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ABSTRACT

Conditions for covariance of equal time commutators are given. In momentum
space they imply relations emong the invariant amplitudes., It is shown that the
most general expression for the sum rule, in any particular frame, is

J:Yf o tp(ky +Yn’) = form factor

where n, is an arbitrary time-like vector. The covariance conditions are ex-
pressed by the fact that the integral is n-independent. In particular, Fubi-
ni's sum rule, which corresponds to a choice of n in the light cone, in spite

of being covariant must be supplemented with a set of covariance conditions.
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Leo L OuUCRToN

It is known that, assuming the validity of equal time
cononicol commutation relations, it is possible to deduce sum
rules which have becn tested in specific examples. At first
sight, it is surprising to find in those examples that the
Iinal result is invariant in spite of having started from a

tire component of sn egual time commutator. It is this point

(:nd sone sinilar ones) which we want to discuss in this paper.

telated nroblems have racently been considered by savercl

- 3
authors Ly 2y <,

For the deduction of sum rules, one can adopt FUBINI's
4 . . : , . .
method ~. It consists essentially of the use of dispersion
relations for the invariant amnlitudes. The connexion of this

’

method with the P — oo system is made clear by following

AlaTI's et al. procecdure 5

starting from the method introduced
in Ref. 6. Ve shall use the latter method for our discussion

cad shall comient in the Anpendix on that of Fubini.

Lzt ngs Tirst make o summary of the deduction of the sum
rules. We shall take, for definiteness, a vector comautator.
(The generalinction to tensors can easily be done):

£.(x) = [§u(x), 3(0)] (1)

It is known from causality that fP(x) has to be zZero out-
side the light cone. Inside the cone it is an unknown func-
tion, as we do not know how to compute the influence of the

interaction. Nevertheless, following GELL-IMANN 7, it is as-
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sumed that for equal times (xo = 0) the commutator is given by
the current algebra or by the commutation relations »f free-
field operators. With that assumption, if we multiply the time
component of fP(X) by 6(xo) we obtain (in any frame)

8(x,) £ (x) = invariant factor X g%x) = inv. (2)

The Fourier transform of this expression is 6 (in ony frame)

J\to.dko = inv. form factor (3)

where

- q - .
t}, —9/[< Zlfp|l>:| y 4 = Pourier transform.

Eqs. (2) and (3) show the striking result that the
multiplication by 8(x,) (or integration on k,) of the fourth
component of a vector, which is not an invariant operation,
gives an invariant result. However, the left-hand side of eqg.

(2) can be written in the form

2€(x,) .
—=L ., £, (x). , 0(x.) = step function , (4)
axp R o
which is formally invariant if £,(x) is zero outside the light

P

cone. Nevertheless, e(xo) is not covariant and if it is
substituted by 6(n.x) it remains to be proved that the result
is indevendent of n. This will not be true in general but

only for those fP fulfilling certain condition which we want

to find.

We would also like to point out that for specific calcula
tions, eq. (3) is usually written in a particular frame and,

of course, in so doing one loses the information that fto dko
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in other frames gives the same result. To regain this informa-
tion the covariance condition must be taken into account. One
can express this in a different although equivalent vay. If a
vector n is introduced to give an invariant look to eq. (3),

Li€Cey

\ftodko =‘[£.nodka%), with ng = (1,0,0,0) , (1)

then, the r.h.s. of (3') must be n,-independent ond the condi-
tions for this to be so are just the covariance relations. In
particular, in the P —> ocosystem of Ref. 5 the corresponding
sum rule (Fubini's) must be supplemented by the covariance condi
tions to have the full physical information of the original sum
rule, (eq. 3). In Scc. 2 we find the condition for covariance

in co-ordinate space. In Sec. 3 we consider the Fourier transform
of the previous reéult. In this way, some explicit relations
between the invariant amplitude are obtained. We write a compact
expression for the sum rules, containing also the covariant condi
tions. In Sec. 4 we show that a form of those conditions has
also to be taken into account even for non-covariant equal time
commutators. In Sec. 5 we give a discussion of the previous

results. In the Appendix we find the conditions for the

covariance of Fubini's method and also of some more general sum

rules.
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2. COVARIAICE COiDITIONS

The problem is, then,given a four=-vector fp(x), to find the
conditions for the product f (x) §(xy) to be independent of the
reference system. For any Lorentz transformation _

X! =oc"jxv s f}:(x') =) fy‘(x) (5)

we have

HCORARTCIPEE RO

R

or

fH(X)bP 8 (x,) = fH(:»c)aH 8 (x4) = fP‘(x)?)P '© (n.x)(-é)

(\le see that the covariance condition implies that, in a given
reference frame, the last term of (6) be independent of  the

time-like vector n). Using now (sece Ref. 8)):

i —-i
o x4) 8 (x4 + ag

i

. LN o)

© 1 aP e(xy) _ ;4 -1
_’—‘—“——_"'oolovoap,

0
—n DI P
p=0 dAO
. s
(vhere a_ = 7~ and o x) = 8(x) for oo > 0, have been used) and,
)

replacing in (6), we find the following conditions for covariance:

£, (x) of !}(P-l)mo)xil... X,

lé} = 0 (no summation over p) . (7)

This is the set of infinite equations which must be satisfled
in a particular system in order that in any other frame of
reference the expression S(X'o) fé(X') has the same value as in

9

the original one 7. Of course egs. (7) are the conditions for

the expression f (x)oF e(n.x) to be n-independent.

R
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If one remains in a single reference system, the infinite set
of eqs. (7) give all the information we can obtain from the

covariance of sum rule (3).

Of course, as soon as we assume that the egs. (7) for p =p,
are valid in any system, then all the equations with P> P, follow
as consequences and are thus unnecessary. For example, if we can
show that, in any frame, a particular commutator fF satisfies the
eqs. (7) for p = 1, namely,

f}l(x)bp[f?(xo)xj] =0 or §(x )fy + §'(xy)xfy =0, 8)
then the covariance of f}* ?)Fe(xo) is guaranteed. This is the case
of the commutator of two-vector currents

o ® a

calculated in the free-field model 10. It can be seen that

c _ a b
£5,% Eane E]P(x), 12(0))]
satisfies eqs. (7) for p =1 in any frame, i.e.:
8(xy)fy,, +_6'(xo)xif°y =0
so that §(x,) f_, is a vector, a fact that is easy to check
directly.

Also the free-field commutator of the pseudoscalar current
i=9 754' and a tensor current j}w = @['}P »7,]¥ satisfies
condition (8).

On the other hand, if we consider a C-number Schwinger

term

f}n,:’DH%A (A = Pauli-Jordan invariant function)
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or the free-field commutator of a scalar current j =YV and a
tensor current j}“: EEXF ,7,,'_]% we can verify that none of them

fulfils eq. (8), showing non-covariance of §(x,)f

%+ COVARIANCE CONDITIONS IN MOMENTUM SPACE

We shall now discuss covariance conditions in momentum

space as there they will be more appropriate for physical ap-

plications.
Taking the Fourier transform of eq. (6) we obtain

Jawnp 6,00 +n2) = fav ate, (e L (9)

Thus the result of the integration must be n-independent if it

is to be invariant. If we now develop the integrand as a

i

series in n~ - hg, we find (tec simplify we have introduced k,

as a new integration variable)

[
‘I‘dko[;o i ece i ;t (ko,k) +
0k P

- ? [/
+kp1§ ees Z ooo"_'_'t (k ’E’) (10)
1 i -1 is+1 ip ij*7o
s=1 2k k 574 2k 2k
which are the Fourier transform of eqs. (7). So, the original
sum rule hés to be supplemented with all the set (10) in order

to guarantee invariance.

Conditions (10) give additional relations between the
invariants entering into tp. For instance, let us take p = l.

2t
fdko (ko ;:11 + ti>= 0 (11)
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For the case of spinless one-particle initial and final states,

we have
i
t, =oP. + bk, +CA. =) a, Vi . (12)
RSB By 0y =2 ey Ty
The three invariants o(i are functions of the scalars
ul =Pk, W=23%, v =4k
and 2
u
=vi, (13)
’Ok“ A
Using (12) and (13) in eq. (11) we get
aal
fdk E‘ +Zko =0 . (14)
By writing these equations in the system p —> @ (defined in Ref.
5) we obtain 11 N\
~ 2da (0 0)
av |a +y — = ya l =0
J oy
=00
~ %a ‘
dv(b' +y———>= 0 > (15)
yed
J ou
dV<c +Y -?3-) =0
d 20 )

It is also possible to deduce other relations for the case
in which the kinematical configuration makes AP time-like (see
Ref. 5). In this case we have
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\

~ ,ac

dv| ¢ +V—> = ve |
J v

N dc

dv (b +v——>= 0 (16)
J NE

& zc

av <% +v— |=0
v ?ul y

Egs. (15) and (16) provide us with a set of relations of the
superconvergence type, which must be valid for covariance reasons.

. s 11
We should note that the first of (15) and (16) are trivial .

Eqs. (10) for p higher than 1 give relations involving higher

derivatives of the invariant functionse.

4. FURTHER COVARIANCE CONSIDERATIONS

We shall now put the problem of covariance of sum rules on a

more general basis.

One always starts from a commutator of two currents,

fol'oeoy’ooo(X) = [ja G..(X), JP‘."(O)] ° (17)
and, of course, one does not know in general how actually to
compute it. What one does 1s to take a specific model for the

calculation, obtaining then

= U j 8)
mac.o.p...(X) l—_-Jq,,_(X), JF’°°(9):] el (1

In general, f(x), does not coincide with m(x), i.e.,

g(x) = £(x) = m(x) 20 .
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Nevertheless, the assumption which leads to the sum rule Iis

that g(x) is actually zero for equal times (xo==0). Specifical-

1y,
G(XO)fop...P... = G(XO)moP.o.P... (19)
or
Eﬁi . g =0 . (20)
ron. a“'P0°0

In other words, the hypothesis is equivalent to the statement
that the scalar product in eq. (20) gives in fact the zero

tensor. The tensor g must then satisfy covariance conditlions

(7)s

f},\...’o}1 Es(p-l)(xo)xilttfxip]z mp...ap E(pnl)(xo)xil”'xi;] ¢

(21)

Then, with eq. (19) which contains the sum rule, there are
always associated other relations given by egs. (21). When the
equal time commutator of the model is a tensor, the right-hand
side of eq. (21) is zero, and the latter reduces to eq. (7).

On the other hand, when the equal time commutator of the model
is not a tensor, as in the last two examples of Sec. 2, the
complete eq. (21) must be satisfeid. Any covariant part which

is extracted from the model automatically drops out from eq.

(21).

5. DISCUSSION

The sum rule J%odko isy in fact, a set of infinite sum

rules,y one for each reference system. This set can be expres-
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sed in a compact way by

Jd’t’ nk tp(ky +vnY) = inv. (independent of n) . (22)

Each election of the time~like vector n is associated with

the integral jtodko in a particular frame.

The n=-independence of the evaluated integral in (22) is

equivalent to its covariance.

If we pick a particular reference frame characterized by the
time-like vector n_, with nj = (1,000) in that system, the sum

rule relative to that system in covariant notation is

Jdﬁf ng tP(k" +'t’n;) = invariant form factor. (23)
The covariance conditions for this sum rule reads:
[ Y vyl
dﬁ:[nl*t (x’+tn”) -nf t (k¥+%n )] =0 (24)
J s g }x( o)

for arbitrary time-like n .

For example, Fubini's sum rule is given by eq. (23) cor=-

k.n
responding to a system such that P.nO —>00, 74 - C and
n o
P.xo1 —>0. Actually, the sum rule relative to the most general
o}
P.n > o0 system is
fdv (a +ub + Be) = invariant (25)
1.2

where the amplitudes are functions of the variable (¥; 5 k= +
oYy Ak + (3Y), the parameters o, (3 being arbitrary. It
should also be noted that in eq. (25) the integration variable
appears in all three scalars }Li. It is possible to do a change
of variable so as to obtain again a one-scalar integration. In
fact, if we introduce w® = }Al,wz =}42 -a}ila wB =H3 '(3}‘1!

then the integration is carried out on wl with fixed values of
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u)z and uJ3. Further, if we modify the invariant decomposition of

t p as follows:
tF = a! P, + b(k, -xP,)+c(A -[’SPP)

p * ol eby)elsy
then eq. (25) is simply

del a' = inv. (251)

which is again of Fubini's type. Eq. (25') corresponds, in Fubi-
ni's method, to the assumption of unsubtracted dispersion rela-

tions in v, for fixed wvalues ofu)2 and w3.

Another frame which is usually adopted to work in is the

Breit system. In this reference frame, n/* = P™and the sum rule

reads:
Jd’t a+=s b = form factor (26)
P
where
1/, PR AF
w=a|¥; =k = +— | 5Ak
N 2 PZ PZ

and similarly for b. As before, a change of variable can be

used to eliminate the double Y dependence of the amplitudes.
1.2

Using the new variables Pl =/Al; PZ = [-LZ - SI:’;_.ZL;PB =}13, and

the invariant decomposition

k.P
t, =a'P +b[k =—P,|+ch,.
K2R P2 R)TETR
Eq. (26) takes the form
JdPl a'(Pl; pZ;PB) = form factor (261)

Eqs. (25, (25'), (26), (26'), as any other particular sum
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rule, have to be supplemented by the covariance conditions.
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APPENDIX

SOME MORE GENERAL COVARIANCE CONSIDERATIONS
We have discussed the covariance of products of the type

qlaf‘e. This is a particular case of products of the type

o]

2 1,008 0 = gt Wy ) ¢ . (A

f
Pl."Pm OO«-.OFS+1oooPm

As in Sec. 2, we easily find the general condition for covariance:

Pl Ps
f a e s "'1) —-—
Bpeee By 2 E(p (xo)xil...xip}-— 0 (A-2)

In particulary for s =0 and p = 1,

Gy ... 80%0)Eg = 0 (4-3)

is the condition for covariance of the product %11"'6(X0)o (See

Ref. 1) formula (2.26), which is the Fourier transform of (A.3)).

Eq. (A-3) means that for x_. = 0, le,.. can have, at most, a

)
singularity of 53(X) - type (see also Ref. 3)). For s =1 we

get back our formula (7).

We will now use conditions (A.2) to examine the covariance of
Fubini's procedure 4. Here, instead of reducing the sum rule

directly from £, 2! @, use is made of the identity

ke £,) = 2l e.r, + @ 2ls, . (A-4)
The Fourier transform of this expression in the p —> cosystem
leads to Fubini's result. For the covariance of all the steps
in Fubini's method, it is necessary that each term of (A-4) be

covariant.
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The covariance condition for the first term of the right-hand
side is formula (7). That of the second term is given by (A=3).

So, for the covariance of the left-hand side we must have

simultaneously
F (p-l) oo =0 (A-S)
fF'O ES xil xil;]
and
P (p-l) . = . (A-6)
2 f}l Es xil "X:L;J o)

Thus, conditions (A=-5) and (A-6), for the covariance of Fubini's
procedure, are more restrictive than ours in view of the
additional eqs. (A~6). We could also impose in (A-4) that e.f}ﬂ

be a vector quantity and 8.2 £, a scalar as in Ref. 1, thus

J
obtaining
. (p-1) = A=6)
%Pf}l E / | \ Xill .Oxip] 0 (
. (p:i) eesgr | = (A=7)
f 6 x : e e !x Sy O Y
? [ i 1p']

Egs. (A~6) and (A-7) are, for p =1, the Fourier transforms of
conditions found in Ref. 1. These conditions areagain more
restrictive (for the covariance of the sum rule) than our condi

tions (7) as the latter can be deduced from (A-6) and (A-7).



136

REFERENCES AND FOOTNOTES

L.

2.

3.

bo

9-

10.

11.

60

K. Dietz and J. Kupsch, "Covariance of the retarded product of axial
vector current and the form of their equal time commutator", Physika-
lisches Institut, Universitdt Bonn (preprint) 1967.

J. P, Loubaton and G. Mennesier, Nuovo Cimento 46A, 328 (1967).

S. G. Brown, "Covariance and the cancellation of Schwinger and Seagull
terms in applications of current algebras", Laboratory of Nuclear
Studies, Cornell University, Ithaca, NY, USA (preprint) 1967.

S. Fubini, Nuovo Cimento 434, 475 (1966).

D. Amati, R. Jengo and B, Remiddi, "Families of sum rules from current
algebras", CuiN Report TH 759 (1967).

M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

I. M. Gel'Fand and G. E. Shilov, "Les distributions" Tome I, Chap. 2,
Sec. 1.4, Dunod, Paris (1962).

It is possible to show that, as a consequence of egs. (7), fo(x) has
to be zero outside the light cone.

The covariance of this example has also been discussed in Ref. 2.

We have taken the limits in a straightforward way, i.e., in the same
manner in which Fubini's sum rule Jh(v)dv = form factor is obtained
from eq. (3). For more careful consideration gee Ref., 5).

C. G, Bollini and J.J,Giambiagi, Nuclear Physics 87, 465 (1967).



