ON THE DITTUSION-EQUATIONS OF - NUCLEONS

" AND CHARGED PIONS IN THE ATMOSPHERE

F.M. de 0fiveina Castno

AN00S5/78

JAN,1978



ON THE DIFFUSION-EQUATIONS OF NUCLEONS
AND CHARGED PIONS IN THE ATMOSPHERE

F.M. de 0Olivéira Castro

Centrno Brasileino de Pesquisas Fisicas
Rio de Janeino - Brasil

ABSTRACT

In this paper we give the solution of the simplified

unidirectional diffusion equations of nuclecns and charged

pions in the atmosphere when pions of the second generation are
taken into account. A sufficiently smooth differential spectrum
G(E)JE is assumed for the primary cosmic radiation in the 'top

of the atmosphere.

INTRODUCTION

1. The development of the nuclear and bion components
of the cosmic radiation in the atmosphere can be described in

a first approximation by " the one-dimensional diffusion
(1,2,3,4,5)

equations .
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Fa(x,E) is the flux per (cmz.s.ster.) of a generic nadron o of
energy E, E+dE at the atmospheric depth x (g}cmz). We put_
a = N for nucleons and o = W. fof charged pions.

The functions FN and FTT are supposed‘tp satfsfy the

boundary conditions

FN(O;E) = G(E) > O - (3)
iand

F_(0,E) = 0 | (4)

‘G(E)dE is the primary nucleon differential spectrum in the top of

the atmosphere. The mathematical restrictions. assumed for

G(Ede will be specified later. Here 'A& and Ky are respectgj
vely the interacticn length (g/cmz) and the inelasticity coeffi
‘cient of a high energy.interaction,between a hadron o and an
air nuc]eus§

PN (x,E) is the production rate of charged pions created by the
~}nteractionbE£wem1a hadron o o% ehergy E,E+dE and an air nucleus
at the atmosphere depth x (g/cmz)‘ |

In this apﬁroximation the prdduction of Kaons is not
taken into account. Here Aa- and Ka are supposéd to be cons -~
tants and independent of the hadron incident energy.

The w » u decay is disrégarded because we consider
only pions of energy equal or greater than 1 Tev aﬁd only con-
sider the diffusion'a1ong the vertica]tdirection. |

In a preceding paper(4), we obtained the solution of

these diffusion equations when the pions of the second'generation

N
-

end of the paper, we said, also, that the special resu]t‘obtained

are not taken into account, that is when P_ (x,E) = 0. At the

T
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there éou1d be used to construct the solution of the general
case where PzN(x,E) # 0. In this paper we shall consider this

general case.

2. The solution of the equation (1) which describes
the diffusion of the nucleon component needs no modification

and is given by

-x/);N
FN(x,E) = e

1 X yN E 1
— (= G 5

He~18

n=0

Conditions for G(E)

Under the assumption that G(L)

A]) is continuous, non negative and bounded in the interval

I = [a,»), a >0, it was estab]ished(4) that the unique

continuous solution of eq. (1) is given by (5).

AZ) The existence of the integral spectrum [ G(E)dE was also
' E

required by the very nature of the pHysica] problem.

=4

3. In the same papér(4), we have given also the solu-

"tion of the following inhomogeneous equation

IF(x,E) _ _ 1

| 1 E
X | X F(x,E) + TT=KY F(x, TTK) + PFX,E) (6)
for K < 1, with the boundary condition

F(O,E) = H(E) > 0 (7)
where H(E) satisfies conditions (Ay) and P(x,E) is_supposed to be



a continuous function of {x,E) on every rectangle

,.T:E)<x§_x,a<5<b] ,a >0, b>a, X>0

It was shown there that for H(E) = 0 .a'so1ution of (6) conti-

nuous on T is given by

X 1
- +{1-0,)(x-n) -
F(x,E) = J e XK P(n,E)dn (8)
0 o
YOk e

where the operators Sy and e are defined as

6, T(X,E) = — T(X, ~£) K<t (9)

It SRR B ¢ > T=K .
and :

e K r(x.E) =] Yr oM r(x.E) (10)

where v is a constant.
The unicity of the solution (8) results immediately
from the fact- that if F](x,E) and Fz(x,E) are both continuous

solutions of (x,E) e T then the difference F,-F, will be

identically zero, as the unique solution of the homogeneous

equation -
oF 1 . 1 E |

with the condition - T
FO,E) = #5(E) = 0 (12)

4. For the integration of the equation (2) we must

known explicitly the production rates PgN(x,E); that are given
by(s)



N o (Eoo)Max - '
(x-E) = j 0o (EgsENF (X,E)dE (13)
(Eo )Mxn

where ¢a(E0,E)dE is the number of charged pions with energy in

the range E,E+dE produced by the interaction between a hadron

o of incident energy Eo’ and an air nucleus. The explicit form

of the functions ¢, depends on the specific model we adopt
to describe the interactions.
Frequently ¢a(Eo’t) are homogeneous functions of E

and Eo’ that is

. . E . dE
¢, (Eg-E)dE = f (&) &= (14)
‘ : 0 0 ‘
and
(an)Min ='E/Ba

where Ba are constants.

‘ _ , ,
If these conditions are verified and we put (to sim-

'Elify)(EOa)Ma* = o , eq. (13) becomes

B
o

PN xE) = b -[ f ) Foix, By s
) N

n

s|m

o

where 7 E/E0

The functions fa are suppoéed to be known. Since

- E |
n -‘F; < 1 we have Ba < 1

Now introducing the operators

] : 1 ‘
T Fﬂ(X’E) R 6 Y4 (X T-K ) (16)
7 T T ( 1

A F(x,E)

and



9 X

B'IT .~ }
. ] Eydn -
B Fy(x.E) = 5= f f.n) Folx, 5) & (17)
' 0
the equation (2) becomes
BF(X,E) _ A F(x,E) + P(X,E) + B F(x,E) o (18)

‘where we put to simplify P(x,E) = bﬁN(x,E) and F_(x,E)=F(x,E).

Equation (18) is an operator equaticn and we wish to

seek a solution for it.

To solve this equation we make the following successi-

ve approximations | _ ‘ ' N <
( oF
’ 5;"- = A FO + P(X,E)
aF]
- =— = A F, 4+ P (X,E) »
) °" . - (19)
aFn
'B—X-- = AF + Pn(X,E)
\
where
_ NN, "
Po(x,E) P(x,E) = PTT (x,E) |
T4 st aacatsesheneesteaeiaes . - (20)
[ P (XsE) = P(x,E) + B F__.(x,E)
and

Fo(05E) =0 (n =0, 1, 2, ...)

The physical idea that sdggests the above approkima-

t
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tions is the following.
iFirst we.seek the solution Foix,E) of the equatioh (2)

where the pions of the second generation afe not'taken into
~account, that is when PEN(x,E) =<0;' next we seek a fiiig,order
approximation putting in eq. (18) B F_{x,E) in the place of the
exact term B ?(x,E) that is unknown. Thus we have a first eéti-
mate of the second generation pions contributions to the flux
~Fn(x,E). The successive approximations are given'by the recurren-
‘ce_equations (19) and (20). As long as the successive production -
of pions is not too considerable a good convergence of the pro-~
cess is to be expected from the physical point of view.

. To solve the system (19) we ﬁay use the result indi-

cated before, in section 3, provided the continuity of the

functions P {x,E) s verified on every rectangle (T), defined
in section 3. |

It can be proved (see Append%x (A,8)) that the conti-
nuity of théafuqction Pn(x,E) and FnIx,E).on (T) is guéranteed

when

4a) G(E) satisfies condition Ay

4b) the f_ (n) are positive and continuous for 0 < n < B,

and
f (s)

B
4c) the integrals [© us ds exist. .
) -7

-

Tﬁus, if these conditions are verified, then the
unique solution of the system (19),'(20i, according to eq. (8)
is given by '
- XL(]'-UKHA)(XW)

X
FLOGE) = P (xE) :J e My P, (n.E)dn (2N
(o}

(n=0,1,2,...)



where the operator © is defined as

X
QH(x,E) = e
|

- - -n) : : |
A“(‘ O ) (X n)H(n’E)dn (22)

Ffom eq. (20) and (21) we obtain successively

{

FO(X,E) = QP(x,E)

N

F](x,E) = = Q[} + Bé}f(x,t)

2
2
T
~
»
-
m
~—
|

(23)

-------------------------------------

Fo(x,E) = QP (x,E) = 9[} +BR + ... 4 (BQ)n:}P(x,E)_

The induction from n to n+l is easily done.
In fact, suppose eq. (23) to be valid. Then according
"to eq. (20) and (21) we have

+

- - al; . -
y Fret = @Ppyq = @(P + BF | = QP + 0B F - =

il

QP + B Em + BQ +‘... + (BQ)n.):]? -

Q[} + BQ + (BQ)2 + .0+ (BQ)n+T]P
| ~ Q.E.D.

5. To prove that F_(x,E) = 1im F_(x,E) exists and

is the unique continuous solution of (2) with the condition

Fﬂ(O,E) = 0, there are still some steps to be considered.

First we shall préve that (Bsz)n p = g"g"p (n=1,2,...)
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. so that eq. (23) can be written in the following more managea-

ble form

Foo= g{i + BQ + ... + BHQT] p - (24)

The proof is given in the Appendix A.

A straightforward calculation gives

t t ' 0
X 2 1 « )
. n -1 ) (xt,)
Q"r(x,£) = f dt, f~dtn_]... J e T - T(tq,E)dt, (25)
) ) ' 0
. and
. B B
7 ™ m R
> n _ 1 : .
B'T'(x,E) = = J ces [ fﬂ(sn)...fn(sz)fﬂ(s])
Az % 0 :
ds_...ds, ds o
°I‘[%’ 3 Es s;} sn ' s2 s] (26)
. n.'c 2. nltl 2 - ] i
. N ‘
Putting T(x,E) = @"P(x,E) in (25) we get
B‘ﬂ' B'ﬂ' X
n.n 1 . dsn .ds]
B Q' P(x,E)= A J... f_fﬂ(sn)...fﬁ(s]) < - Jdtn
o(xw) ) ) 1 )
t, ty - L(1-0 ) (x-t;)
T ' E :
J dt, _q--. f dt, e - P(ty, =) = H(x,E)
5 o n 1
(27)
and
: - - .
QBnQnP('E X )xﬂ(-l OKT[)()( tn+] )
) X>E) = f € H(tn+1’E)dtn+1 -
%
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©

B - Bn X Ensl
1 : ds ...ds, ) ot
B L f"' I Frlsn)e-Frlsq) Spe Sy f tn+ J n
T 0 ] S 0 . -0
t
2 1
- 1-(1-0,, ) (n-t]) ' |
I e Ap K+ TPty ) dt, (28)
o ~ 177" n+l :

6. Convergence of the succession _fn(x,E) for (x,E)eT.

Consider the following inequalities established in the

Appendix (A, 5,12)

- Mc (By+B. )X [c, X]n _
B""P (x,E) < Tl o NTTW [Tg__ ﬁ]" = W (X) (29)
N ' i :

for (x,E) ¢ T.

Note that the series Z wn(X) of posftive terms whicﬁ ;

. ‘ - (BytB +Co/A )X

are independent of (x,E) € T converges to Mc]/AN e .
- Theﬁ3ZBnQ"P(x,E) is absolutely and unifo}mly convergent
%n T. (Weierstrass test).

Since BnQnP(x,E).are continuous functions of (x,E) on
T, (see Appendix A 5d) the sum 5B"Q"P  is also a continuous func
tion of (x,E) ¢ T. 1In using the same proceeding and the ine-
‘qualities A(7,6) it can be easily seen that the series of posi-
tive tefms ZQB"Q“P(X,E) is absolufe]y and uniformly convergent
for (x,E) ¢ T. ‘

Since the QBnQnP(x,E) are continuous functions of

(x,E) on T (see Appendix (A,7)) then

n ° .
. n.n )
Fﬂ(x,E) = lim § QBTQP(x,E) = Tim Fn(x,E) (30)

n>o 0 n->co
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is a continuous function of (x,E) on T and the proof is complete.

7. Synthesis of the Solution

Now it is easy to show that F(x, E) -F (x E) given by
veq. (30) satisfies equation (18). ,

In fact integrating both sides of‘eq.‘(18) and taking
into account the condition F(0,E) = 0, we have the equivalent

functional equation

, X X . X :
Fo(x,E) = I A'FTf(A,E)d?\ + J P(A,E)dA + f B F._(X,E)d) (31)
0 ) ' o

BQt from the system (19)(20) we have

- oF
n o
5. = A Fo P (x,E) (32)

Integrating both members of this equation with the

—condition F(0,E) =0 we get

X .
Fa(eB) = [ A F LB+ [P ey -
l .

O

x
fA.Fn()\,EA)d}\ + [:P(A,E)+B Fn_](A,E)JdA
0

Q ey X

-

Hence

X .
F(x,E) = F (x E) = 1im F_(x,E) = j A F(X,E)dr +
0

N—>co

) X
P(A,E)dA + f B F(A,E)dx : ~(33)
(6]

+
O X



Because the continuous fdnctions‘AFn(k,E).énd BFn_1(X,E) tend
uniformly in T to the continuous functions . AF(rx,E) and BF(X,E)
respectively. |

The last equation (33) proves that F(x,E) satisfies

“equation (31) and the proof is complete.

8. Uniqueness of the Solution

Suppose that there are two solutions F% and F; of

the equation (2), both continuous on évery rectangle

T = [@ <x <X , ac< E < %] ,a>0,b>a, X>0 |,

&

]
(e

and. both satisfying the same boundary conditions F%(X,O)

’7 and F'(x,0) = 0.

Then the difference ¢(x,E) = F%(x,E)—F%(x,E) must sa

tisfy the homogeneous equation

: : X
C6(xE) = [ (AeB)e(tiE)ar o (34)
T 0

Now substituting iteratively the function ¢(t,E) under the sign

of integration by means of (34) we have shccessively

t

X X 2
$(x,E) = f (A+B)o(t,E)dt = f (A+B)dt, f (A+By¢(t1,5)dt] =
0 ) 0 : 07 |
X tn ‘t2 . ‘
.= f dt f dtn“]...f (A+B)"o (t,,E)dt; ©(35)
0 0 (o)

where
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L | E "
(A+B)¢(t.|,E) = - —;—T-T- d)(t],E) + m—]r:rﬁ (b(t],‘ '1‘;"'(;) +
: ..
. m
1 ’ E, ds
LI S .

Since F!(x,E) and F"(x,E) are both continuous in
every rectangle (T), the function ¢(x,E) is also continuous in

(T and'¢(x, TEK) is continuous in the rectangle

- b |
T =.[§ < x < X, a <E < =——},a>0,b >a
=Xz K, = - T-K_ | |
Let M] be the maximum of ¢(x,E) in the rectangle
' - . . %!
™ = [? < X < X, ac<kEkc< T§%~{J ,a>0,b>a
- :
Thus we have
. . ’ ZM] o ) ' ¥ -
- 1Al < (KT (x,E) € Tf - (37)

On the other side we note that w(t],E) = Bo(t,,E) is continuous
" in every rectangle T. (The proof is the 'same as that given in

the Appendix A, for P(x,E)), Let M2 be the maximum of w(t],E)

in T",
Thus we have
| (A+B)o(t1,E)| < [Ao(ty,E)| + [Bo(ty,E)[ < M (38)
Where -
2M, o ' :
M = . + M , t,,E) e T" °~  (39)
)\ﬂ(] F;T 2 1

then
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|A(M) + B»(M)I <

(A+B) ((A+B)o(t;,E)) <
B'ﬂ'
eyt [ s & -
- ™ ™ ™ 0
c2
= | - + =—)M
Aﬂ 1 Kﬂ Aﬂ
Therefore
a8y (Bo(e,E) < MM, (tg,E) e U (40)
where | , “,
2 c2
N = + == (47)
.Aﬂ ]-Kﬂ lﬂ ) :
By induction we get
(A+B) (Mo (t,E) < N"TM L, (tq,E) € T O (a2)

Now from eq. (3%) and (42) we have

t2.

{
A oty |
- |6 (x,E) ] 5,( n f dt .. [ (A+B)(")¢(t],E)dtT
0

o

-

n-1

ayyn=1 .
= MNn“.I T%(:TT': f_ M % s (X,E) € T"

Letting n » « (with X fixed) it results that |¢(x,E)| >0. The-
refore F%(X,E) = F1(x,E) for (x,E) € T*. Since T" is arbitrary

the proof is complete.

9. Taking Account the Equalities

(82)"p = B"a"P = o"B"P  for n =1, 2,
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established in the Appendix A(6,1) énq A(6,2) and the equality

Fo(x,E) = QP(x,E), we can write
'Fn(x,E) =(2E+BQ + o, 4 Bnnn:]P =

=-'[F+BQ oot BnQ"-]FO (43)

and therefore
F_(x,E) = Vim F_(x,E) .= § (BR)" F_(x,E). (44)
™ n 0
n--eo o)
Equation (44) shows how the solution F(x,E) which take into
account the pions of the second generation can be constructed
starting from the special case in which only the pions produced

by the interaction N - N are taken into consideration

This conclusion was stated in ref. (4) without proof.

Conclusion. The main result of this paper can be stated as fol-

lows.

.

Thecrem. The diffusion equations

.?_F.‘\.I..(.y_\.i)_ = ~ ._].._. F (/x E) + | 1 -— F (x .._.E_._) (])
TAX Xy NUOR T TRy Tt TRy
oF _(x,E)
m N 1 E
A T % Ta(EN (1K) Fo (s Tkt
NN N,
+PVOGE) + PTN(xGE) - (2)

where the unknown FN(x,E) and FW(X’E) are supposed to satisfy

the boundary conditions

Fu(05E) = G(E) and F_(0,E) = 0
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admit of the unique continuous solutions given by

-.x/)\ co . . -
e N T A (9" el ey 5 ” v
= "N

FN(x,E)

F_(%,E)

I
ne-18
2
w

provided that:
a) G(E) is continuous, non negative and bounded in the interval
Ea,m)9 a >0 ;.

b) the functions PzN(x,E) » (o« = Nym) , are given by the inte-

“grals

m

Mgy = L[ Ey dn
SR BN
o]

where 0 < B < 1 ;
o

c¢) the functions fa(”) are positive and continuous on the in-

)

terval 0 < n < By 3
- . - B, fa(s) )
d) the integrals | — ds exist.
4 0 :
The cont1nu1ty of the F (x E) is verified on every rectangle
[? <°x < X3 a <E < %] s where X and b can be arbitrari-

1y choosen provided X > 0 and b 3 a > 0.

The terms 0B"q P(x,E) are given by
’ B B : X
m m f (sy)...f _(s.) -
aB"a"P(x,E) = J I m ] LN J dt
Syc++Sy” n+1l
0 0 0

1

= —(1- o, _)(x-%ty)

. f dt, e A Km ] P(ty, E
) _ :
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APPENDIX A

Design by T the rectangle

T = [é <x <X ,a <E< %] » a >0 , X>0 ,b >a

A 1) - Continuity of FN(x,E) s, for (x,E) ¢ T

- Proof - We have from equation (5)

= Fu(x.E) = (2) W {x,E) = g a (x)v, (E) . A(1.1)
where 'X/XN n ;
=& X ' CA(1.2
| an(X) nv {;NT]_KN{J | _( ?
pnd o h :
E ' -
EY = G —— K 1 A(1.3
3 vn€ ) [;]’KNV1] ‘ . N < ) ( )

The series of the right side of (1.1) is a series of positive
Since G(E) < M for E > a > 0, we have for any point
(x,E) in T

w(xE)<]—————L——-—~n M =M (X
- N N .

“Note that the series of positive terms Mn(X)s which

are independent of (x,E), converges to

X |
—7 By X
M(X) =M e ANCTTRNT Loy °N° S A(1.4)

or~18

nl
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Hence the series & wn(x,E) is uniformly and absolutely
convergent in T. (Weierstrass test for uniform convergence).

Since G(E) is continuous for E > a, so also are

6(———) and v_(E). (Note that Ky < 1.)
(]-KN)
Clearly the an(x) are continuous functions of x, in T.

The product wn(x,E) = an(x)vn(E) are continuous func-

tions of (x,E) in T., as we can easily verify. Therefore the
N .
partial sum S (x,E) = ) wo(x,E) converge to a function Fy(x,E)
n=o '
continuous in T, that is

8

FN(x,E)=&i2 Sy(XE) = nzl.wh(x,E)
- h= Q.E.D.

- A,2) - Existence of P(x,E) = nyix,E)

If f(n) is a positive and continuous functions of n

-in the interval 0 <n < By and satisfies the condition

f fy(n) = = € | , CA(2.1)
@ 0 : .
then P(x,E) exists.

Proof. In fact, for € > 0 we consider the function

By
, fy(n) E

1 N E

P ,E = T F s

| e(x ) AN L n N X n__dn
1 " fy(n) ¢ - £/
= 5= Y a (x)6 —-~_ﬂﬁ dn  A(2.2)

N e L L(1-Ky)

For any_pojnt (x,E) fixed in T, the integrand of the

.
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right side of A(2.2) is an uniformly and absolutely convergent

series of continuous functions of n in 0 <& <n < By.
Thus we may write

B

N |
oo f(n) ] :
] f N E/n -
P (x,E) = — Y a (x) G |———)|dn A(2.3)
€ AN o " J€ L. T—KN)n
- 'x],; J a, (x) d (E.e) \ | A(2.4)
0 B
But for every 0 < e < By we have
B . B S |
N N
fy(n) : fy(n)-
‘b (E,e) = | Mg |—EM_ a4y <M NT dn= Mc, A(2.5)
. = 1
- ‘ € N 0
Hence ' ) X
MC, o MC, . X (1-K -
P_(x,E) < T:i ] a (x) i_x:] e NN A(2.6)
(8] .

for (x,E) e T.

Now observe that, for (x,E) fixed in T, .the function

d(e) = Pe(x,E) is positive monotone not decreasing and bounded,

for 0 < 5'§.B

N
Hence exists the limit
B
. o ) E
Tim Ps(x,E) = Tim = [ — FN(x, =) dn
€0 €70 N n n
B
N .
= Xﬁ I - FN(x, ﬁ) dn = P(x,E)

Q.E.D.

The same reasoning applies to the functions bn(E,e)

and proves the existence of the following limits
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B
N
’ T (n) in” . :
b () = Tim b (E,e) = | @ [—EM] g A(2.7)

for n = 0,1,2.

A,3) - Continuity of P(x,E) = Pﬁ”(x,ﬁ) for (x,E) € T.

We have from relations (15), (1.1), (1.2) and (1.3)

By
NN 1 . E
: v
By
1 | E, d .
= pw f fu(s) Za (x)v (3) 15 . A(3.T)
) _

where

E.
(€ =6 =Bl <
. | 1-Ky)

. ¥
~Since Ky < 1,.0 < By <1 and 6(E) <M for E >a >0 , we have

for O <s <8

N
E/s 5 a/By > a
(k)" N
E
Vn(.‘s'-) < M
and
E E M n-
w06 £y = a v By < I [} (f_K~; = M (X)
X . N N

But the series ZMn(X) of positive terms Mn(X), which are inde-
pendent of (x,E) for (x,E) in T, converges;
Thenr an(x, %) is absolutely and uniformly convergent

on the region 0 < ¢ <s < BN , E i a > 0.
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Now consider the integral

BN )
1 fa(s) e (Ey g
e =%, f —— La (xjv(3) ds
.

Since a series of continuous and positive functions which sum

is integrable may be integrated term by terﬁ, we have

BN ,
1 fnes) o Ey :
I€ = XE Zan(x) f S Vn(E) s
€

for all values of 0 < ¢ i.BN'

But’
fy(s)
N . E\ :
s an(x)vn(g) 20 ,s5>0
t %
therefore
) B B
' R V() E 1 Vrs) g
P(x,E) = 3 J — L an(x)vn(g)ds = X—,Zan(x) j — Vn(g)ds
. N . . N
. 0 o
A(3.2)
'~Erovided that either side of (3.2) is convérgent.
Since the first side of (3.2) exists there we have
' NN, . "I‘ _BN fN(S)' E/s - i
P(x,E) = P "(x,E) = =— % a_(x) I G( —)}ds =
m Aﬂ n S (1-K )n
’ 0 : N
_ ] ' b N
= 5 z an(x) n(E) A(3.3)
il

where

Vofy(s) |
b_(E. N 6 |5 | ds
n(E) S [;]_KN)n | s

Prop. b (E) is a continuous functions of E, for E 2.a >0

1
Q e,




Proof.. We can write

BN _ . BN .
fN(s) E/s .

b (E) = f , G ds = f g _(s,E)ds A(3.4)

0 N ) v
Since G(E). <M for E >a >0, 0 <'s < By <1 ,-—J—-—— 1

R R - =N (1-Ky)"
for Ky < 1 and n = 0,1,2, » We have gn(s,E) < u(s) =
By fN(s)

=M fy(s)/s. But the 1ntegra] f g—ds - was assumed to
. exist, then the integral b (E) converges uniformly, whatever be

E >a > 0.

- Note that gn(s,E) is continuous for 0 < s < By and

Thus, for 0 < X < BN, we have: - : %

By

‘ibn(E+h2_~bn( f {gn(s,E+h) - gn(s,E)} ds +.
| X : : |

'

X X ,
- | t |y | J e .
+ s,E+h)ds ) + s,E)d A(3.5
l J 9, ( )ds | | g,(s,E)ds (3.5)
0 o A _
. N . o X fN(s)
Now, given e > .0, we can choose 0 < X < By such that f —— ds <

< fﬁ » and thus the sum of. the last two terms of (3. 5) will be

less than % .
Moreover, for fixed X, since g (s,E) is continuous in
T, we can choose h such that |g(s,E+h)-g(s,E)]| < € v, SO that
) ZZBN X) _
lbn(E+h)-bn(E)l§ €.

This proves the continuity .of bn(E):

> To proves the continuity of P(x,E) in (T) it éuffices

to ncote that-

a) The functions an(x) and bn(E) are positive and continuous
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functions of its arguments, for x > 0, E > a3

-

b) The product an(x), bn(E)_is continuous 1in ZT);

c) The series of positive terms ;— ra (x)b (E) is uniformly con
. ‘n‘ - .
vergent in (T) because we have

BN . a
1 X “In 1 fN(S)
la, (x)b (E)|< =+ XETT:KK?J N — ds
0 .
‘ MC] X n . ' A 6
= -+ = M!' (X 3.
AT | (TR n(X) (3.6)
and the series of positive terms Mﬁ which are independent
. 8. X
N 1

of (x,E) € T converges in T. to MC] e

N Wh‘ere BN= m .

A,4) - Continuity of Q"P(x,E) for (x,E) e T

“Proof. The function P(x,E) is given by the series

P(x,E) = *% Zv”ag(x) bo(E) | ..A(4.1)

This series of positive functions continuous on (T) is uniform-
ly convergent in (T). |

A simple ca]cu]dtion gives

x b b2 - (10 ) (x-ty) .
n i3 - i .
o"p(x,E) = f dt f dt | f e P(ty,E)dt, =
o 0 0

: ?
='f dt J dt ;... | e m P(x-t,E)dt =
0 0
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t t,
X n 2 ‘—X-‘ m E
d dt [ '™y ] t P(x-t dt=
- tn n-1 J ﬁ_l—r }\'ﬂ'zi-K'lTs ? 1-K )m
0 o ) m w
. -t
n-1 A m
BRI i e"JT[t ]a(x-t)dt-
- (]_Kﬂ)m ) (n-T) me X (T-K )
1 E 1
Ny %v n,mv v (1_K“)m AN gy Pemv mv
A(4.2)
where ,
: t :
SR N, |
o . ' K i A(4.3)
and _
E
A bmv(E) = b (——=) _ A(4.4)

(
v m
(I"K“)ﬁ
We beginn to prove the uniform convergence of the series A(4.2)
An (T).
We have from A(4.3)

-t
-(22)
Aﬂ_ tn 1 1

‘}m (t)dt
e AN U Sl S
. [CELPMHR P G o )

o3
——
b
g
i
O ——ax

n-1

- m e v
‘ t 1 X | - X i
an’mv(x)l = ! [CEEPRETH {?W(]:“ﬂ vI [}N ~KNi} o
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for 0 < x <X . | : .-
From A(4.4) and eq. (2.5) we have

»

b, (E)] = b (—E—2)| < MC, for E>a >0 A(4.4)
(1-K_) | o |
Hence
MC n
1 1 X
Xﬁ lan,m\)(x)bm\)(E)| hl Ay nv Rino

But the series Rmv of bOSitive terms which are independent

mv (B +By) X
of (x,E) in (T) converges in (T) to. e » where By =
] )
=X (0-K a = (m,N) <
a a

Therefore the’series A{4.2) is uniformly and absolu-
tely convergent in kT).

Since its terms are easily seen to be continuous in

(T) so 1s.fts sum Q"P(x,E).

i

A,5) - Continuity of B"a"P{x,E) in (T)

a) Consider the integral

- i) ' .
A f (s, ) f_(s '
I : (x,E) = L f - J ron I Ll ds_...ds "
€12 esr€p N : Sh P n T L
T € €
n 1 .
: B B
0 g F_(s.) f_(s
QnP(x, S E g ﬂ =.£_ 1 f ) f T n w( 1)
n""ol N A" : - *n 1
" n 1
y a nu(x) d(s E“g*) ds _...ds, | A(5.1)
mv 3 V n' o n

where the ey are positive numbers, arbitrarily choosen in the
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intervals 0 < Ej < B“ < 1

Since b (E) is positive and continuous for E>a >0

SO is
E E
b ( ) = b (
mv ... v . _ n
1 n S]"‘Sn(] Kﬂ)_
because
E > a '> a>=~0

n = , \n =
s]...sn(l—Kn) | s]...sn(l-kﬂ) |

| £.(5)
The function

is positive and continuous for e ,<'s < B_,

x) are also positive and continuous for

1 R - . . %
0 < x < X. The series that appears in the integrand of A(5.1)

and the functions an,mv(

is éasi]y seen to beé absolutely and uniformly convergent in (T).

The proof ig the same as that given before because

we have
+

) x"
. - an,mv(x)l =t Roy A(5.2)
and 4

b (—E—)] = |b.( E )| < MC, for E > a > 0

|

mvis...s, Vi ';'sn(]_Kw)n - 1 -

1
- A(5.3)
Thus we can perform term-by-term the integrations that figure

in A(5.1) and we get

3 1
I (x,E) = +— y a (x) b : (E)
cees€ AN (xﬂ)n my  my n,mv,e]...en

. . A(5.4)

where
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S m T
v f_(s;)
n o w\’j E
b (E) = f o f n b { )dsq...ds
NyMV,Eqe..€ i Sy vioo SR
] n 4 ) 1 h] Syeeesp(1-K0)
n A(5.5)
b) Now we shall prove that, if the éj > 0, then b € £ (E)
_ sMV,Eq -+ E
tends uniformly to
BTT B'IT (
. fo(ss) |
) n T E .
b (E) = f_'. f i b_( ) dsy...ds
n,mv S . vV - n
. . 1 j 51...Sn(] Kﬂ)
A(5.6)

In fact according to eq. (2.5) we have b (E) < MC; for

-

E>a >0 .’Moreover the positive .integrand of eq. A(5.5) is dess

or equal to the positive function

n fw(si)
-MC1 ¥ 5 ¢(SI' sn)
The integral ‘
. N B,
f.(s)
T ds = ¢
f s - 2
0

was supposed to exist according to the condition,c of the section 3.

Therefore the integral

B’H BTT - ) .

.- . o n
f... J ¢(s],...,sn)ds]...dsn = Mc]c2
o .0 '

exists.

This is sufficient to guarantee thelabsolute and uniform
convef@ence of ‘the 1ntegra1-A(5.6). | |

Taking into account this last result and eq. A(5.4) we

have
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.

8"aPP(x,E) = Tim I E)
c.-»0

J

(x) by pof

1 1 7
= : a
e]...en ‘ ‘AN (An)n mv n,mv

| A(5.7)
where an,mv(x) and bn,mv(E) are given by eq. A(4.3) and A(5.6)
respectively.

c) The functions bn m\)LE) are continuous in T

The proof is an abvious extension to a multiple inte-
gral of the proof given in Section g; of this Appendix. In fact,

the integral

. : BTF ‘ BTY -
bn,mv(E) = f T f gn,mv(si’E) dsy...ds,
0 0
where
' n fﬂ(s.)
= J E
gn,mv(sj’E) = ¥ S b

. Vv , m
J s]u..sn(l—Kn)

ﬁs uniformly éonvergent for £ >a >0, and g

n,mv(si’E) is con-

tinuous for 0 < Sj <B , E>an>0.

Thus, for 0 < Xj.i B,’T we have

| - B,[r Bﬂ .
by mylE+h) - bn’mV(E)! < f... f {gn’mv(sj,E+h)>-_
X] Xn
LI l
- gn(sj’E) } ds1...dsn + ‘ J - I gn’mv(sj,E+h)ds]...ds |
, 0 0 .-
X] Xn .
+ j ce f gn’mv(sj,E)ds]...dsj ’ | A(5.8)
0 0 :

Taking into account eq. A(4.4) we have
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.

n . |
gn,mv(sj’E) <M ocye, f?r 0 <s;.c B 3 E> a >»0 )

Now we can choose the Xj so that the second and third
integrals of the right side of the inequality A(5.8) are less

than = . Moreover for fixed X. since 99 .m (s.,E) is conti-
sMv* =]

3Mc1cg J
nuous jn T we can choose h > 0 such

9p,my(SjoE+R) - gn;mv(sj’g)l <

This proves the continuity of bn mn (E) in T.

Since a (x) and b (E) are continuous functions of

n,mv n,mv

its arguments for (x,E) ¢ T it is easily seen that the product

ap mu(X)eby n (E) is continuous as a function of (x,E) e T.

d) Absolute and uniform convergence (in T) of the series A(5.7)

From A(5.2) we have

wh
- X
ﬁn,mv(x) < Rmv | . A(5.9)
and from A(5.3) and A(5.6) we have
, n ,
'bn,mv(E) < Mcyc, A(5.10)

From A(5.9) and A(5.10) we see that the series A(5.7)
of positive terms which represents B"Q"P(X,E) converges absolutely

and uniformly in T, because we have

' ) M c coon
1 1 1T "2 X
-— a (x) b (E) < ———— = R A(5.11)
)\ —_
N (Aﬂ)n n,mv n,mv AN(Aw)n n. mv
Hence : ‘
Mc Co X Mc (B _+By )X ¢, X
8" () £ ()" qr D Ry = e L)
N T tomv N i
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Because the series y Rm .of positivérterms which are independent

. my (B +By) X - o
of (x,E) in T converges to e - , where By = TTT-X
- : . . a o
a = (m,N).
Since the products an‘mv(x)-bn m\)(E) are continuous

in T, so is BnQnP(x,E) as the sum of an uniformly and absolutely

series of continuous functions in T.

A,6) - B"2"P(x,E) = a"B"P(x,E) for n = 1,2,...

Proof. Note that in eq. A(5.1) the order of integrations can be

changed so that

' "1 _.n
I oo (X,E) = — @ .o - ———)ds, ...
€4 € ‘ X; i s] s.I ntteSy 1

A(s.lj

The equality A(6.1) is verified whatever berthe bosifive numbers
0 < e; < B .. Therefore both sides of eq. A(6.1) which are posi-
tive tend to the same limit when € - 0, providéd either limit
exists. But the 1imit of the 1ift side of A(6.1) which is
BnQn(x,E) exists as was shown before.

Hence the 1limit of the right side of A(6.1) exists also.
But this Tlimit is QanP(x,E). The proof is complete. |

The inequality
n.n n ‘ _ '
B"Q P(x,E) = (BR)" P(x,E) - A(6.2)

is easily verified, taking into account that the order of inte-

gration in A(6.1) is irrelevant.
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-

A,7) - Proof an inegua]ity
| w¢ have,
aB"a"P (x,E) = 28-8""1a" Tap(x,E)
But according to section 6 of‘this Appendix
BT (x,E) = QmBmP(x,E)'
From A(7.]) and A(7.2) we get

2B"2"P(x,E) = B"Q".aP(x,E) = B"2™Tp(x,E)

But from A(4.3) and A(4.4) we have

n+1 1 E
Q P(x,E) = +— ) a (x) b
. AN @y Mtl.my v (]_Kn)m
RULE (x) b_ (E)"'
) AN my n+l,mv my

| A(7.1)

A(7.2)

A(7.3)

A(7.4)

The same proceeding .used in Section A,5 to obtain A(5.7) gives

‘Bn n+1

N ()\w)n nv

Xn+1

lan+1,mv} = (n+1)7 Rmv

‘ n
< Mc, o

Hence we have

n - N .
Mc Co Xn+1 (BW+BN)X Mc] c,X
n

aB"Q"P(x,E)| < Ty e < =

(——

A

1
A_A
T

=

2_ n
i

X
nr

Q" P(x,E) = iL_ 1 ) an+1’mv(x) bn’mV(E) A(7.5)

e(8"+BN)X

A(7.6)
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-

2

Hence the series of the right side of A(7.5) is absolute and

uniformly Convergent on T. This.ehsures,the”continuity of

n-n+l ; ‘ . ,
B'Q P(x,E) on T, because the funct1qns an+1,mv(x)bn,mv(E) are

< .

continuous on T.

A,8) - Continuity of F (x,E) and P (x,E) on T

We have eq. (23) and eq. A(6.2)
Fn(x,E)=QE + B+ ...+ ('Bsz)'] P(x,E)

_«—-QE +BQ + ... 4 BnQn‘]P(x,E)

But according to (A.7) the QB"Q"P(x,E) are continuous on T, so
- is Fo(x,E).
Concerning to Pn(x,E) we can write

¥

Pp(x:E)

P(2<’E) -hA.BFn"](X’E) =

P(x,E) + BQ [i + BQ + ...(BQ)n;?.1P(x§E) =

E + BQ + + (BQ)"]P(x,E)

But we have seen in A,5d) that the (BQ)"P(x,E) “are continuous

on T, so is Pn(x,E).
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APPENDIX B

If the primary nuclear differential spectrum in the top

of the atmosphere is represented approximately by a power function

Fy(0.E) = 6(E) = NECTT) B >0 >0

the solution (5) of equation (1) reduces to

-x/L

Fy(x,E) = Fy(0,E) e ° - B(1)

1

where
A

AN
L. = B(2
@y - (1-|<N)Y (2)

La is the absorption length of the nuclear component (N) in
the atmosphere.

In this special case eq. (2) can be immediatly integra
ied by the method of separétion of variables. The result thus

obtained can be used to ¢heck our previous calculations. Thus

we have
B
™
"X/L .
P(x.E) = PNV (x,E) = S f<‘fN(n) F (0, %) e 2 dn/n
m
(s}
= A(x) (¥ 1) P B(3)
where " BN ,'
Cy = f f(n)nY dn . T B(4)
. 0
and
C., N -x/L
A(x) = 20 7772 B(5)
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Q"F (x,E) = a™ TP (x,E) =

‘2 1 (-0, ) (x-tq) |
f dt, e’ Km ! P(t;,E)
0

X tn+1
aty [ty [ oy
-0 o

A straightforward calculation gives

B(6)

1 4 1 '
‘7_(]'°Kn)(x't]) -X—(l-oKﬂ)(x—t]) E
e T P(ty,E) = A(t)) e m : E7\Y
(v+1) 00t
g (s ul L
= E A(t]) e ‘ =
X 1 1
: - -(— - —)t
| CoN. -(y+1) T Tt
N : _
B(7)
where we put
' 1 - (1-k_)Y
1 il
= B(8)
f; Aﬂ !
Hence _ , _
- . " | . e R I
oo SN ey D I
n+ o 0 -(yv+ L
Q P(x,E) = ( XN ) E Toe i f dtn+] f dt] e
(o) 0
Oy, () Ty 1 (G
0 “(y+ 1 m n
= ( X ) E e T o f e 2 (x-ty) dt,
0
X 1 1
cCN. T, % () (xety)
= (Ao gm(yt) o J ¢’ m thdt
0
X 1 1
o T x (-t
- (_No, -(vy+1) a 1 a TN
( o ) E e = [ e t'dt  B(9)
e}

Moreover

i



_ X 1 - 1 B
1 CaNo . TG 1 (t; Tt n [ ds
B"Q" TP (x,E) = (——) e —r J,e B A J — f.(s7)...
N . m 1
0 ) .0
" ds -(v+1)
* i S, fTr(s“n) (s] [3 sn? ’ T

: - . X (fL - E—)t C
CyN - n
N : " B(9)
‘where B
0 Tr ’
= Y '
Cn = f fa(n) nidn B(10)
0
Hence
T pNan % gnon+l _
F o= } B'® Fo(X,E) = Yy B "P(x,E) =
0] ‘ 0 : '
. X 1 1 .
- _ == X (7 - )t n ~n
C L L L ot C
e T AL J e & T 3 T gt
N : ' o n: A -
o ﬂ
B(11)
" Putting
LI L S T i B i A= -1 B12)
f; Lﬂ‘ A La L—Lﬂ Aﬁ-J La m La Ly
we obtain finally
-X - X
C L L
_ N -(y+1) T a
F6B) = g G fne i 5(13)
- 'l - NL
La Iy

which coincides with the result fiven by eq.(14)and (15) of ref. (5).
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