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ABSTRACT

Conformal symmetry in Lagrangian field theory is discussed for
Lagrangians with derivatives upto first order. Conditions for 'invariance'
and 'covariance' of the Lagrangian and for expressing the conformal currents

as moments of 'improved' energy momentum tensor are discussed.
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1. INTRODUCTION

The idea of approximate symmetry with respect to dilatation and
special conformal transformation group of hadronic interactions has drawn
renewed interest in recent years. This development arose out of the expe-
rimentally observe 'scaling' at high energies, which suggests the pos-
sibility of a dynamical 1imit where dimensional quantities become unimport-
ant. The other important motivation has been the possibility of explaining,
at least in part, the masses of the stable particles as arising from spont-

aneous break down of dilatation invariance.

We discuss here the symmetry of a Lagrangian field theory with
respect to scale and special conformal transformations. Lagrantian is  as-
sumed to contain derivatives not higher than the first. Distinction is made
between the cases in which the infinitesimal quantity [SL] defined in eqn.
(2.16)vanishes('invariance') and the case in which it is only a  divergence

{'covariance').

It is shown that in both cases the 'weak' conserved currents
derived from Noether's theorem can be cast as moments of the "improved'
energy momentum tensor. We find also necessary and sufficient conditions

for ‘invariance' condition to hold and that a Poincare invariant theory is
invariant (covariant) simultaneouly, with respect to both scale and special

conformal transformations if the conformal deficiency vector vA vanishes.

In section 2 we review the Lagrangian field theory and
Noether's theorem. In section 3 we discuss the variation of field cor-

responding to infinitesimal conformal transformations.In section 4 conformal
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currents are constructed and the conditions of invariance and covariance of
Lagrangian under infinitesimal transformations as well as the condition for
expressing currents as moments of improved energy momentum tensor are discus
sed. The dilatation symmetry is discussed in some detail. In section 5
applications are made to spin 0,1/2 and 1 field theories and a short sec-

tion 6 is devoted to the presence of fields with anomalous scale transformat

ions.

2. REVIEW OF LAGRANGIAN FIELD THEORY AND NOETHER'S THEOREM(1)

a) Notation:

We will consider a classical field theory in  four-dimensional

| space-time. ‘The dynamical system is described by N fieid components ¢A(x),

A=1,2,...N - the dependent variables - which are functions of independent

*
variab]es( ) X = (xo, x], x2, x3). We assume that a Lagrangian density

function L can be defined as a function of x¥, ¢A(x) and derivatives of

$p(X) only upto first order.

The action integral is given by

J[ Sraeer N 1= Jb dx® J 43x L{X, ¢50 ¢)
a R (1)
- [ d Lix 0020)
9]

* We use the metric ¢"=q = (1, -1, -1, -1), ¢"V=g =0 u# v.
v
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where R 1is a three dimensional region and. @ is a cylindrical space-time

*%
region ( ).

The dynamical equations are then obtained from Hamilton's prin-
ciple by requiring that the functional J[¢], ...¢N] be an extremum for
all admissible variations 6¢A, with region Q kept fixed (e.g. 6x“=0). By
considering the particular case of 6¢A which vanish on the boundary of Q

we obtain Euler-Lagrange differential equations
- oL

= - 9L Ly .

Here auF = F 1is the usual partial derivatives where coordinates other

ax“

than x"

are kept constant. We will use 3uF/ to indicate partial derivative
w.r.t. ¥ which regards coordinates other than x", ¢y and all 3,4,  as
constants(+). For convinience in notation we introduce the vector

) =(¢1’¢2”'¢N) and tensor V¢ with components %J¢A so that

J[¢] = LZL(XAMV¢)dX (3)

and 51

el

+ auw“= 0 (4)

** Q is cartesian product of R and the interval [a,b]
+ Note that:

_ oF oF
BUF(X,¢,8¢) —Bu F/ +-—§$—— 8u¢ + 515;57—— 8u3A¢
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‘ oL
where ', = ———— and ™ = (T, .. Th) (5)
A 3(3 ¢y) 1 N
u'A ,

We assume throughout that partial derivatives of L exist upto second order

w.r.t all its argument and are continuous.

b) Noether's Theorem:

We now consider arbitrary infinitesimal transformations

Cop(x) = (%) + Topt oo (6)

or Bop(x) = 0y (X)-0p(x) = Toys.. (7)

where r .
_ s = kz1;k c%k)(x,¢,v¢)
and
T, E (k) (8)
Sdp = . B (X,¢,V¢)
Az kT

are arbitrary functions of x, ¢ , V¢ and €y (k=1,2...-.r) are the r

essential parameters of the transformation. We introduce also

Bop(x) = 04(x')=04(x) = S0yt )
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with
r

5¢A = €k B(';) (X.afbav‘b) (10)

k=1

It is easily shown

3(3,0)= 3, (%0)

8¢ = 3¢ + (au¢) s

- v
8(3,0) = 5(3,0) + (3,2,6)6X
(11)
_ - PFURY
= 3,(80) ~(3,0) 3,(8x")
These relations lead to relation betWeen the functions, B, B and C. The
tranformation carries J[¢] to
100 N R TCI CORM RN CRIES
Q. (12)

J L(x',0',V'59") | gil [dx = [ L'(x,9,Y4,VVe)dX
f Q

where @ is mapped to new region Q' and L'(X.¢,Y6,VV¢ )= L(x',¢',v'¢')l3x'/3xl
may contain second order derivatives. The variation of the action functional

is thus

A = 3[¢']- 3T¢]

' (13)
= J [aL]dx
Q
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where
B = Lixhets (), 9ot )) | 2= |- 1(x0(x), 98(x)
= L'(X,¢,‘V¢,W¢) - L(Xs¢,V¢)
(14)
= [8L]+...
Ad = 8J+... ' | (15)

where 8J, [6L] indicate the terms upto first order in infinitesimal

parameters.
Clearly
8J = [ [5L]dx (16)
Q .

where

L) = [Lix'0',7'6") = LOGETN] + L(x:,79)3,(6X") (a7)
on using

ax'y_ U
| =1 + 3, (8x") (18)

on making Taylor expansion

[61]= & ‘Gx”+ L g +ro(,0)+ L3, (84')
9 axH ¢ u 19)

_ AL JaM 4 9L A i v |
e |6x + g 00 + 7 (3, (29) (3,0) 3, (8x")} + Lau(ax“)
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This can be recast as (2)

[sL]= '[L]A Sop +8u(11};\ To + Lsx)

(20)
v
Here summation over components A= 1... N is understood and ™V s the
canonical energy momentum tensor
TV V. gHV
(21)

™y = n“au(p - 4L

It may be remarked that, due to arbitrariness in the region & ,

§J=0 implies [6L]=0 and vice versa.

If action is invariant under the infinitesimal transformations

under consideration we find
v ‘
e 3, = TLlp T, (22)

where eZ” = ﬁ; 6¢A - “Vaxv.‘ For constant parameter transformations this

leads to "weak continuity" equation(z)

€ auz“ 20 | (23)

where 2 indicates thefequality when the_fields ~ satisfy thé Euler's
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equations of motion. For invariance undér coordinate_dependent parameter
transformation, like gauge transformation we obtain identities. We will be
concerned in this paper with the constant parameter transformations. The
linear independence of the r parameters lead to r weak continuity equa-

tions.

It is clear also that weak continuity equation can be defined

even in the case the actions is not invariant.

For the case(3)

[sL] = eauAP (24)
We clearly héve
e = ﬂiﬁ&A - f“vsxv - et (25)
aﬁd
eauz“ = [L], T¢,= 0 | (26)

This case is important since Euler's equations corresponding to [sL]are then
satisfied identica]]y(4). This would then assure that the_Eu]er's equation
calculated from the transformed action J[¢'] are the same as those derived
from J[¢]. In other words the equations of motion are form invariant w.r.t
the infinitesimal transformations 1ike in the case with [5L]=0, even though
the invariance of action may be lost. For the case in discussion we call
the theory 'covariant' while the former case will be called 'invariant'

theory ([6L] = 0).

There is a still more general case(s), viz, [6L]= eauAP-f with
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f20and f # [L]ASbA where we can write a weak continuity equation with i
given in eqn. (2.25); the form invariance of the equations of motion may ,

however, also be lost. .

3. CONFORMAL GROUP. TRANSFORMATION OF FIELDS,
a) Conformal Gnouﬁ(él:

The connected conformal group containing the identity (called
for simplicity conformal group) may be defined as the group of following
transformations on the real space time coordinates x* of a vector in the

four dimensional Minskowski space:

1. Translations v
L

xl

2. Restricted Lorentz group of transformations

(W) = x™ = s g M oM =g, 100> 1, det A=
3. Scale or dilatation transformations: (ng)u = x'H =P ¥, p real

4. Special conformal transformations:

(g, %) = x™ = (& - Hx®) / [1-2cx+ 2 K]
These transformationsTEonstitute a 15 parameter group and the specj;l‘trans-,
formations are non-linear. Each of these sets of transformations éonstitute
a sub-group which is abelian except for the case of Lorentz transformations.

Note that translations do not constitute an invariant subgroup.
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The infinitesimal transformations are given by

Translations:

st = et = - i PV X
v
Lorentz transformations:

o

ax!
e ==-¢€_3 | —=—|=1
By W 9X
Dilatations:
st = - et =i e DR
| 2| = (1-4e)
oX

Special transformations:

s = n, (2x¥ ¥ - i xz) = inv K ¥
| (1)
ox' | . _
"5)(_- | = (1 +8T].X) '
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K o= - (2xY - x2 g” )a)\ * are the fifteen infinitesimal generators.
The Lie algebra of these generators also determines the Lie algebra of the
abstract (cdnnected) confohna] group whose generator will -be indicated by

M, M, D and K. The Lie algebra is found to be:

D, P] =-iP 1o, KJ=+1K
[0, M) . 0 Uﬁn K,] =0 [P, P =0

Pys M1 = H(9g, Py = 9o Py)

’[Kc’ Mu\)] = 1(gcJu K\) -g Ku)'
ov
(2)
[Ku, Pv]~ = - 2i(g,, D'+ M)
Myus Mool = 1085 Mg = 95 Mg = g, Mg *+ 955 M)
Note that thé‘;_,conmutation relations imply
eipD‘P e-ipD - ef Pu
H
. . (3)
e1pD Ku e-'IpD - e P Ku

and that Ku transforms as a four-vector. The exact' dilatation symmetry
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(with an integrable generator D that takes one-particle states into
one-particle states) implies that the mass spectrum is either continuons-or

all masses are zero.

Introducing JAB (A,B =0,1,2,3,5,6) where (JAB = - JBA):

iy = My Jgg = D Jg, = ~ (P, - )
(4)
1
| J611 = —-(Pu + Ku)
one has
Joy J . i i
[ 9] - T(9kn M + 9 Jkn ~ Ik Sy T 9N k)
g = (+ I N +) ) )
CAA (5)
98 = 0 ;s A#B

which is the Lie algebra of SO (4,2). Thus conformal group is locally
isomorphie to non-compact group SO0(4,2) whose covering group is the spinor

group SU(2,2). Three Casimir operators are then easily obtained:

AB _ v ‘n _ on2
g I = MW MY 4 2P.KA+ 8iD - 2D°,

JAB JCD JEF and JAB J CD

€ABCDEF 5c Y

oA
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b) Transgormation of Fields:

We postullate that there exist interpolating field (with a
finite number N of components) to every particle which transforms ac-

cording to a representation of the conformal algebra. Thus corresponding to

a transformation

o= (g ) g ¢ Conformal group, the field
¢(x):(¢],.... N) transorms as .

T(g) o(x') = ¢'(x') = 5(9,x") é(x) - (6)

where {T(g)} constitute a N dimensional representation of the conformal group.

For the infinitesimal transformations

15
T(g) = T +1i e L + oo (7)
- k=1 .
wHere the essential parameters are labelled as € k=(1, ...s 15) for
conVenjence. We find
To(x) =1 ) e I o(x) (8)
k

The generators Ik satisfy the Lie algebra of conformal group.

When the fields are quantized field operators acting on the
state vectors in Hilbert space which carries the representation according

to ~ ’ : |
/Y>> o+ U(g) > Tl )
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whith U(g) a unitary operator we obtain the supplementary constraint(7)’

o' (x') = U(g) o(x') U(g) | (1b)

For infinitesimal transformations

(1)

it follows

So(x) =1 E e [6(x)s 6] (12)
where Gk satisfy the Lie algebra of conformal group. Since it is easier to
calculate the commytators in q .f. theory where ¥ is simply a  parameter

‘we will frequently calculate the variation of ¢ regarding ¢ as quantized

operators.

Homogeneity of space with respect to translations according to

spécial relativity requires for any(+) field 0(x)

0'(x') = 0(x) = 0(t 'x") (13)
when (tx)* = xH o=+ M
thus GIO(x) =0 . (14)
and F0(x) = - &, 0 =de P O(x) (15)

(#) rather observable field.

T
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Regarding field as operator in Hilbert spaée (UT > eiE-P)
50 = igox), ]
Thus
u . _ M .
[o(x),P" ] = i 0(x) = P 0(x) (16)
from which it follows
0(x) = e'*-P o(0) e71X-P —7)

Homogeneity w.r.t. space-time rotations requires that the
interpolating N component field ¢ transforms according to a (non-unitary

and irredu;ib]e) representation of the homogeneous Lorentz group. viz.,
o' (x') = S(A) &(x) (18)

with S(A)constituting a representation of the Lorentz group. For infinitesi

mal transformations we define

S(A) =1 - E,e"" 7o (19)
so that j - '
6L¢=-E€szo¢ . ~ (20)
and ;
?S-L¢=-—2-€pg_mp°¢ (21)
where

m® = ch + i(xpa0 -7y | (22)




Taking the field operator point of view

and

B0 = - e L0007 ]
so that
Co(x), M7 ] = m® ¢(x)

Using the relation in eqn.(3.17) and the identity

[¢(x), Mpo:l - e1'x.P [¢(o), Mpc(_x) 1 e-ix.P

where (M = MO (o))

MPO(-x) = MP? + (xP PO - xO PP)

we can show

[ #(0), T = 779 ¢(o)

Conversly, if we take this relation as definition of zpo we can

eqn. (3.20).

For dilatations we define
[4(0)s D] =1 L ¢(0)

Where L is a N-x N matrix and D = D{(o). We may now use the

(23)
(24)

(25)

(26)
(27)

(28)

recover

(29)

identity

similar to eqn. (3.26) to obtain [¢(x), D] . In the present case

D(-x) = D + x* P,

(30)
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so that

[ o(x), D] =d(L + x.3) &(x)

1

d ¢(x)

Then
85 #(x) = - ie [9(x), D] = - i edox)

11}

where  Up e 180 1t follows

0'(x) = e 9(e° x)

(31)

(32)

Comparing with ¢'(x) = S(g,x) ¢(g']x) we see that under finite dilatations:

o -p

X =e H

X

' (x') = e o(x) = e o(e® x')

and correspondingly Uy = e-ipn, that is,

e g(x) &0 = &Pt g(ef x)
Also

sp=el o(x)s X! = -ex!

For special conformal transformations we define for

operator ¢(0) to satisfy(3)
[ #(0), K, ] = <, #(0)

(33)

(34)

(35)

field

(36)
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From

-ix.P ix.P
Ku (=x) = e ISJ e

. ly v , -
Ku + 2(xu D+ X Muv) + (Zx‘1 X.P = X Pu)

and identity analogous to the used above

we find
[ox), 7 =&k (x)
where 4
k, =, +i(2x, x93 - x2 3,) +2x L+ x¥ L
and '
8, o(x) = in [ e(x), K ]=in, K o(x)
or

o'(x) = [T+ in" {2(x L+ x L) +"u'} ] ¢(g;‘ X)

or

TR . v
S(ges X) = 1'#+ in {2(xu iL + x XW)+ Ky }
Thus

§.9(x) = ¥ {2(x, iL + x¥ L)t K} (%)

It may be noted that in &¢ (or &xX') no derivatives of

(37)

(38)

(39)

(40)

(41)

(42)

(43)

the

field appear. It follows that [§L] contains derivatives only upto first

order. In this caset®) A" is a function of x and ¢ alone. Note also that
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™, mpc, d, KM satisfy the commutation relations of the Lie  algebra of
conformal group' and that k" makes transitions between fields with dif-
ferent Lorent transformation law; we will assume it to vanish in discus~
sions to follow. Also it follows that [L, }*° ] =0 and, if the field ¢
constitute an irreducible representation of homogeneous Lorentz group, L is

a multiple of identity matrix.

4. CONFORMAL CURRENTS AS MOMENTS OF A SYMMETRIC ENERGY MOMENTUM TENSOR:

We may now calculate [ L ] from eqn. (2.19):

_ n ] oy
[GL]—eI L+2 pGIL elpL+n I L (1)
where
oL
Uy
I.r L= —
axH
1%L =.(x0 g™ - xP M) 3, L
- 1( zpo¢ +1r Z 3)\ $) + (np 3% - 1° a°)¢
3¢ _
- U ‘ oL A
IDL--x auL/-4L+ %—Lq) + 7 (L+I)a)‘.¢
Ich=(2x“ g"v 2)3 L‘-Zx (xBLl+ID)
+ (¥ g R ] 2L ‘ - 1M
R R I S ¢
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where(*)

W= 2i m (iLg” + M) | (3)

is conformal deficiency vector.:

The currents in conformally

weak continuity equation are also easily

"covariant” theory satisfying the

o (*F)
found. : Writing

e =-e M uge 37 +ed "”\,‘ch‘w |
" el =-¢ A%“ + %-epolAEG + € K;'+ LT A%v | (4)
We have in Poincare invariant theory (AT = AL = 0)
.‘J.‘.)‘u Tku
Jt?o = - Jtcé = -in 7% + (xPT'9 - xO 1*P)
JDX = X, ™4 L - Ag
Voo @2 x - g x) p + 2ix A (iLg™M + T ¢
c H H H
LA W (5)

* Note that V¥ does not depend on 3L/3¢. Also we will assume k°=0

** gign in front of JT is for convinience.
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where
3, 9t 00 | (6)

& | =0 (7)

e.g. L cannot depend explicitty on coordinates, and
. ol ¢po A PO _ 1D £O 0 4P 8
(g e+ [T 38) = (37 -m 30)¢ (8)

which may be used to determine the matrices J°°.

Au Au A

Exploiting the fact that 3 and 2+ au X~ where X = - xu

have the same divergence and charge (if x1° vanishes, sufficiently rapidly
at the surface at infinity) we can write the currents in simpler form, In

terms of Belinfante tensor(g)

VAl (9)

where
xxyp - . 1.[1,%.211% - PP - P ™el - - (10)
The currents take the form (x° = 0)
JTAu = ¥

g Ao = (xP 0 - @Ap)
L
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-JAC" = - (2xY X, - &’ XAy + OV - Ai‘:\’ ()
| u

A further simplification can be achieved by introducing “improv-
ed" energy momentum tensor(®) oM -
oAy 1 Apuv
Ve N = P -
+ 5 3 ap X (12)

Where 9, W PHY §s symmetric and divergenceless on indices u and v and

Apuv A v _Ap _ v
yPH =gpc+uv+gp %p‘_&u%p_gkvaup

(g g% - g” P, (13)

with o*V being any arbitrary tensor function of fields and o‘i\’=% [Vt o],

The currents then become

I+ -

JL>‘°° + (xP 0 - X0 e?“’)

A w1 oy _ A

Jy %, 6 2(v"+zapo?‘) Xy

AV, 2, AU A A VA AV

IMF-(2x" x, - g XY R (Y +23 0'f) -2 - K (14)
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where the equality -+ means that we have dropped all the terms whose

divergence w.r.t. index 'A' identically vanishes.

The arbitrariness in the choice of o may allow is to write

JDX %=.xu ex“
AW _ oV L v 20 A | (15)
Jc (2x xu gu x~)e

Al

Since, in a Poincare invariant theory, o and " can be shown to be

symmetric tensors it is easily shown then

Ao U
BAQD 6 "
(16)
AU Q _ 5,V A O _ oV
8,9, 2x” 3, Jp 2x e“u
or
—2- J Jg d3x = 4 J x oM d3x-3 J & d3x
dt dt Lo H
-4 J 33 - 2Jx"eu dx (17)
dt ¢ o
" In such a theory the trace é“u determines whether the dilatation | and
conformal charges are conserved or not. It may be remarked that e“u is

. much 'softer! than the trace of canonical energy momentum tensor in the-

sense that it involves less derivatives of the field.
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The conditions necessary in Poincare invariant theory,to obtain

eqns. (4.16) and (4.17) are’

3 [-;-(v*+2apo“)+AD>‘] =0

Vo yA Ap VA Av
8 X (V +2apa)-2cs - A, 1=0 (18)

while the conditions that theory be conformal ‘covariant' are from egns.

(4.2) and (4.4), (I;L=1IL =0:

Sy A
ID L= ax AD
Vo _ 9V v o_ AV
IoL=-2xIpL + V0=29 A _ (19)
where we have assumed* kY =0 . It is clear from egns. (4.19) thét(g)

scale invariant theory is also invariant w.r.t. the special conformal trans-

formations if and only if
W=0 ' (20)

In this case we may choose MY =0 to satisfy eqns. (4.18). In case eqn.

(4.20) 1is not satisfied the scale invariance leads only to special conformal

‘covariance' (c-covariance) and W= 3 Acxv. Eqns. (4.18) can then be

satisfied by the choice '
N B Y
9P = - 2 A | (21)

This is the case, for example with massless scalar ¢4 theory and the

* Note x° makes transitions between fields with different L.T. law.
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improved tensor e>‘u involves a contribution from scalar fields but not for

example from a massless spin 1/2 field for which W =o.

If the theory is c-invariant we have W=2x"1,1L so that

D
c-invariance implies a scale invariant theory if and only if W=0. If this
is not the case only ‘covariance' w.r.t. scale transformations is obtained.
In this case, we can satisfy eqns. (4.18) by choosing

AP = - A8 (22)

For a theory with only 'covariance' w.r.t. scale and c-trans-

formations, we have
Voo a2t o af (23)
and the choice for oxp is

P = - ( %-AEA £ My (24)

Thus if theory has symmetry w.r.t. conformal transformations and is Poincare
invariant it is always possible to write the currents in the form of eqn.
(4.15) and the conservation of dilatation and special conformal currents
implies then |

UQ, : ‘ ' 25
o, =0 (25)

We note also that Poincare invariant theory, has symmetry w.r.t
conformal group only if we may write the conformal deficiency vector W of

the Lagrangian in the form given by eqn. (4.23) from which AC and Ap can

be identified and the improved traceless temsor ¢ then defined with a




choice of o"¥ given by eqn. (4.24){ For the case of conforma} invariance
the tensor '™ may be identified with the Belinfante tensor 5 whose trace
must vanish. The lack of vanishing of gku thus provides a  measure of
Tack of (exact) conformal invariance in a Poincare invariant theory but it
does not exclude conformal 'covariance‘, for which e“u is required to
vanish. Egn. (4.19) shows that if V¥ = 0 the theory with conformal sym-
metry is either invariant or 'covariant' w.r.t both the scale and special

conformal transformations.

A remark on the scale invariance condition may be interesting.

: WOrkihg with natural units H =c =1 all quantities in the Lagrangian

have dimensions of length. Let us denote them by
2 -1 L
()= 17 [el=t® Lo el=tt [f1-LT (@)
where f are the coupling constants appearing in the Lagrangian. Since in

Pincare invariant theories [L] = L™ we obtain on applying Euler's

theorem for homogeneous functions

_ ol P
-4 = -3—5—2,4)4' T (R,I)axd)
oL al
where £ = (2A IAB) is a diagonal matrix. Then

L A

ID L= g¢ (L+2)¢ + 7 (L+2)3A )

aL aL (28)

-Imge 1kt o
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We may write L =) o, L where g, are coupling = constants
constructed from the masses and couplings f.‘ The last two terms ‘can  then

Q.
be written as ] g o L where dimension of g is L Y. Then

- 9L
IpL ! —5%- (L +2)¢ + (L+2)3 ¢ + o LY } gY (29)

Scale invariance condition then implies that for each dimension less

coupling we must have
L (L +2)¢+ nyx (L+2)3 ¢=0 (30)

and for each dimensional coupling the parenthesis { } must vanish. If we
*

assume L=-2>=- (RA GAB) no dimensional couplings may be present if

~ scale invariance holds. For interacting field theory, it is clear that not

all the masses need to vanish in the scale invariant limit.

5. ILLUSTRATIONS FOR SOME FIELD THEORIES

a) Scalarn Field Theony:

To illustrate our discussion we study the following Lagrangian

for a scalar field ¢:

o g A
Lab [ o)a, o) -nf ¢ Je =g+ — ¢ (1)
| H 3 4 .
= e e -nfe s g ened § (2)

* See remarks at the end of section 3.
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Euler's egns. are (3 = ¥ au)
(O +nP)e = go® + 26 (3)

Lorentz invariant condition is verified to be satisfied with 5°9 = 0. The

energy momentum tensor is

V=Y = (3 g) (27 0) - ¢ (4)
Bu=- (F 0) (3, 0) + 2’ & - 2’ -ne’ o (%)
Theory, therefore, can at best be conformal covariant. This may also be

seen from conformal deficiency vector
P = - 203 o)L = - L 97 = - LPo(™ o) (6)

which does not vanish due to the kinetic energy term(lo). It also shows
that w.r.t special conformal transformations we may at best obtain
'covariance', while scale invariance is not excluded. Since ¢ and g have

*
length dimension (-1) the scale invariance condition is

(L-1) (#6130 + né2-1)¢% + glt- Do’ + ALt = 0 (7

* It is interesting to note that if we apply scale invariance transforma-
tion ¢'(x') = o lo(x); x'.= ox  to the Euler's equation ~ it' is  left

invariant also with the choice L =‘2; m=0, A =0.
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For kinetic energy term (L-1) (M9) (au¢) to vanish identically L = 1; it
then follows m=0 and g=0.

Massless scalar theory with
21 (s o) (ahe) & A 6 -
L=z (30 (270) + 0" (8)

is thus scale invariant. We find

IA =V = - ap(gP 6% | (9)
so that 1&8‘p =- g™ o2 and o = %-gpA ¢
The improved energy momentum tensor of eqn. (4.12) can be

calculated easily

- 1
PP =T -1 (M- g e (10)

and

6”u= ) [—- A¢3 + [ ¢] + 2m2 ¢2 - %«g¢3 (11)

Thus m and g are responsible‘for breaking scale invariance. A1l the cur-

rents can be written as moments of the tensor e>‘u according to eqn. (4.15).




173

b) Dirac Field Theony:

: %
L o= -‘2-1{ T (iv.9 - m¥ + ¥ (-iy.0-my¥ }
t 0. - i; M, 3L _ iy 5.
W-\F Y’ T‘]J"ZVY, B‘P ZVY.B mv
. oL .
Sl L° vy — = Yo( L y.o¥ - my)
2 ¥ 2
Euler's eqns. are
(=iy.09 + m)¥ =0
¥ (iy.d+m=0

1 ' . * :
Lorentz invariance condition is identically satisfied for }% =-i4- Py,

(12)

(13)

(14)

For free field with canonical = dimension & = - 3/2 I, the Lagrangian L has
’ * *po * and
* = =X po =Le y
Note & V¥ > €00 ) LY =3¢ Y
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length dimension -4. The scale invariance is obtained for massless theory

with L =-3/2 1. The conformal deficiency vector vanishes identically even

for massive case so that scale invariance also implies special conformal

invariance, and o"¥ has no contribution from massless spin 1/2 field.

¢) Vecton Field Theony

=l M
L , PRy~ m A A
where® A S A (15)
oL Bl v ‘
—_— - me A, — = P | (16)
2A, 23, A\) »
Euler's equation are
pA
I A
Ao ] oA (17)
HHK =- 3 8 F
m ‘
For m # 0 then
(O+nf) A =0 | | (18)
a(FV F
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Applying Lorentz invariance zpo may bg easily found to be

(M) = 1 95 - & o)) (19)

The commutation relations of Z“V can be verified to be analogous to the

equn. (2.28). Conformal deficiency vector is

V\)

. papVA A0 (YWD
2i {1F» qu A” + FuA(E ") _Ao 3

. | 20

- 2lbg " %) P A?\ (20)
It vanishes if

e X g A e

b = %o or L"a=94 | (21)

‘We d1so note that [ A ] = Lf1 . For scale invariance, if

L>‘0 =’g z , theory must be massless which is ~ well known and theory is
then conformal invariant. There is no contribution to oV from massless
vector field. We also note

A A | (22)
%xxuo: PAH P - | - : (23)
B LBV = PR () PR - gL

‘ L o (24)
R AR e ST A A
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and

2 2

M = (ax F)\U)Au + 2m

U
" Au Ao m

Aﬁ [\ | (25)

6. FIELDS WITH ANOMALOUS SCALE TRANSFORMATIONS

To illustrate the consequences of modifield scale invariance
condition in case some of the fields do not have the normal scale transf-
ormation we consider a field theory with the fields '{¢A} = ¢ with normal
transformation and a single scalar field o(x) with the scale transformation

given by
sx* = - ext So(x)= eTo, ax(so) =0 (1)

where o is a constant field with dimensions of mass i.e. [a] = [ o, = L.

It is convinient to work with dimensionless field p(x) = o(x)/M, P, =0 /M

where M is some mass. We have [p(x)] = [p.] =L° but [9p(x)] = L
0 | u

8p(x) = eTpo . The invariance condition is

aL A oL oL ( )
InL==-4L+ — Lo +7(L+1)3¢+ Tp_ + 9,p
D 2 A TP T @)

[
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where from Euler's theorem

aL B L
AL = — g+ (A1) - ——— (3 p)
. . A
2% d (,3)\ p)
5 oL 5 1
- )m—+ f, — (3)
om f of
Hence assuming the fields with normal transforiation have the canonical

dimension viz (L + &) =0 the scale invariance requires

oL oL oL

-—Tp ==Y W—+ ) fR ——
ap  ° } am L T of (4)

Writing the Lagrangian L =} gY LY » Where gy are quantities constructed

out of m and f -and have dimension ay we obtain

Y Tp = - ‘ ‘ 5
o Po a, L, | (5)
(o) exp( P ) " (6)
' _ (o) exp(- o
or LY LY Tpo Y .

where LY(O) is independent of o (x) but may depend on (akc). Thus o(x)
appears in Lagrangian in a very specific form. Consider, for example, the -
kinetic energy term of field; it is of the form (auo)(auc)A(d) = Mz(aup)(aup)Aﬁp)

where A(g) is a dimensionless function. = Then

Leg = (o) exp'(Z:iSil_,) = a%~(§“o)2 .exp (2’0(*) ) N )
. TOO 3 o Too -




““‘_,-L‘__
\
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. with appropriate norma]ization factors.

Another type of anomalous scale transformation is

ID o =¢ T(o(x) -oo)
(8)

or

(o' (x') - co) = (I + €T)(o(x) - oo)

The invariance condition may be discussed as above.
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