], without configuration inte
raction. We have preferred the half-electron approach in or-
derrto ?reserve a restricted ciosed-shell scheme. We have
applied elsewhere [9] the CNDO/2 approximation for triplet
states in an open-shell unrestricted framework. Nevertheless,
even in a simple system such as the allyl radical, an un-
restricted PPP 5 treatment leads to violation of wavefunction
spin and space symmetry (either oné or both of them) [10]. As
to CI, besides the difficulty in the selection of the confi-
gurations to be included [ll], it is forcedly time demanding
and expensive, even if it is becoming commonplace [12]. On
the other hand, there are cases in which an appropriate mo-
dification of the moleculég orbitals make the effect of CI
negligible for intermediate excited states [13]. We have faced

_ the problem through the introduction of a single parameter ¢



for each state in the comprcomise Hamiltonian [3,5]

H =H +¢p C (1)
uv v ITRVEESTRY

where H® is the Hlickel Hamiltonian, and the Cuv are proportio
nal to the Coulomb repulsion integrals.(uvlvv). This formalism
has been intended for 6-electron molecular systems possessing
a twofold symmetry axis not passing through any m center, and
applied to pyridazine [5].

| The advantage df separating the basis set into symmetric
(Labelled as f) and antisymmetric (-) ones is that the varia-
tion method applies separately to the eigenfunctions and
eigenvalues of each type.

Our basic equations are [3,5]

@+t + ¢ )Pt = 30t = symmetric; (k+CcPY + C'PT)PT = K'P” = symmetric

where
i, i) 1
P - + £ T+ Tk
J =H +H ; = - . pt = *
BV Tuv u,N+1-v Kuv 13 Hﬁ,N+l—v’ Puv 2 n Xu %9 (3)

xi is the coefficient of atomic orbital u whose occupation
number 1is (2nl).

The 27 states considered are those for which n +.nh=I_B],ﬁ

L L

being a diagonal matrix with half the occupation numbers of

the lowest energy levels, n, a diagonal matrix with half the

h
occupation numbers of the associated highest energy levels, and
I the unit matrix.

The choice of ¢ in (1) is neot of course unique. We shall

consider here two alternatives:

1) £= 1 up to the reference state whenever possible, and
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the closest possible to 1 otherwise;f =-1 from the reference
state on, and similarly the closest possible to -1 otherwise
[5]. That is, the highest electronic interaction allowed by
the convergence is taken. A

2)¢E linear;f = 1 in the ground state;f = -1 in the hi--
ghest excited state and £ = 0 in the feferenee state (see sec-—
tion III). This should mean a linear variation of electronic

interaction under excitation.

II. CRITERION OF HIGHEST ELECTRONIC INTERACTION

Table I(a) shows the occupation numbers and the conver
gence parameter used in [5], for the 27 states numbered following
the chosen criterion which, as we shall explain further in
this section, gives rise to two‘granches appearing in the plot
of the increasing total energy.

By Eés. (2), J' and P commute (and so dovK' and P ), so
fhat they have the same eigenfunctions ¢i. Now, the wvariation
4method associates ¢, to the lowest J"eigenvalue and therefore
to the highest P+ eigenvalue, for it is intended for the ground
state built following the aufbau principle; its extension to
excited states is by no means straightforward [14]. As long
as the excited states obey the aufbau principle, and this holds
up to state 5, we may employ directly our compromise Hamiltonian
without the requirement of a convergence parameter. There is
certainly trouble when the order of the occupation numbers is
completely inverted relaeive to aufbau, as happens beyond state
23, and in some of the previous ones betweeﬁ state 14 and state
23. Difficulties are also expectéd even for partial inversion.

When the inversion is complete (the correlation term is
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the dominating one in the Hamilfonian), changing ¢ from 1 to
-1 restores us to a situation where we may apply the varia-
tion method, the highest p* eigenvalue corresponding thus to
the highest J' eigenvalue. This is as if we built these sta-
tes with the aufbau principle-occupying'the enerqgy levels
"downwards" from the "top", instead of “uﬁwards" from the
"bottom". Let us call this the anti-aufbau principle for the
most excited states.

Hall's standard'referenoe,efate [15]’establishes a clear
division. The four consequent energetic regions, separated by
the perticular'solutions 5, 14 and 23 [4] are therefore:

A) up to stare 5, where g = 1.

B) From state 5 up to state 14 the inversion in occupa-
tion numbers, when it occurs, .is partial; we keep £ = 1 whene-
ver possible.

C) From state 14 up to state 23 there is always inver-

sion in occupation numbers, be it partial or complete (e.g. sta

te 15); whenever possible, we choose ¢ = -1.

D) From state 23, ¢ = —l;

In the second and third regions, |g| = 1 may lead to os
cillating behaviours. In such cases we lessen |g| until conver
gence is attained. The sensibility to the g value is such, that
it may be determined with two significant figures if desired.

In the three mentioned particular solutions, the densi-
ty matrix is independent of the choice of the coefficient ma-
trix, whatever the molecule is [4]; these are the so-called
internally self-consistent states [16]. We shall see further
that the behaviour of Puv is also divided into energetioal

regions by the particuiar solutions.

TG N
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We’have tried hopelessly different variations of the
damping procedure suggested byAMontgolfier and Hoarau and
used for hydrogen fluoride (HF) [17]. The damping still wors-
tened the behaviour regarding convergence. It seems therefore
that the damping procedure is applicable only under certain
restricted conditions which are not clear to us. As to thé
energy-shift method {18], it proposes a different shift for
each iteration, and is applied to the same case of HF with a
highly deformed geometry._

_Our singie convergence parameter for each state invol
ves a maximum simplicity criterion. Furthermore, in eaéh pair
of complementary states [19]¢ has opposite sign (and, aside
from states 6 and 21, equal magnitude). Thié seems reasonable,
for in these sFates Puv has opposite signs, so that by chan-
ging signs in £ the correlation term has the same stabilizing/
destabilizing effect in both states. We ascribe to ¢ all the
factors that we do not take into account explicitly; physically,
‘it may be thought as playing a'iole similar to the additional
potential introduced in the Fock operator by Beebe [20] in or-
der to modify the virtual orbitals.

When we obtained the SC bond orders in the 4-electron
case [3,6], we did not meet .the convergence problem because the
equations could be solved directly and iteration was not requi
red. In the 6-electron case, care has been taken so as to pre-
serve the non-crossing rule [5]. Surely, if we allow violating
it, the results may be quite different and perhaps the conver-
gence problem does not eveh appear. The hiéhest excited state
of the 4-electron case does not obey the rule [6].

It has been recently demonstrated that energy is a func-

tional of the truncated first-order contracted density matrix,
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rather than a functional of the density matrix (Hohenberg-Kchn
theorem) [21]. However, the validity of both theorems, at least
as they stand, holds only for the ground state. Therefore the-
se relations are still challenging questions.

We have used the McWeeny's energ?_formulae [22]as func-

tions of the density matrix
E=E +E o (4)

Y = mr(3'p) + Tr(apt) ;BT = Tr(R'PT) + Tr(XPT) (5)

This total energy (4) must be corrected so as to take
into account the spurious repulsion between the two half-elec
trons in each singly occupied level. As changing the sign of
the convergence parameter amounts to changing the sign of the
electronic interaction, from state 14 on the correction shall
become that of a spurious attraction instead of that arising
from a spurious repulsion; the correction is taken, as may be
easily demonstrated, multiplied by & in each state.

As to the correction to the singly—Qccupied energy le-—
vels, we have shown elsewhere [8] that it depends on the process
originating the state. That is, if n, = 1/2 comes from n, = 0
the correction has one sign, and the opposite if it comes from
n; = 1. Given a state, not a process, the sign of the correc-
tion to be applied 1is not clear any more. Besides, the energy
levels corrected in this way are no more eigenvalues of the
problem, and hence the corresponding eigenfunctions do not
exist. We thué choose to leave the. energy levels as they stand.

Fig. 1 shows the total energy from state 1 up to étate 27.

Since state 14 is internally self-consistent [4,16], it may be
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calculated with any £ . As it is seen, it falls either on-the
first straight line (with &= 1) or on the second one (with

g = -1). It is a discontinuity point. We may look however at
this figure from another viewpoint; If we shift the second
pranch it will maﬁch with the first one, the slope of both
being the same (3;26 for the first one, 3.27 for the second
one); this involves a shift in the zero-point energy. Under
the present form, the two branches would mean that, if CI
should be carried on,-we'must‘limit it within the same energy
branch, avoiding mixing of configurations of one branch and
configurations from the other one.

However, certain magnitudes on both branches are com-
parable. For instance, bond orders still follow the’complemeg
tary condition, although nét étrictly due to the introduction
of electronic correlation.

This is shown in Fig. 2, which reports Pl2 (PNC) for
pyridazine, from states 1 up to 27. The values fall in the four
energetic regions delimited by the particular solutions:
aA) 1>P,,>0.3; B) 0.4>P -0.4; D) —0.3>? > ~1.

12 12 127 12

Pys follows the same trend. The bond orders crossing the symme

>0; C) O>P

try axis (Pl6 and P34) do not.

Table 1(b) shows the behaviour of total energy regarding
stability. These energy differences are calculated supposing
that iteration does not affect the spurious repulsion correc-
tion; actually we have‘shown [8] that the corresponding integrals
suffer very sﬁall variations due to relaxation, so we may sa-
fely neglect these differences in the present analysis. (We
havé'required for self—consisténcy that the difference between

any two iterated Puv be less than 0.0004).
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It is seen that of the 24 states aside from the parti-
cular solutions, 11 of them stabilize, 3 are neither stable nor
unstable, and 10 destabilize. Now, the variation method ensures
only a statiohary point, the sign of the second derivative of

the energy being difficult to determine [14]'unless the geome-

try be near the equilibrium one f23], i.e. the ground state one.

Convergence is frequently slow and arduous, if achieved
at all, for more sophjisticated mééhods (e.g. the general MC-SCF
for Open‘shells) [24]. Besides, the fact‘of obtaining a conver-
gence does not mean that we are evén near the "true" value; it
may depend, for instance, on our starting values being more or
iess far from the Gtrue" ones [14] and this we have no means
to verify. We_cannot»knpw if the statioconary total energy 1is a
minimum, a maximum or a saddle point. But we do know‘that the
lowest eigenvalue is a minimum, the highest a maximum, and the
others saddle points [14]; In our 6-electron problem, the sepa
ration into two basis sets shall mean then that of our 6 eigen-—
values, we know that two are minima, two maxima and two saddle
points. This, together with table I, helps us to understand
better the stabilization of some states. Let us pick for exam-
ple state 6, the first one of table I showing a slight destabi-
lization; of the symmetric levels, the saddle ﬁoint one has
higher occupation number than the level cdrresponding to a mi
minum; in thé antisymmetric ones, we have occupied the level
which we know to be a maximum.

Nonorthogonality between the ground and excited states
wavefunctions is a troublesome question [25,26,27,28] . In or
der to verify how large the departure from orthogonality could

be for our sixth-order determinantal wavefunctions Wi, we

calculated the integrals (Wi,wj) for all the closed-shell sta-
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tes. Most of these integrals vanish identically for symme-
try reasons. Only six of the 28 integrals do not and their

values are:

-8 -5
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(¥12¥24) 167¥27) = 10

Thué, éven startihg from different orbital wavefunctions,
our closed-shell determinantal wavefuﬁctions built from them
are very nearly orthogonal for pyridazine.

State 14 deserves particular attention. Hall [15] intends
this reference standard excited gtate as having every orbital
singly occupied and associated with the same spin, let us say
d. It is the only open-shell state for which an unrestricted
calculation (being the g levels virtual ones they are of no
importance) will yield the same result as a restricted one,iin
~the sense that the o levels are alreaéy the appropriate Jlevels.
There would be theﬂ no need to appeal to the half-electron hy-
pothesis, for there will be no contaminations from other multi
plets. It has besides the remarkable property of being spin-
orthogonal to all the other 26 states. Hoffmann compéres this
state with his "average state" [16], with which it may coincide.
The wavefunction of the "average state" is a compromisé one
describing éll the electronic states of a molecule "in a demo
cratic fashion". This is the sense too of our compromise Ha-
miltonian [3,5] » which does not single out the ground state
[29], but leads to different wavéfunctions for each state.

The standard reference state is described by a single-determi-
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nant wavefunction [15] . Its energy levels will be the Hiickel
ones (in our case), more or less shifted depending on the &

value.

III. CRITERION OF LINEAR CONVERGENCE PARAMETER

If in Fig..l we take for the.standard state 14 ¢ = 0, the
energy will have the mean value of those corresponding to
g = +1 and -1. It is seen that this falls between the ground
state and the highest excited state. Being the particular so-
lutions independent of the g value, we may choose freely any
one} particularly zero. For the above mentioned reasons, this

would mean adopting the Hlckel levels for that state. The wa-

vefunctions are simply the 6 basis symmetry functions.

It is then quite teﬁpting to see whether an appropriate
‘choice of £ can lead us to a monotonous behaviour in the ener
gy, avoiding the disturbing situation of highly excited states
falling lower than others which may be less excited. The sim-
plest hypothesis for a variation in the f parameter is the
linear one, with £ = 1 in the ground state, ¢ = 0 in the refe-
rence state and § = -1 in the highest excited state; calcula-
tions about the effects of electron correlation [26] show that
it is muchAmore important in the ground state than in the in-
termediate excited states.

Plotting £ as a function of the Hlickel total energy
gives the valpes reported in Table II(a), where the order is
not Hftckel's but the SC one calculated with the present £. The
total energy takes into account tﬁe half-electron correction
in‘ﬁhe same way as mentioned in the previéus section; This or-

der, in turn, shows inversions when comparing with Table I.
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We have no elements to decide between both. We could still
follow further the underlined ?rocedure, by plotting again-g
as a linear function of the. obtained energy, and so on until
self-consistency. |

Fig. 3 shows that the energy has now a monotonic beha-
viour. We can draw the analogous of Fig. 2 for P12’ and it
exhibits a quite similar trend leading again to energetic re-
gions delimited by the particular solutions. Only, it is less
symmetrical due to the fact that in this case the particular
solutions 4 and 23 are not symmetrical around the standard
state. The Puv values are qualitatively similar with both
criteria, and for two thirds'of them differences are not lar-
ger than 0.05. This is quite striking for states such as 11
(12 of Table I), where £ is respectively 1 and 0.18 for cri¥
teria 1 and 2.

Table II(b) reports the same magnitudes that Table I(b)
in the preéent approximation. There are more states which nei
‘ther stabilize nof destabilize(l(From both tables it is seen
that this happens sometimes after an appreciable number of
iterations). The speed of convergence, measured by v , is not

proportional to |g| .

IV - CONCLUSIONS

1) The convergence parameter £ (|f|<l) is changed in
sign for thé excited states beyond the reference one. This is
justified through ther“anti-aufbau" principle.

2) Two criteria are proposed for choosing £, being the
first one the highest possible ]é] value and the second a 1li

near variation of ¢ with energy.
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3) The first criterion gives two linear branches for
the total electronic energy, matchable by shiftihg»the Zero
of the energy. The secdnd criterion results in a monotonic
parabolic behavicur.

4) All determinantal wavefunctions of closed-shell
states are found to be very neariy orthogonal, the most unfa-
vourable case giving 10—3. The stgndard reference state is
orthogonal to all the‘*others.

5) In both criteria, the pa;ticulaf solutions lead us

to four energetical regions.’
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FIGURE CAPTIONS

Fig. 1 -
Fig. 2 -
Fig. 3 -

SC total electronic energy following the criterion of
maximum electronic interaction. The 27 states of pyri
dazine are numbered in the order reported in Table I.
States 5,7}4 and 23 correspond to the particular solu
tions.
scC PlZ(PNé) for the 27 sﬁafes of pyridazine. The four
energetic regions delimited by the particular solu -
tions are: A) 1>P;,>0.3; B) 0.43P,,>0; C)O0>P, 3 -0.4;

12~ ~
D) -0.3>P,,>-L. -

e

12

-

SC total electronic energy following the criterion of
linear convergence parameter. The 27 states of pyrida-
zine are numbered in the order of Table II. States 4,

14 and 23 correspond to the particular solutions.



TABLE I. Criterion of highest electronic interaction
for 27 states of pyridazine.

(a) 2nz, occupation numbers of symmetric le-
velg; 2n;, occupation numbers of antisymme
tric levels; £, convergence parameter.

(b) AE = E (final)-E

tot tot
number of iterations required to attain

(first iteration);v ,

self-consistency.

(a) .. (b)
State 2n 2n] E AE (eV) v
1 220 200 1 -0.10 8
2 221 100 1 ~0.04 4
3 210 210 1 -4.81 25
4 ©200 220 1 ~8.0 20
5 2 2 2 000 ~——- ——- -
6 120 201 0.8 | +0.32 20
7 211 110 1 ~0.72 9
8 212 010 0.8 | +0.26 18
9 201 120 0.8 | +2.22 25
10 2 0 2 020 0.4 | +0.46 21
11 110 211 1 -0.04 5
12 121 101 1 +0.20 14
13 100 221 1 +4.0 7
14 111 111 -—-- — —
15 122 001 -1 +0.14 6
16 101 121 -1 ~0.10 13
17 112 011 -1 | ~0 4
18 020 202 -0.4 | -0.16 17
19 010 212 -0.8 | =0 13
20 021 102 =-0.8 | -1.40 20
21 102 021 -1 -0.34 35
22 011 112 -1 © +0.14 7
23 00 0 222 - — -
24 022 002 -1 -4.78 17
25 001 122 -1 O 4
26 01 2 012 -1 +2.70 19
27 00 2 022 -1 +0.22 7




TABLE II. Criterion of linear convergence parameter for
o 27 states of pyridazine.

(a) ZnZ, occupation numbers of symmetric le -
vels; Zni, occupation numbers of antisymme
tric levels; £ , convergence parameter.

(b) AE = Etot(final)*EtOt(first iteration); v,
number of iterations required to attain
self-consistency.

' (a) ‘ ®
State 2n; 2n. £ :' AE (eV) v o
1 220 200 1 -0.10 8
2 221 100 0.74 -0.02 ' 3
3 210 210 0.80 -2.66 17
4 2 2 2 000 0.48 - -
5 200 220 0.60 | -1.91 10
6 120 201 0.44 +0.02 5
7 211 110 0.55 -0.05 5
8 21 2 010 0.28 +0.20 6
9 2 01 120 0.34 ~0 4
10 110 211 0.25 0 2
11 121 -1 01 0.18 0 2
12 20 2 0220 0.08 n0 3
13 100 221 0.06 ~O 1
14 111 111 0 ——— -
15 12 2 001 -0.06 ~0 1
16 020 202 -0.08 ~0 1
17 101 121 -0.18 ~0 2
18 112 o011 ~0.25 | =0 2
19 021 102 -0.34 ~0.12 6
20 010 21 2 -0.28 A0 3
21 10 2 021 -0.44 ~0.01 5
22 011 112 -0.55 -0.01 5
23 000 2 22 -0.48 L me—— -
24 022 002 -0.60 | +0.93 9
25 012 012 ~0.80 | +1.41 13
26 001 122 -0.74 ~0
27 ‘002 022. -1 1 +0.22
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