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ABSTRACT

Under the laws of Einstein's gravitationai théory, a
massless system consisting of the diffuse sources qf two fields
is discussed. Oﬁe field is scalat; of long range, tﬁe other is
a vector‘field of short rahée.‘A pfoportionality bétween the
soﬁrcgs is assumed. Both fields are minimally coﬁpled to gravi-
tatioﬁ, and cohtribute positive definitely to the time component
of the eﬁergy méﬁentuﬁ tensor. A class of static, spherically
symmetric solutions of the equations is obtained, in the weak
field 1imit. The solﬁtions-are regular everyvhere, stable, and
can represent large or small physical systems. The gravitational
field presents a Schwarzéchild-tyﬁe aé&mptotic behavior. The
éependegce of the energy on the various parameters characterizing

the system is discussed in some detail.

1. INTRODUCTION

It is an old belief that general relativity will find
a leading place in the description of elementary.physical

structures}. Nonsingular solutions of the field equations are



particularly looked for, in which the energy momentum tensor
depends on a minimum number of simp]e.pgysica] quantities.
Mas§iveAstatic sygtems are more usually studied,
- where the atfractive effects of—se]f-graVitation are balanced
by some kind of repulsive inte?&ctfon. Such are the cases of
the incompressible fluid sphere of Schwarzschild,.in which
the gradient of pressuré‘is responsib]e for the equilibrium, and
the‘charged spheré of Bonnorz,.Where the electrostatic repulsion
betwéen the constituents.preventé the collapse. Massive systems
cdntaining‘sca]ar sources have also been considered, in recent
literature 7, | |
\ ~ In an alternative line of research, static systgms
_not containing matter explicitly can be considered, in which
the energy momentum tensor is obtained froﬁ'sbme covariént
Lagrangean. Along ‘this Ijne, a system only coﬁtaihing<the
diffuse source of two different scalar fields was recént]y
--studiedg, and a nonsingular and stable so]ufion.was obtained.
However, one of these scalar fields contributes negative defi-
nitely to the time componenf of thé.energy momentum, and is not
cdnsidéred a "reasonab]e"_physic;] agent_by some aufhors9
In the present paper, the study is made of a stable
structure, sou}ce of & vector field of short range ‘and of a
scalar field of long range. Both fields are miniha]]y coupled
to gravi?ation, and contribute posftivé definitely to‘TOO'
In Sec. 2, the covariant equatioﬁs governihg.the systém are
obtained f%om a lLagrangean density, and the static, spherically
symmetric equations are written in the weak field ]imit.‘In

-Sec. 3, the exact solutions for the vector and scalar fields

are obtained, and are found to be regular everywhere. In Sec. 4

H



the expressions for the gravitationa]Opotentials are presented;
these expressi@ns also are regqular évérywhere, and show a
Schwarzschild-type behavior af infinity. ana]]y, the three
independent parameters which characterize the system are dis-
cussed in Sec. 5, and the influence each of them exerts on the
total energy of the system i5 clearly explained. It ié also
shown that the solutions obtaﬁned'may servé“as basis to describe

large or small actual physical systems.

2. THE EQUATIONS

One starts from the Lagrangean density
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In these equations, R is the scalar curvature, g is the deter-
minent of the metric pofent1a1s guv’ Vu is a repulsive vector
field of short range (K—]) and S is an attractive scalar field
of Tong range. The vector quantity Ji and the scalar quantity
o, are densities of weight +1, and represent the diffuse sources
of Va,and S, respectively.

From the invariance of the action integral upon varia
tions of the metric potentials one obtains the Einstein's

equationslo,.
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while variations;of the vector and scalar potentials give
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The semicolons mean covariant derivatives, and the quantities
JH and o have weight zero. From the Bianchi identities. one
. obtains

3 Vyy -5, = 0 . o (9)

We now specialize these equations for the case of

static, spherically symmetric systems. We write
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and consider all quantities (n, A, V, JO,'S, o) functions of

only r. We then obtain, as independent equationi,
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JOVI + OSI = 0 s » : ‘ .(]6)

where a dash means d/dr. Since in these five equations we have

six functions, one constraint is necessary to obtain explicit
. : . .0

solutions. We consider here the case where the sources J (r)

and o(r) bear a constant ratio,

J0=mc' R w = const . (17)

One'finds difficu]ty in obtaining the exact integration
of the field equations. We then try an approximate method: we
expand the four fields (n, A, V, S) and the two sources‘(JO, o)
in integral powers of.some dimensionless parametér € . This
. parameter is identified Tater. We have been able to obtain the
exact so]utioh in the Towest order.of approxfmation, in which
JO, o, V, S are proportional ‘to ¢, while n and - X are pro-
portional to éz. In this order of approximatibn the field

equations become

n' o+ A"%'r(mzvz L | (18)
(m)"';_;.rzl(sz2+V'2+ 5'2) , _ (19)'
vt + 2V'/r - KZV = - 4o -, (20)
S" + 2S'/r = 4o | . : | (21.)
(V' +S')o = 0 -, ] (22)

where (17) has been used. -
From the Tast three equations one obtains the fields
V, S, and the source o, then from (19) and (18) one gets the

gravitational potentials A and n , consecutively.



3. VECTOR AND SCALAR FIELDS

One initially considers the region r < a, where the
diffuse source o exists. From (20) to (22). one then obtains

the solutions, regular in the origin,

2 -1/2

Vi(r) = . Jglvr) , v E'f(w f1) > ' (23)
4o (r) =:awv2 jo(vr) s ‘ | - (24)
Si(r) =.-am[§o(vr) + é] s _ (25)

‘where jo(x) = x'1 sin x 1is the spherical Bessel function of
~order zero, and a, Bl are constants of integration. The subs-
cript i meahs, internal. One finds that the parameter w necessa
rilly satisfies wz $ 1, otherwise the mathematica1'solutions
obtained are physita]]y unsat{sfactory; this subjetf is further
discussed in Sec. 5. | |

In the region r > a, where the source o = 0, one ob-

tains from (20)

-k {r-a) . ' | :

Ve(r) = aig(va)(a/r) e (26)

where the continuity of the vector field through r = a was im-
posed. The subscript € means external. One observes the rapid
decay of the short range field, for increasing distance from

the origin. One also imposes.the cpntinu%ty of the radial deri

vative of vector fie]ﬂ, and obtains
vaj](va) = {1 + xa) jo(va) s _ (27)

where j](x) = - de(x)/dx is the spherical Bessel function of
order one. This relation represents a constraint for the radius

a, for a given set of parameters « and w . Since variations



of sign in the diffuse sources of fields induce instability
in the system, one finds from)(24)‘that only the smallest

positive value of va satisfying (27) is of physical interest,

namely

/2 < va <7 . _ | (28)
The external scalar field is obtained from (21), with

5 = 0: |

S (r) .- aw[jo(va) " lej (a/r) . 8= (1.0 )12 | (29)

where the continuity Qf the field and of its radial derivative
were again imposed. In order to obtain the value df B , use ’
wés made of the relation (27). One remarks the hyﬁerbo]ic

behavior (r']) of the séa]ar field, in the regions outside the

sources.

4. GRAVITATIONAL FIELDS

In the internal region (r < a) one obtéins, using (19),

(23) and (25),

1 22, . 2,0 2
Ai(r) = 50 {é + Jo(Zvr) - (w™+1) ig (vri] ’ ] (30)
while from (18) one obtains

n].(r‘)=n(0)+a2[(2w2-1)2(\)r) + (wim ) Gol2vr)-ufe & joz(\)r)]

For convenience, we introduced the constant

n(0) =_-a2[(2w2-1)}j(va) - (1-0"%)e?*? Fi(-2¢a) 7] , (32)

where the funetion Y(x) and the exponential integral Ei(-x)



are defined by
y

E(x).= f t[?o(t{]z dt , Ei(-x) = - J 7 e-t.dt , x>0

‘ 0 X (33)
" An easy inspection of (30) showé.thgt A(0) = 0; less tfivia]]y,
one finds that n(0) < 0, and that both n; and Ai increase mo-
notonically outwérds. A1l these genera1 features are also
encounte;ed fn the weak fﬁeld limit of the internal Schwarzschild
solution. | |

In the external Eegion (r > a), one obtains from (19),

(26) and (29),

2 1

Ag(r) = Gm/rc 1‘% (1 + «a) V?(r) Ty Sz(r)A s - . - (34)

where m is the mass parameter, given by

Gm/acz'i'azEZ - d - W J'O(Zv_a)] . )

Finally, from (18) one.get§ \ |

2 Ei(-2¢r).
(36)

ng(r) = - Gm/Y;C2 + % (1 + «r) V2(r) + [% a V(a) eX?

One remarks, in (34) and (36), the usual Schwarzschild gravita-

tional behavior in the asymptotic-regions,

n(r) = - A(r) = - Gm/rc2 s r +_m/. | (37)

The continuity propérties of the gravitational poten-
tials are easily seen from (1é) and (19). As in the cases of
massive spheres, one finds that n, A and n' are continuocus
.tﬁgugh r = a. In addition, one finds that also A" and n"

are continuous, in our system.



5., DISCUSSIONS

Threé independent parameters ;haracterize our physical
system: k, o and w . The inverse 1eng£h paramefer Kk is mainly
responsible for the size of the system; indeed, one findsAfrom
(27) and (23) that the radius a is inversely proportional to «

The parameter o fs dimensionless. In Sec. 3, we
found that all vector and sﬁalar field quantitiés are propdrtig
nal to ,a; while. in Séc. 4 we found. that the‘gravitational po -
tentials n and A are proportional to az. This suggests to
identify o as the small, dimensionless parameter ¢ in terms
of which the series expanéion of Sec. 2 were made. As can be
seen in (35), the smaT]ness of qz implies m/a << cz/G,v a
condition usually met both in 1arge'physica1'systems (sfars,
galaxies) and small ones'(atomic nuclei). |

Finally, we found that the dimensionless parameter
w = Jo/c must satisfy wz > 1. This hés a simple physical inteﬁ
pretation. The collapse df the system is only.preventéd when
there ié-sufficient source JO of repulsive, short range vector
field to balance the attractive effects of the long range scalar
field on the corre%onding source g.

From (5), (10) and {11) one finds that the time com-

ponent of the energy momentum tensor is

(81G/c?) Typ = k2v2 4 (V12 4 512 ZMet2h (38)

this is an exact result, and shows that both fields V and S con-

tribute positive definitely to TOO'

An alternative expression for the mass m is obtained

from (35) and (27):
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2 1, 2 1/2

Gm/c2 = (uz/K)[iw - 5)(w” - 1) L7 arc sinlwl-] + W - i] . (39)

This expression exhibits more clearly the dependence of m on the-
fparameters a, kK and w . The inverse sine is takén'between /2
and 7, in order to satisfy (28). A direct computation shows

that the energy mczrof the system monotonica]]yiincreases with
|w]. The following two extreme behaviors are obtained, for’

small and large lef

172

[

em/c? = 7 (a2/x)(6/8) for Ju| = 1+8 , 0 <8 << 13 (40)

3

em/c? = 7 (aZ/K) lw]

4

“for |Jw| > 1 . ' o (4).

. We did not attempt to rigorously demonstrate the sta-
‘bi]ity of our system. However, a nonrelativistic form of‘res-
soning is apprOpriates'in the presént case, where fhe Newtonian
COhcept of force can be used: Starting from an equilibrium
confiéufation, admit a small perturbation which produces somé
local comﬁressidn of the diffuse sources. Since w2 > 1, the
additional repulsive, short range forées will exceed the
additional forces of‘the 1ohg range, attractive fie]d. As a
consequence, a tendency to local rarefactioﬁ is manifested.
In the reverse situation of a locél small ekpansion, the same

final tendency to restore the equilibrium configuration is

observed.
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