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INTRODUCTIOR
The impurity problem in metals involves, as it is well

knbwn, two different aspects. Firstly one needs a precise
description of the electronic structure of the host, through a
theoretical band calculation. Secondly, the self-consistent
solution of the scattering problem defined by the host metal:
hamiltonian and the impurity potential, msut be obtalned 1in
terms of the parameters characterizing the limpurity atoms.
These parameters are essentlally the charge difference between
host and impurity atoms and the line of the periodic table to
which the impurity atoms belong. The later manifest 1itself
through the supplementary closed shells introduced (or removed)
locally in the host by the impurity. The above mentioned
aspects are in general quite difficult to handle, although the
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main difficult lies in‘the second one through the definition of
the impurity potential and its self-consistent determination.ZTwo
limiting situations have been extensively discussed in the 1it-
terature 1; the free-electron like host and the tight-binding
(transition metal) host. In the first case, accurate solutions
of the scattering problem using model potentials (as the square
well) show considerable success in describing situations where
the important parameter assoclated to the impurities is the
charge difference 2. On the contrary, when impurity and host
belong to the same column of the periodic table, this picture
gives quite inaccurate results 2; this may be ascribed to the
existence of new closed shells introduced (or removed) by the
impurity potential. Transition metal alloys have been success-
fully described 3 within the tight-binding approximation, using
a phenomenological impurity potential, which is determined self-
consistently, but again only the cases where the charge differep

ce effects are assumed to play the dominant role are considered

in detail.

However, several experimental results (in particular Isomer
shift data 4, suggest that a quite systematic behaviour can be
observed, considering alloys where host and impurity belong to
the same column of the periodie table. This "node effect®
requires special care in defining the impurity problem imn order
to take into account the existence of these new closed shells.

Several attempts have been made to formulate the alloy problem
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in such a way that these effeets are included naturally. It
seems to us that the pseudo-a@ﬁl ‘approach of Ziman 5 45 the
simplest one which takes into account the details of the hosi
and impurity atoms. However,(fhe pseudo-atom approach for al-
loys ignore to a certain extehd the detalls of the scattering
mechanisms, being then not di?ectly applicable to local proper-

ties as for instance Isomer Shift calculations.

In last years, pseudo;potential theory has shown to be a
very powerful tool tb discuss metallic systems, and in
particular it has been extended to include noble and transition
metals 6. It is the central point of pseudo-potential approach
to include explicitly the ianﬁzf shell states (through a self=-
consistent atomic like calcul@tion), the orthogonality require
ment between conduction and inntr shell states being automatic-
ally satisfied. Since the "naﬂt affect“ involves essentially
these closed shell states, 1t ittna natural to start from the
pesudo potential picture to d.!eribe the changes in electronie

structure due to alloying.

B L AR R
th-

It is the purpose of this_pgycr to discuss the Impurity

problem within a pseudo-potent% ‘ﬁdeheme for normal metal hosts,

the case of noble and transitiensn‘tals being discussed in a
forthcoming paper. We adopt ths following philosophys firstly
we introduce the scattering p#ﬁ&ﬁﬂi tbr the "true" wave func-
tions, in terms of a self-consistent "true®™ impurity potential
which must be determined at the end of the calculatlon.‘ Next
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step, and this is the essence of the approach, is to obtain an
egquivalent scaterring equation for a suitably defined pseudo
wave function. This equation is obtained defining a scattering
pseudo-wave function in such a way that the "true" scattering
wave function is automatically orthogonal to the Jimpure metal
;,nnér shell states, and requiring that when the impurity
potential is removed, the "true" wave functions reduce to their
pure metal limit. In this equivalent equation approach, it turns
out that a non-local effective potential replaces the otherwise
local, self=-consistent impurity potential. When solutions of
this equivalent equation are obtained, the self-consistency
problem is solved through the calculation of the change in
electron density obtained from the connection between pseudo and

"true®™ wave functionse.

FORMULATION OF THE PROBLEM

a)

In order to precise the notation and the ideas underlying

the pseudo-potential method we start summarizing the main results
for the pure metal case. The pure metal, self-consistent one
electron potential V(r) is assumed to be given; the one electron
states (inner and conduction) satisfy respectively:
(T+V) |y = E_Jou) (1-a)
(T+V) %> = E ¥ (1-b)

the inner shell states |«) being orthogonal to the condution
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‘states l%k) . The pseudo wave functions are defined by:
B> = =T | <Dl @)
o

so the orthogonality requirement is automatically satisflied.
Substituting (2) in (1-b) one verifies that the pseudo wave
function [P, > satisfles:

RBIR > ={ 1 +7 +3 (Bm Bl |9> = Blfy > (3)

Once the solutions of (3) are obtained, substituting on (2) one
gets the conduction states |}, > to the desired degree of ac-
curacy. One should note that equations (1l-a) and (3) involve a
self-consistency problem in the sense that the emergies E, and
the wave functions |«> are not "a priori®" known. Usually one
starts from free ion results for |«) and introduces corrections

until self-consistency is achieved.

b) Definition Of The Impurity Problem
An impurity entering substitutionally in a otherwise perfect

normal metal, introduces in the above formulation two essential

modifications:

i) It appears in equation (1-b) a self-consistent impurity
one electron potential U(r), which should be determined through
a Friedel type sum rule involving scattering states.

ii) The scattering conduction states should be orthogonal
to the alloy core states. Since these modifications define our

procedure in obtaining the equivalent equation we start discuss-
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ing them in a certain detail. We begin preclising the nature of
the alloy core states, introducing the following natation for
them:

loe > = ﬁ‘;’ Ay my m) (4)

: ->

In expression (4), RA is the position vector of the A atom, the
set {1 ,m,n} being the usual quantum numbers specifying atomic
like functions. If the impurit_y is introduced at the origin

w—p
(HA = 0) we separate the alloy core states into two groups:

1i1) At the impurity site, one may have in the involved |;‘>
quantum numbers {1 ,m,n} that do not appear in the pure metal.
This is the case when the impurity and host belong to different
lines of the periodic tabley since tﬁe potential 1s then enough
attractive (or repulsive) to introduce (or remove) some new
closed shell states. However, if impurity and host belong to
the same line, one has at 'ﬁ; = 0 the same angular quantum num-

bers, but probably different radial parts.

i112) Por -R; £ 0 one has the same angular quantum numbers as
in the host, but the radial part is probably modified. Finally,
one expects that for large Iﬁal Inner states are not too muech
affected by the impurity disturbances, so |a> = |*X)>. It
remains to discuss the nature of the scattering conduction
states and the self-consistent impurity. The one-electron ha-
miltonian for the alloy being given by:

=T +V+U (5-2)

we define the scattering states W;) as the out-going solutions
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of the Schrgdinger equation:
(T +V + U)I(P; = Eklyli:) (5-b)

Besides the out=-going requirement, the states Hb;) must also
satisfy:
<o‘2|¢k+> = 0 for all states o). (5-c)

From the solutions of equation (Sb) and using the pure metal wave
functions (1b) one calculates the "change in electronic densityas

given by:

+
bp(D =T fielui®- 1<xIp>1? | (6)
kc\cc:
which, within a Hartree picture, using Poisson's theorem, defines

the self-consistent impurity potential U(r) through the equation:

q®U(q) = 4n(z+4p(q)) (7)
In equation (7), U(q) and Ap(q) are the Fourler transformseof V(r)
and Ap(_r’) and Z is the charge difference between impurity and
host. Then, formally equations (5b), (S¢) and (7) define com-
pletely the impurity poténtial,

c¢) Defipition Of The Mixing Poteptial

‘The above formulation of the scattering states involve the
inner.shell states |o{) through the orthogonality condition (5c),
so one needs the alloy counterpart of equation (la) in order to
complete the formulatibn. More specifically, inner shell states
enter in the problem through the orthogonality requirement and
through the calculation of (T+V)|o)> that will be needed below
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in order to obtain the equivalent scattering equation for the
pseudo wave functions. We start defining the states |%) as the

solutions of an "atomic like" SchrBedinger equation:

(P + V)|ad=E_ |&> (8=-a)
&
the potential V being defined by:
V(A) = V+8V(Q) (8-b)

The A-dependence (position of the atom in the lattice) indica-
tes that different solutions are expected at the impurity and
next neighbours. Now we proceed deéfining &V()A), considering
firstly the impurity site. Let Vi°® be the lonic potential (as
obtained from standard atomic calculations) corresponding to
the { l,m,n} level of the impurity atom. We define the poten-
tial V of equations (8a) and (8b) as:

¥(0) = vim +V, | (8=c)

where Vr is a purely conduétion electron contribution to the
total potential. This electronic contribution is calculated ad
ding to the host metal contribution v - véon a correction due
screen? ¥hich 1s

calculated from the change in electronic density Ap(r) through

to impurity scattering effects, namely V

Vz\fsm,‘,v,e,_1 =41rAp(r)- Equation (8~c) can then be written as:

5 - yion _ ylon -
§v(o) = vy Vi 4+ reent ¥ (9-a)
Comparing with equation (8-b) one gets for
= ylon _,ion -
BY(O) vy Vi * Vgereen (9-b)

For 'ﬁ’ﬁ,o one just replaces in (8-¢) Vi’on by Vljl"m which gives
for 8V(A): ‘
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dv(1) =V (9=¢)

screen
In conclusion equations (9-b) and (9=-c) together with (8-a) and
(8=b) define completely the solutions |x) 5 E _ in this ap-
proximation. It should be emphasized that thénself-consistency
problem involved in pure metal calculations still exists here

through the determination of V Using these formulae it

screen’
is possible now to calculate (T +V)|&) through the following
steps:
1) Define the expectation value of T + V by %2
E, =< T+Ix ) = (X THT[o0> - {g Vo) = E_ <|§V]x> (10-2)
&
2) Define the mixing potential A(cl) by:

A |z = §V(A) &) =< §v(a) e o> (10-b)
3) Now one calculates: |
(T+V) |2 ) = (T+'x7)1&>- 3V = E_I3> - §v() )
Using (10-b) and (10-a) one finally gets:
| (T47)c > = E_JX> - A D (11)

This formula will play an essential role in the determination
of the equivalent equation. It is interesting to note that the
diagonal matrix elements of A(A) vanish identically as it can

be seen from (10=b).

We begin defining the scattering pseudo wave functions by:
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by 2= -Z [2<EDIdE> (12-a)
&

IV;}belng the "true" scattering wave function defined in (5-b).
It should be emphasized that the orthogomality condition (5-c)
is automatically satisfied in (12-&) since: '

(X W > =< [4> = TIPS = 0 (12-b)
‘ & oL oLt
Next step 1s then to obtain the scattering equation for kﬁ;) 3
to do that one substitutes (12-a) in (5-b) to get: .

(T+7) |4 > = ST+ AKX [+ UATEISX] 14 > =
& o
= B 4> - T B laX<&i¢p> - (13)
oL

Using expression (11), the left-hand side of 513) can be writ-

ten:

(T+7) - ZE_ISCRIdE> + & A IZCTU > + U(1-TI%) <) 1] >
*“ * * (14-a)

By adding and subtracting OZLEdIanM;}, lat> being the pure metal

inner shell states one gets:
(TH7-TE, [o> ] |4p> +{ T8, o> el = T B[R} 145>
o - & % ’

+ LAMIDCEIE ) + uQTIEDIE>  (12-b)
& &

Quite similarly, the right hand side of (13) can be transformed
to give: | |
+ + - =
B 140 To ) > + [B 2 1o <all- my <RI 19 >
| B (14-c)
Equating (14-b) and (14-¢), introducing the host metal pseudo-
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hamiltonianf 5= T+V47(E -E )|e) {ot| and defining the effective,
oL .
non local impurity potential P by:

uP= u(l-oz_zl&)(&l >+{§Ed|«>(al- §Ea"*‘><°"‘§' 5i§'°‘><°‘"§'°—‘><°7'}*
+3 AQ) [ )(] (14-d)
one gets: «
(B~ A1 > = uPIE) . (15-a)

This is the equivalent equation for the scattered pseudo wave
function, which is the alloy counterpart of the pure metal
pseudo SchBedinger equation (3). It remains'however to in-
corporate the condition:
vlimol?; >=¢> (15-b)
l5;>—»|u>

where |§k> is the solution of equation (3), and the out-going
behaviour of the scattered wave functions. These two conditions

are fullfilled if instead of (15-a) one writes:

185 1q>k>+Ek_;p+i gy ae
4]

Equation (16) is the Lippman-Schwinger equation for pseudo

wave functions. At this point it is worthwile to rewrite (16)
in coordinate space and to introduce the transition amplitudes.
Following Harrison |6| it will be assumed that the pure metal
inner states loL) are accurate enough to allow the representa-
tion of |<Pk) by a single plane wave. *Although not essential,
this assumption simplifies the following calculations. Multiply
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ing equation (16) by |r) and defining the effective potential
in coordinate space as up(rl r;) = rlluplr2> one obtains re-
me‘mb’efing that plane waves from a complete set: (%It)(tl =

1t(r,=-r.,)
dat e” 1°2 +
+HT) = 'r+jjdr er . uP(r, ,r (r,)
' (17)
The transition amplitude is defined as usually:
f(k 1k) = - —ﬂ éry dr, e g~1k's 11 Llp(rl, r,)  (18)

In terms of the transition amplitudes, the scattered pseudo wave
functions reads: ‘

' | it.r
‘f+(r) = 1K T 4y e Hke) e (19)
‘ (2ry> B~ Byt 1 |

showing that these transition amplitudes specify completely the

scattered function. It remains to obtain the 1ntegra1 equation
from which one calculates .the amp.fl.ltudes r(k', k). To do that
it is useful to define the T matrix, whose matrix elements
| between plane wave states glve directly' the transition amplitu-
des. The T matrix is defined as: |

Cnley =PIty - (20)
From this definition, and comparing to (18), the connection .
between <{k'|T|k) and f(k', k) turns out.té be:

Tt k) = (e [Tk = <t [UPIE D = H aryar, (¥ [r) UP(ryr,).

. $5(r,) = ~amf(kt k) (21)
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The integral equation. for the T matrix elements is easily de=-
rived from the Lippman-Schwinger equation (16). Applying the
operator UP to (16) one has:

1 -+
(et WP §E > = e |UP ) + et |UP ey WPl > . . (22)

Using the definition (20) and 2|t) {t| = 1 one obtains defining
WPk k) = <k [UP|k) ¢ |

2(t,k). (23)

dt
T(k ok ) =UP(k? k) + | == UP(k? ,t)
| (ar) By ~Bg+i€
This equations must be solved either for model potentials (giv-
ing exact solutions) or numerically for the effective potential
defined in (15a). 1In appendix 2 equation (23) is solved exact=-
ly for a model potential.

When solutions of (23) are avallable, one obtains through
the definition (12a) the "true" scattering wave functions. The
formal expression for I{ll;) is more easily obtained transforming

(19) back to the ket notation:

9 = Ik - wf LA O
- (ar)> FmBgHE

Substituting (24) into definition (12a) one gets:
£(k,t)|t) .
(2r)> Ey~ByHiE

4> = be> = 33 1) - %f

. Zl°¢>j £(t ko] t) (25)

(2r)> By-Eg+iE




60

Finally, introducing the notation ¥_(r) =(r|a) for the alloy
&

Inner shell states one gets:

it.r
tr) = eik'r-Z(&|k> ¥ (r)=4r
%
- o

at  £(tskde
(2r)> B Egti€

+

at £(t |t
+ a3 P (2) RGN (26)

o * (zr)> B~ BgHLE

+ - ike.r
From (26) it is clear that ,}i% Vk(r) = e - §<a|k> V&(r)

& =>ol
which is the pure metal true wave function.

e) C eI ectro Densit d Self-Consiste oblem

The solution of the scattering problem defined by equation
(23) involves the self-consistent impurity potential L. As it
was discussed below (cf. equations (6) and (7), given a charge
difference Z, the potential U is defined through equation (7)
self-consistently in terms of the U dependence of the charge
density variation defined in (6). Now we obtain an explicit ex
pression for Ap(r), starting from the solution (26) of the
scattering problem, which depends explicitly on U only through
the transition probabilities f(k,k'). This calculation (cf.
appendix 1 for details? shows that the change in electronic

density 1s the sum of these terms:
Ap(r) = k:Apk(r) =Ap°rth(r)+ﬂpfree(r) +Apfree+°rth(r)

oce (27)

where these contributions are defined respectively as:
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D 8p°) = ey [T IS Yo Culid - 3 () <) ]

Qce

+3 [2 Yo, (e KRk kT ) =
- "a '

Koce 0
- F b () &, (2) <aeliy Celeer | (28)
sl

orth
One notes that in the contribution Af? (r) the scattering

amplitudes are absent and only inner shell differences are
present.v This can be then interpreted as the “orthogonalization
charge" and gives a measure of the effect of the orthogonality
condition in introducing (or removing) new closed shells. This
effect is expected to be small when impurity and host belong to
the same line of the periodic table.

free

ii) p(r) =3 -ZRe[e'ﬂ"rF(k,r):l + ll“‘(k,r)l‘2

dt  f£(k,t)eltT
where F(k,r) = 47 . (29)
(2r)3 E -E +i€

This "free electron” contributions corresponds formally to the
change in electronic density produced by the scattering of free
electrons by a potential which is defined through the transition
amplitudes f(k,k').

iii) PFinally, it remains the "Interference terps" APO{ :t)x-*free
which describe hoy orthogonality requirements affect the scatter
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ed free electron waves. This term 1s given by:

f th -
dp (1) = 2e T { T B (r)e ST (FIRC(KD) D+
kocc < x

+ ZRe 2

kOCC

3 <kl LT () Fx,r) b -
&- ol

ol
kocc

- 2Re

STk |OE () P, (eI IR b+
! o oL

O 9Ol

- 2Re :{; Y_(r)F (o ) ZIFCR))D } -

oce

Kice o9t

+5 S Y)Y () ¢TIF)D € FO) XD (30)
(o} oL

The self-consistency problem is solved then through equations
(6) and (7).

DISCUSSION

The equivalent problem described by equations (14-d) and
(16) provides a very clear picture of node and charge effects.
As it was discussed in the introduction,.the usual description
of normal metal based alloys corresponds to solve the scatter-

ing problem defined by a free electron gas and a potential
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well, the depth of it being adjusted by the Friedel sum rule. In
the picture developped here one still has a "f:ee-electron like"™
scattering equation, but band effects are incorporated in the ef
fective potential UP defined by (14-b) and in the energy E . It
is also‘possible to separate the contributions from the node ef~-
fects and the pure charge effects, as will be discussed now. The
effective impurity potential (14~d) contains two different terms,

which are non-local, and correspond to the following:

1) The mixing potentialZA(A)looncl + Z E o) Cet| =
-2 Ec_clcx)(ocl - B, {Zlu)(&l - 2le) (d.l} describes how the
orot‘hogonalizatiOn requirement affects the nature of the conduc-
tion states. In fact, when acting on plane waves, this potential
couples to the spherical harmonics corresponding to the new core
‘states introduced by the impurity. One may have then enhanced p,
or d wave scattering according to the existence of new p or d
closed shells. It should be noted that when impurity and host
lie in the same line of the periodic table (charge effects dominant)

these terms may be neglected since E = E_ and |x) S|ax
&

ii) The “"charge" and reaction potential U(1-2|x >{&X]|) is
Just the self-consistent impurity potential U redot:ced by the
factor (1 - Z_IQXMI ), the reduction being introduced by the or-
thogonalizat?on. The meaning of "reaction™ potential can be
understood by considering the case of impurity and host belong-
ing to the same column of the periodic table. In this situation

the charge difference Z is zero, and the existence of new closed
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shells produces a non-vanishing value of the mixing potential. If
this were the dnly contribution to UP, this would displace a net
charge Z different from zero, thus violating the charge neutrall-
ty requirement. The role of U(1l = _Z_IO—O( zl) is then to compensa-
te these charges, and corresponds €§ a rearrangement of the elec-
tron gas to compensate the orthogonalization hole. Then for the
Z=0 case, the potential U(1=)|x){el|) has the meaning of a reac-
tion potential.

For the general casey U contains both the charge and reaction

components.

APPENDIX 1
CULATION OF E ANGE IN ELECTRON DENSITY

In this appendix we evaluate expression (6) for Ap(r)
explicitly for ?ﬁk(r) and ﬁ(r) given respectively by expressions
(2) and (26). The pure metal electronic density associated to

wave vector k is given by:

()18 = (BT - T pre) Cxelad) (e T T B (r)¢etl )

1% (r)1%= 1-2ReTE M TY (r)cali) + T ¥ (x) B, (2)k|e |k
« oL gt * (A-1)

The alloy electronic density 1s then calculated from:

| - at  £(tk)elt T
Wk(r)|2= e Ty (RIkDP_(r)~ar ikl +
= ) (2r)> E =B +1¢
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dt  £(t.k)<{x|td |
+4ar ) Y () k) <o (A=2)

& (2r) By By +18

Prom (A-2) one sees that three types of terms occur: firstly

one has terms involving only orthogonality effects through the
inner shell functions ﬁéfr); secondly one has terms involving
the transition probabilities, and these are "free electron like".
Finally one has interference terms characterizing the orthogona
lity of scattered free electron waves to inner shell states.

Now we evaluate explicitly (A-2) collecting the above mentioned

terms:

w';(rNZ:l-ZReZ(&-lk) ¥ (r) gik.r ,
o o

- - at £(t,k)elteT
+ 2 <a]k) ¢kla) '¢_(r)¢i, (r)-8nr Re[éik‘ﬁ e +
b &

&:"&' 2‘"’)3 Ek - Et+ie

2 at  £(t,k)elteT
+ (4m) ] +

(2r)> ByByHE

at  £(t,k) <)t
+ BwRe) %_(rfsik'r (tk) <aft) +
o * (2.,,.)3 E - B, + 1€

/ iter
_ dt ' £(tsk
+ 81rReZ<klo<>¢:(r)J (Eskde
&-_ o &

(2r)> B Bytie

- at ft,k)a |t
- BrReY  <k|a) P (r) ¥_, (r) k)<at |8 "
o

;’o—‘t =4 (2".)3 Ek - Et + 1&
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+ (ar)? — ?é <=~>% ()

& )

at  £(t,k) <a|t)
(2m)3 B = By * 1€

at' M (e k) < R

(ar)® B = By= 1€

- 2(4r)? Re T W (r

- &

)J dt  £(tyk) <)t f dt'  £#(£,k)8L%T
ol

(2r)®  Bem Byt L ) (ar)? BBy, - te
(A=3)

In order to simplify the notation we introduce the following

definitions: , :
dt £t k)edteT

(A=4a)
(2r)®  B,= B+ L€
and
At f(tk)|t
|P(K)D ® 4 | e f—(-f-)-l—z— (A=4D)
(2r)? By Bg* i€

It follows then from (A=1) and (A=3) that the change in electro=-
nic density A4p,(r) is the sum of three contributions

t ¥ free+orth
Doyt = 1K) 12e (G (o) 12m 0+l TEY 4 2ol T 1T
(A=8a)

where

orth

Loy(t) = 2ma[oiker {zg;n«m-z b, (r)(ulk)}]

i — V..(rW () <R Gel@d) = TT Yl 3"«,(3‘) <ok Cx|wd
o el (A-8b)
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b
Apkr?i) = aRe[Eik'r F(k,rﬂ + |F(k,r)|? (A=5¢c)
freetorth -
dp, (2) = ae{z%<r>am'r (otlF(k))} +

+ 2Re {Z el@y i) F(k,r)} - 2Re )Y f‘o_a(r)F*(k,r)<;|F(k)>}-
< i <

oL > 4

- 2Re IE:__(kI&') V:(r) Y_ ()X lF(k))} +
ccl

oLyt &
+ Y_(£)PE (PIXIF()) PRI D (A=-5d)
- -' oL d"
oLy
PPENDIX 2

SOLUTION OF THE T-MATRIX UATION FOR MOD POTENTIALS

The T-matrix equation (23) is now solved for an approximate
version of the effective potential P defined in equation |
(144), and this approximate potential is called "model potential®.
The approximation consists in replacing the first term of (14d)
by a se sy non local potential namely:

U(1-Y |€><x|) 2T Al (B-1)
o z &

where A_ will be chosen in such a way that the self-consistency
rule (6§.is satisfled through equation (27). Since all the
terms involved in (14d) are now of the form (B-l) we consider

the following "model potential™:
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UP=Z|_ AI__II'><I'| (B-2)

|” D> being "atomic like" states.

We introduce now-the following notation:

(eIl = v (B-3a)
(T lx = vee)  (B-3b)

WPk sk) =<k |UP[k> =5 _ A_ v _(k') v_(k) (B-3c)

I r

For such a class of potentials, the T-matrix equation reads:

v ') v v t)e
- Ar r(1: ‘_(k) +'§ A'_ l__(k

T(k' 4k) =2

at v?-(t) P(t,k)
. (B=4)
(2r)> By By + 1€
Introduce the auxiliary notation
| 4t v"l‘-u) T(t k)
x (k) = ' (B-5a)
r (2r)? By- By * 1€

which gives for (B-4)

T(k' k) =3 Arve(k') v (k)+§:A v_ (k' )x_(k)
S = E o o — i o e o

(B-5b)
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From (B-5b) it is possible to derive a system of linear equa-

tion? de)termining the xr(k); in fact multiplying (B-5b) by
v,a kt

By -y +1€

b 3

g V[ (kTR ,k) Akt (k' (k')

J i o .
(2r)3 B = B * 1€ r r (2r)? Ex B, + 1€

and summing over k' one gets:

(k' ) v (k' ) dk’
+ S A x,.<k)| (B-6)
r Ek' Bo +1€ ()3

which can be written as:

(k) = B (k) +) A (k) x__(k) (B-7)
rri [
wvhere
. |
e vrl(k') vr(k )
(k) = A (B=7)
rh M (@? m-8, +1¢e |
and
Br(k) =5 _ v-(k) A_ _(k) .
B r ™ rn

Equations (B-7) and (B-5b) provide the exact solutions for the
T matrix.
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