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ABSTRACT

Several relations among density distributions and ener-
gies of semi~-infinite and infinite nuclei are investigated in the
framework of Wilets's statistical model.

The model is shown to be consistent with the theorem of
surface tension given by Myers and Swiatecki. Some numerical re -

sults are shown by using an appropriate nuclear matter equation

of state.

I - INTRODUCTION

As it is well known, nuclear masses are expressed most-
ly by a smooth function of A and Z (A, mass number and Z, atomic
number), whose origin is usually understood through a liquid drop

model of nuclei, and some small fluctuations arising from quantum

effects of nuclei.

The liquid drop property is mainly due to the short ran-
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geness and saturational nature of nuclear forces. Homogeneous nu-
clear matter is an extreme case of such a system idealized to stu:
dy properties of the "liquid", neglecting surface effects.

For finite nuclei the surface effect is usually treated
phenomenologically; a typical example may be the Weizsacker-Bethe
mass formula.

There are several theoretical studies on surface effects
of saturating systems. Wilets et a].] introduced a statistical mo
del and investigated surface effects on semi-infinite nuclei.Their
model was developed by several authors2™/.

This kind of analysis about the behaviour of the liquid
drop based on a theoretical model, is important especially for in
vestigation of nuclei far from the B-stability line and super-hea
vy nuclei, since a large extrapolation of the theory is required.

Recently Myers and Swiatecki8 introduced a refinement
of the liquid drop model, called the droplet model, and discussed
surface effects from a very general argument.

In this paper properties of semi-infinite nuclei are
investigated taking Wilets' model as a base and trying to find a
connection between the model and Myers and Swiatecki's argument
to understand the physical mechanism of the system in the sim -
plest way possible.

In Section II the energy-density formalism is reviewed
using an expression for the total energy given by Wilets' statis
tical model. This energy is minimized with respect to the density
distribution of nucleons, restricted to the condition that the |
total number of nucleons A be fixed, to find the ground state dis

tribution.

We have studied some analytical properties of the solu-



tion of the differential equation for density distributions. It
is shown that Wilets' model is consistent with the surface ten -
sion theorem given by Myers and Swiateckj8 |

In Section IIIl some numerical examples are presented

taking a simple expression of nuclear matter energy.

II - ENERGY-DENSITY FORMALISM

1

In Wilets' statistical model the total energy of a

semi-infinite nucleus, neglecting Coulomb energy,is written as:

2 2
£ = [ telo) + B {21 yer (1)

where p is the density of nucleons in the nucleus (o =vpn+pp)’
e(p) represents the energy density of nuclear matter, and the se
cond term is a correction to the kinetic energy due to the non-
homogenity of the density distribution].

Ed. (1) is an energy density functional. In order to
obtain the ground state distribution, the energy E should be mi
nimized with respect to p, subject to the condition that the to
tal number of particles A = spdt be kept constant. This leads
to the Fo]]owing differential equation].

7% 2 de

-2"‘"‘M Vu+-—p-u=uu | (2)

where u = Vp and p is a Lagrangian multiplier.
Eq. (2) has the form of Schroedinger'’s equation for a
particle of "mass" M/z in a "potential" de/dp with energy u.

For a spherically symmetrical case, we get:
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2M  dr P

where y = ru.

The Lagrangian multiplier, or chemical potential u,
which has the dimension of energy, can be interpreted as the se-
paration energy of a particle of the syﬁtem, It cdincides with
the mean energy per particle E/A in the limit A » o, but for
semi-infinite nuclei p < E/A.

This can be seen as follows: the mean energy per parti
cle for a semi-infinite system is a monotonically decreasing func
tion of A since the surface energy is defined as being positive
(the gradient term in Eq. (1))and its effect on the mean energy

-1/3

per particle decreases as A Thus the total energy of a sys-

tem with A nucleons can be expanded as:

2/3

E = EOA + oA + .

where the term EOA corresponds to the volume energy in a liquid
drop mass formula and EO is the energy per particle of nuclear mat
ter at equilibrium density p = Poo” The second term is proportio-
nal to the area of the nuclear surface where o should be positive

as seen from Eq. (1).

Then the energy per particle is

E _ -1/3
A E0 + oA + .., (5)



showing that

E .
y > Eo since a >0

As %K(%)< 0 for large A, the chemical potential (ener-

gy of the "last" particle) is

ugg_%-_-go+—,§-al-\-]/3+... (6)
Thus for large A
E, <u < E/A (7)
and for A »> =
E, = u = E/A

It is shown that the physical solution for Eq. (4) should

satisfy the following boundary condition7

YT r
y ~ & (8)
where
de ZM
C' = (g7 - w) >0
dp p=0 E%?

This boundary condition for Eq. (1) forms an eigenvalue
problem for the chemical potential u as a function of a given cen
tral density Po-

The behaviour of u with respect to p,, in the neighbour
hood of Poo? (equilibrium density of nuclear matter), is studied

as follows.

Since the energy density divided by p has a minimum at



o = p

o » and the surface effect is always defined as being posi

00
tive, we can deduce that theground state distribution p(r) for
1/3

A > o is pratically constant until r = R, where R <A ;and falls
off within a finite surface thickness A (fig. 1).
Introducing a set of new variables
£ = Rx
n = Ry
the following equation is obtained
QE% = cR? ;He - #}n where C = Zﬂ? (9)
dg (de X ch
when
- (hy2
p = (g)
In the limit Po ™ Ppo> Ve get A » ©» | R » = ;nd
n= /oo £e (1-¢) (10)
Integration of Eq. (9) with respect to &, from 0 to « gi
ves
dn 1% _dnl L ogp2| [de L T g
€ | e Elr=0 | do
For very large A, or Py = Ppg> Ve obtain
_1:C2[de_u]
2 dp
or
de

- . _ 2
o ~ M 7 Py (11)



Combining Eqs. (6) and (11) we see that

where

Substituting

rm
o+
Nl =

(o

From this we

2 2 -1/3 .
+EE?-EO+’§‘@A + ... (]2}

the equilibrium density of nuclear matter

2
% (Py = Poo)  + Klpg = Pog) Py (13)
K=g—2‘2'('€5) |
do P =04

Eq. (13) into Eq. (12)

2 2
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= E, + % o AT1/3 4 L,

can see that

) 2 ,-1/3
K(Qo poo)po -3 A
) /3 _ 2
(Pg = Pgoo) A S 323; (14)
where o represents the surface coeficient.
Then
-1/3 ~ ' -
A = C' (p, = Pypo!
A = 1 + higher order terms in (~——%—~——) (15)
(b - p )3 Yo~ oo
) 00

Knowing that

the density is almost constant until r = K
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(Py = Poo)

From Eqs. (16) and (11) it follows that

de 2

T "M (po -,poo)

In Fig. 2, eigenvalue p in function of Pos in the neigh
bourhood of oo’ shows that the central density o must be great-
er than Poo? 1'¢f’ Po tends to 60 from the right side of Poo whe
re the system is infinitely large.

This can be proved in the following way: defining

E(p) = Eéﬂl
then
dE(p )
de ) 0
T - E(ey) = p
po 0 dp0 o]
but
E(p,) = E_ + 5 (o -0 )2+ (17)
0 o V7 ‘P 00 T
X0
d€_ _ E(p ) = K(p. - p..) wh 18
35; | o Po Poo when o, ~ 0., (18)

On the other hand

de _ . ) 2
do, H (Py = P4o)

(19)

Then, combining Eqs. (18) and (19) we get



b= Elog) = K(ng = 00)%0[ (p4=000)"]

Using the Eq. (14) it follows that

| 7
W= Eg - Klog = pgo) * 0 | (o, - poo)’]
> 0 for p. - p > 0
< 0 for p. - p < 0

However from Eq. (7) u > EO, so that we should have

Po ™ Poo 0 for large A (20)

Myers and-Swiatecki8 investigated a semi-infinite sys-
tem of compressible matter and dedu;ed a general theorem for the
property of surface tension.

We can also show that our analysis is consistent with
their study by the following:

It is known that the total energy of compressible nucleus

with A nucleons is

E(0,A) = a,(p)A + ag(o) A%/% ...

where a, and a, are volume and surface energy coefficients genera-
lized to a compressible liquid drop, and p represents average nucle

ar density.

Ground state density is specified as

%5 =0 for A fixed
O —
p‘po

SO

ayeg) *+ aflpy) A% = 0 (21)
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But from Eq. (17)

e K 2 -
&y ° 5 7 E(rg) = By *+ 2(Pg7P40) for py = Pgg
We get from Eg. (21)
, . _ 1/3 - 2
ag(p,) = ~K(pg=pgo) A for 0, = 049 (22)

Substituting Eq. (14) into (22) we find

. 2 o
al(p,g) = -3 —
s' 00 3 Poo

Since from the definition of o and as(po),

as(po) > o for Po ™ Poo
Then

al(pge) = = 5 25 %00)

s'7 00 3 oo

This relation coincides exactly with that of Myers and

Swiateckis, i.e.

4

where o is the surface tension and is defined as

1/3
2 . _ 44w
47‘”"00 = as(p) with Y‘o = (3‘3)

ITT - NUMERICAL EXAMPLES

Deduction of Eq. (9) is done assuming that there exists
a solution of Eq. (4) for which nuclear density is approximately
constant in the interior region and falls rapidly to zero at the

surtace.
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In order to confirm this, we so]vedAEq. (4) numerical-
"y with boundary condition (Eq. (8)) using a conventional formu-
la for energy density of nuclear matter. A simple expression for
av(p) = g(p)/p was given by Kodama and Yamada from semi-empirical

9,10 and we use their result here mostly for the sake of

analysis
simplicity.

Numerical results show that in fact there exists a so-
lution of Eq. (4) for a given A which satisfies the saturating
properties of density distribution (see Fig. 5). Calculation is
done tur € = 2.10 which is chosen by fitting calculated surface
thickness to experimental values.

Surface thickness of a nucleus is plotted as a function
of A in Fig. 4. We can see that it tends to a finite value for
A > o which justifies the validity of Eq. (10).

In Fig. 5, total number A is plotted as a function of Mo
where equilibrium density of nuclear matter is also indicated.

It is noted that the derivative of A with respect to o for
A - =, is negative, in agreement with inequality (17).

To check the consistency of the results with the 1i-
quid drop expansion, the relation between A and (po - poo) is
shown in Fig. 6. It was verified that the slope of In A X ln(po-poo)

is = -3, in accordance with Eq. (15).

IV -~ CONCLUDING REMARKS

Using Wilets'energy density formalism with a conventic-
nal energy density formula of nuclear matter, we have proved expli

citly Mvers and Swiatecki's theorem or the property of surface ten



siun, showing that the energy density formalism is adequate to
*reat the semi-infinite saturating system.
Our particular numerical examples show the influence o7

A]/B over the nuclei

higher terms of the liquid drop expansioﬁ in
with A < 40 (Fig. 3). In the region of the nuclei for A > 40 we
observea that the central density tends to nuclear matter density
when the nucleus becomes infinitely large.

For large but finite nuclei, surface tension compresses
the central region causing an increase of density above nuclear
matter equilibrium density by an amount proportional to surface-vo

-1/3)‘

lume ratio (~ A For small A, the central density decreases

with mass number; for lighter nuc]ef the statistical model does

-1/3

not work and the liquid drop expansion in A is not valid.
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Figure 1 - Density‘distribution near the surface for a semi-infi
nite saturating system.
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Figure 2 - Schematic graphs of de/3p, E(p) and u(po). u contacts

the curve 3e/3p quadratically at Po = Poo-
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Figure 3 - Examples of density distribution, calculated as a fun_t_
tion of radial coordinate r.
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rigure 4 - Surface thickness (defined as A = r

p=0.1po - rp=0.9p ’
plotted as a function of A. 0
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Figure 5 - Total number of nucleons calculated as a function of
’ the central density Po- The position of the equili -
brium density of nuclear matter p is shown by a dot
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ted line.
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Figure 6 - Logarithm of the total number of nucleons A plotted

against the logarithm of the difference (po-poo). The
inclination is approximately = 3.0.
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