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ABSTRACT

Dirac's equation is written in a Weyl-space by means of a quaternionic
formulation of the Weyl-geometiry.

The so-called minimal-coupling of the electron with the electromagnetic
field is an obvious consequence of such formalism.

Mass and charge can be inter-related by an investigation of the theory
of mass-less charged particles imbedded in a Weyl-Space.
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1. DIRAC'S EQUATION
Let us represent by Y(x) a Dirac spinor fileld,

F—-—-- x) = 0 (1)
17y Py m_ ¥(x)

in the well-known convenction, % and ¢ are units of action and
velocity respectively and the scalar product of two veectors 1is
aP bH = gM bv g/”
Boo = = €117 822 = 633 = 1 -
Besides this, the 7's satisfy the anti-commutation relations
Pyve vabe 2 gV 1 (3)
(I 1s the identity operator)

Equation (1) is written in a pseudo-euclidean space, the so«
called Minkowski~-space of the special theory of relativity. When
ohe tries to generalize equation (1) for a more general typeof
Space, such as the Riemannlan-space; difficulties arise by the
spinorial character of the Y~field. Nevertheless, many authors
- have investigated an equation in a Riemannian~space that in many

aspects resembles Dirac's equation. Generally one writes
17”[——- +'T)4J mYx) =0 (4)
where now the relation (3) has to be understood as

TP @ P =2 el 1 (5)

The'Tﬁ's are 4x 4 matrices that may be obtained by imposing

a restriction on the structure of the spaces



2. MWEIL SPACE

It is well~known that a Riemannian-space, besides having a
non-null curvature R, has two properties of the metric temsor
that characterize the space. One 1s that of symmetry and the
other is that the covariant derivative of the meiric tensor

~vanishes. So, we can write that in a Riemannlan-space we must

have
iz = Fx) (6)
vV =
gP“)\(x) =0 (7)
where the covariant derivative 1is defined by
}W = v ,J. oLy { V ol
LT ‘“A‘“{m e M]‘” , (8)
'03{41)

{}&b} are the Christoffell-symbols and gHT}\(x) means Y
x
Weyl 1 has introduced a very interesting modification of this

model by neglecting condition (7). He introduces a four-vector
field ‘-F,‘(x), such that

Yy
gH| ng) = %\(x) gHV(x) . (9)

Weyl applied this kind of geometry in an unified theory of
the classical electromagnetic and gravitational fields. In this
paper we assume Weyl's physical interpretation of this kind of
- geometry but we intend to use the quaternionic formalism rather
than the usual tensor relations. It will appear that this quater
nionic treatment can make mofe understandable a few results of
the thedry of flelds.,



We will review some definitions and results of the theory of
the quaternions. For a more extensive analysis the reader may

consult the references 20

Let us assume that é’f((}l =0, 15 29 3) is a basis in the
quaternionic-space. Then; any quaternion A may be decomposed as
a sum

A=A o (10)
or
A=4, 5%+ 4 oF. (10")
If we impose that
¥ +6be¢%¥=0 fork AL
&¥¢¥ =1 (L, k=1, 2, 3) (11)
then we see that there is an isomorphism between the basis o
end Pauli-matriees plus the identity I, in the two=dimensional
linear vector space. We can define a scalar product such that,
if A and B are any two quaternions then the scalar product 1s
defined as
A|B =% (AB + B"ﬁ) (12)
where A is the adjoint of A, that is
L=4, %=1 o. (13)
We introduce a metric é“’g by the definition

2P = 6% (14)
and we note that this metric has the same form as the one intro=
duced before by equation (2).
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We can use this metrie to lower and raise quaternionic-indices.

Let us generalise this approach by setting o ° as function of
o
Xy by means of the l6-parameters b,y )(x)v:

o x) = h“u)(x) & A, (15)
Then we obtaln the metric teasor g“P(x) as
g2Px) = @) fx) (16)
or
e () = by Py . (161)
4. ' nat o) S

A simple inspection of equation (16) shows that if we want to
generalize equation (7) to equation (9), then we may impose a
condition on the o's rather than directly on the metric tensor.

Indeed, we assume that

1l _ I v
aﬁf ST (45) o (x) . (17)

Where the quaternion A may be decomposed as a sum (eq. 10) with
the electromagnetic potential as the coefficlents A,. By Tr(B),
where B 1s a quaternion, we understand the expression

a°Tr(B) =B + B .
Now the covariant derivative has an expression a slightly modified

o‘ﬁ{x) = c(; + f;‘f o+ G ol + ok rﬁ* (18)

where the r; 5 are no more the Christoffel symbols.

A strightforward calculaticn shows that we obtain by (16)
and (17) \

vy -
g)i‘l;sx) = Tr(Ao'A) g’”(x) (19)
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that is, the Weyl-field L&(x) is now T’r(AE’A).

Using equations (17) and (18) we can calculate the I;\'s, and

obtain l
f;= : {(Ulk + [‘P> a}'l - ZTr(AE})} . (20)

Note that when the electromagnetic potentials are null, the fxs

take the usual expression, as would be expected.

Instead of using the two~dimensienal fermalism we c¢an use the
four-dimensional one and try te return te equation (4) gemeralized.

It 18 easy to see that if we pub

0o of
rR(x) = - ox) (21)
#Mx) 0

then, by equation (16), we obtain equation (5).

The covariant derivative of the ¢f's are easily obtalned:

K _ oM - R v R
Tix) =73+ G, 74 w7 (22)
where
w[h © (23)
A 0 r;"' '
the l;" ave defined by equation (20): I;"' means the transpesed

eonjugate ox |, »

A stpightforwvard caloulation gives us another expression of
T, 48 terms of the 7's,

'~'F' --{ﬁ‘hfr q,"'r/‘ + [ (7’{)’ 1"5”. }
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This expression reduces to the well-know expression of the

T

of equation (4) when free of the electromagnetic field.

A natural extension of the Dirac equation (4) written in a

Riemannian space to a Weyl space; may be obtained by letting the

'T;‘l go into ’lﬁ- z Ir(AE‘F) or, explicitly,
) 3 o
1 — 47 - = (a5) { - m|P(x) =0 . (24)
xR 4 A

Expression (24) shows why .the so called minimal coupling may be
interpreted as the natural interaction of the electron with the
electromagnetic field. By Weyl's interpretation, the electro-
magnetic field is responsible for the aditional factor = ZTr(Aﬁh)
in equation (24) and this naj be interpreted as changing the
d;rivative - operator E%F'into the translated - operator

— - 2 !r(A&P), giving origin to the minimal coupling. It is
interesting to note that the eleotromagnetic-field, as seen by
the particle represented by the Y=-field, contains the charge=-
factor inside the potentials. So, we see that distinct
particles see distinct space=~strueture by means of its proper

charge~value.

Another observation can be stated by analyzing a §=-particle
that does not interact with the electromagnetic=-field. If this
particle does not see the Weyl-structure of the space the only
responsible for that 18, possibly, the gauge of the mass 3,
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Indeed, if we put ,
m =med > oF Tr(A5:) (25)

4 s

then equatien (24) reduces to

? - 9 =
{1 qrf‘(a-:;,-m}j > -m } P(x) = 0 (26)

which is the equation of a particle with mass m', considered as
an operator given by equation (25)y in a space free of the

electromagnetic field.

The equation of a mass-less charged particle in a Weyl-space
is

2 3 0
17F<0-;F+TI: =Z Tr(Aa}1)> Yx) =0 (27)

which may be interpreted as the equation of a particle with mass
m = +<%?7F!?(A§p) in a Riemannian - space. Thus, a mass -less
charged particle in a Weyl-space (that is, interacting with the
electromagnetic-field) behaves as a particle with variables mass

in a Riemannian-space (without electrbmagnetiewfield)o

Soy giving up the absolute character of the proper-mass may

glve origin to the charge-concept.
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