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l. INTRODUCTION

Two spinor approaches have been proposed go far to describe
the gravitational field as a generally covariant field theory.
The first proposal is that of Weyl 1 and independently of Ine
feld and van der Waerden 29 recently reviewed by Bade and
lJehle 39 This approach has been subsequently exploited by Berg=~
mann 40 The second point of view ig represented by the work of
Witten 5 which uses an analogy with the spinor representation
of the electromagnetic field; this proposal has been studied 1in
great details by Penrose 6, with subsequent applications in

practical problems.

In the first of these two approaches the basic variable
deseribing the field is a gset of four linearly independent

Hermitian matrices, from which the metric field can be uniquely
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constructed. From the transformation law of the derivatives of
any given spinor with respect to the unimodular spin transforma-
tion group it is possible to construct the spin affine connection,
and from the expression of second order covariant derivative
(properly antisymmetrized) of any spinor it is possible to form
the components of the spin curvature. This last guantity turns
out to be a mixed second rank skew symmetric tensor and second
rank spin tensor with specific symmetry properties in the spin

space.

The second approach uses a coordinate free point of view in
the sense that the basic variables characterizing the system are
defined by their transformation law respect to the unimodular spin
transformation group, that is,; they do not exhibit any tensor
index. In this formalism the above defined Hermitian spin matrices
are just intermediate variables which allow us to relate the theory
with the conventional tensor calculus. The point of departure of
this method is obtained from the analogy of the relationships be-
tween a second rank skew symmetric tensor (such as Fy,J and its
spinor equivalent, For general relativity we have in place of Fby
the Riemannian curvature Ruypgs but the same kind of calculations
can be done in this case as was done for the electromagnetic field.
It is found that the spinor equivalent of the Riemann tensor split

out into two independent spinor curvatures.

It is the aim of this paper to derive the relationships

between these two approaches. It has been shown presently that
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both methods can be related in an unambiguous way, the basic
variables of each one of them, taken here as the correspondent
spin curvatures, can be translated in terms of the variables of

the other method by means of simple formulas.

At the present time the use of each one of these formalisms
appears to be a question of particular advantage, for instance
in the problem of gquantization via the classical Hamiltonian
formulation of the gravitational field the method of Bergmann is
necessary 7, However, if we use the Lagrangian formulation as
the first‘step towards the quantization we can use both methods
as well. The formalism of Witten and Penrose has found its best
applications for the specification of the initial value problem
when we use as the initial hypsrsurface a nuli surface insteadof

a space=like surface. 8

In regard to the notation we shall denote spinor indices by
capital latin letters, a notation which presently is more frequent
1y used than any other else. The spinors used in this paper (and
in all the references ) are two=-component spiners. The tensor

indices are dencted by greek letters.

2. SPINOR APPROACHES IN GENERAIL, RELATIVITY
5

Witten ° and Penrese 6 have shown that the spinor components

of the Riemann tensor

Ry S SR S, 2
®a% BF cd D T %A% B %CG Yp Rpviw

can be splitted out into two independent spinor carvatures X,p.n
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and ¢ﬁBéb according to the relation
R & €.. €.. .. € _€..
RAE BF CG DH 2 XABCD EF CGH + ABGH CD EF
*+ Pirep Cam Sem * “Epen an ecn} . (1)

From the symmetries of valt it follows that these spinor curva-
tures satisfy the conditions

*aBcD = *BacD = *ABDC T *CDAB °? (2-1)

Paped = Peach =Panpe = Feas ° (2-2)
The spinor components of the Ricci tensor RFV are given by

S
Rpf pit = OB# 9pi Bpvo (3)
or equivalently by

. . =Ll eACeEG o, . . . . ‘

Rprp =2 ¢ ¢ Rak BF cG DE ° (4)

In this paper we shall use the Hermitian spin matrices oﬁ%
satisfying the "anticommutation" relations with a factor 2 in the
right hand side, this notation is the same as those used in the

reference 4°

. v ] v ‘
ot cN';,-%crqu O'N’;,=2 gt 6\1;. (5)

so that
o"“m o-m =2 g”vc (6)

Using Eq. (6) it is simple to prove that the relations (3) and
(4) are actually equivalent.

The scalar curvature is represented in terms of spinors by

means of the formula,

_1leBDFH , . .
R =3 € Rep piy (7)

As result of the algebraic condition on the components of the
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Riemann tensor
Ryvpg * Rupay * Rugup = 0

it is possible to show that, the contracted x apinor is a real

number 6,
AB _ ., . AB _ -
X0 =X;3 = 2A (8)
Zppe B = e . (9)
AC _EG
Maltiplying Eq. (1) by e¢™¥ € we can show that
T | .. ..
Rpipd = 3|* CppSeg - CPBDFIJ . (10)

Contracting both members with the c spinors, and using (7) we
obtain

R=Xx, (11)
This result will be used in what will follow. The spinor compon-
ents of the Einstein tensor GP” are given by

G}.‘v = R}n’ = % g}ll’ R 9 (12—1)

PR | - . -
Gagpd = = 3 |* epp €4 * CPABCIZI . (12-2)
For ermpty spaces GPV = 0y which gives the two conditions (since ¢
and X are independent of each other),

Papcp = 0 (13)

A=0, (14)
Therefore, for empty spaces it follows from (9) ang (14) that
xﬁBCD 1s symmetriec in BD, this along with the symmetry propertieg
given by Egs. (2-1) imply that Xppep s totally symmetric. We shall
call this totally symmetric spinor curvature by the letter ¥ in
order to distinguish from the general situation of spaces filled
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with matter,

%yscp = Ymep -
Then, in the empty space the gravitational field is described
entirely in terms of a totally symmetric fourth rank spinor, which
turns clear that we treat with a theory of a field with spin 2.

From the Bianchi identities it follows that this spinor satils
fies the equation

AE _
Q quCD =0 . (1s5)
This equation is formally similar to that obtained for the Maxwell
field, where in place of a fourth rank symmetric spinor we have a

second order symmetric spinor ¢AB’ the free field equations being
AR -
a ¢AB — 0 o

These equations are particular cases of the basic zero rest mass

equation for spin %*n ,

AR L
0" Op,,.n =05

where 6,5 ~ y 1s completely symmetric. The unique difference

between the previous equations is due to the fact that the gravita
tional theory is non linear, in other words the derivative appear-
ing in the left hand side of Eq. (15) is a covariant derivative, so
that the Klein Gordon equation obtained by iteration of this equa-

tion will contain self source terms,

Now, we turn over the spinor representation outlined in the
Introduction. It is known that the derivatives of any given spin-

or do not transform as a spinor respect to the unimodular spin
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transformation group; however,; it is possible to construet a

covariant derivative A
A _ou A B
w,, = = 4 [ (
. B 2
PP P
by introducing the spin affine eonnection f;A p? Such that this

new derivative uAgp possess the correet transformation law,

vA MA K '
- M= o
usP Kuépg det 1
Which implies that the f; transform as
tA ’
- K 1L A 1K
I B_MAKF; A R S

under the unimodular spin transformation group.

We require that the covariant derivative of the ¢ spinc

vanishesg
KM K RM KR M
= oo = 0 ,
= lp me +eT [y
-This implies that the spin matrix r;K g h&s null trace,
| ~K .~ K._.
EPK‘#[;)K "Oo
We also require that the covariant derivative of cpKM'vanish, which

allow us to obtain an expliciﬁ form for the quantities T“p in
terms of the usual Christoffel symbols, 4

The components of the spin curvature are defined as uswally by

means of the mixed covariant derivatives,

A A B
Yiap ™ Yipge = %AB B " o

— A —A : A K A K
o(gB"l:c@pBIﬁ,q, er; KIE B+r|f:! Kr;_ B° (16)

B have a null trace

From the relation (16) it follows that the Pep

with respect to the spinor indices,
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A _ A

Pqp A—PaﬁA =0 (17)

besides this the Pﬁs B is skew symmetriec in the tensor indices.

We have,

K _ KM
Poqg R = Fapw ?

as consequence of the condition (17) it follows from this equation

that the covariant spin components of Pdﬁ are symmetric,

We will have the opportunity of using this condition later on.
Using the property that the covariant derivatives of the Oy

vanish, we can derive directly the following relations among the

components of the spinor curvature Bxp and the Riemann curvature:

AKM M,QK m K_.o,

Rapan @ ~“Rp @ % =% K
A, Q . . p Q. =
Rap,\p Ogp 4 Pap K O'FQM + UHKQ ch(a ¥ 0.
It is possible to solve the above relations for both curvatures 4
_1 QR _ . QR .
Raprp®™ 3 [ocp q ( urM = T GkRM)
RM ~ _RM Q
<7* A 7 %k % >P«@M ]’ (19)
p oo Kol o) oMKp (20)
oBQ 4 QR ToLBAMC

The Ricci tensor takes the form

- }_ cKM o R R oRM _
KM R _p KM R , 9
+ org PppM OI?K = _crp PPBM O'HRK] y (21)



and the scalar curvature the form

1 . X .
R = = -5 E%M P}fp R oPRE cP KM PApM R GR?(]., (22)
Using the relations 10
pkM R, . __ kM R p
o PpuM C\RK o, PpaM ORk

together with the Hermitian conjugate, we can simplify the Hq.
(21), o
1 KM p R KM R ]
= = o ' . -+ . °
Rﬁ}1 > ch O PPB K+ oy PPBM cr}fK (23)
In the next section we are going to derive the relationships

between this approach and Penrosets formalism.

3+ CORRESPONDENCE BETWEEN THE TWO SPINOR FORMALISMS

Miltiplication of the Eq. (1) by adequate combinations of the

€ spinors give the following result
cHG _FE

XaBeD Bpg BF & py o (24)

fl

NIE
3
o
=
E5

© ¢ Bag v oo pf - (25)

Panci
These relations represent the inverses of the fundamental relation
(1). From the symmetries of the Riemann tensor it follows all the
symmetries of the spinorg Xppep 2nd ¢1Béﬁ written in the Egs. (2).
These symmetries can.aisq be easily seen from the relations (24)

and (25).

By the Eq. (10) along with Egs. (7) and (11) we obtain

_ . . . X KL _FM_
q’BDf«*H = = PRpppy * 3 € €T epp e Rewirar - (26)
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Thus, the components of the mixed curvature spinor ¢BDPﬁ are
entirely given as function of the spin components of the Riceci
tensory a fact to be expected since ¢BD?ﬁ vanishes in the empty

space.

Using Eq. (24) and the definition of the spin components of

the Riemann tensor as well as the relation (20), we can write

— oF .
Xppop = =2 0 5 o Ppp Fapcp ° (27)
In this relation we recall the symmetry of E&BCD with respect to

the spinor indices, which makes clear the same symmetry for kaCD'

Next we derive the expression of ¢ABéb in funetion of the
spinor curvature deA Bo A straightforward calculation using the

Eq. (26) gives the following result

=2 & b B, .

Pepi < 2 opp Opg * &8 T Cph eBD> Rype (28)
If in this formula 11 we substitute R“B
of RiB and its Hermitian conjugate as given by Eq. (23) we have

by its value in function

reached our intention, that is, to express ¢BDFH in terms of Fyg

+
and Bxﬁ'

The next step is related to the obtention of the inverse rela
tions, that is, to the obtention of Py, B as function of the

spinor curvatures ¢BDFﬁ and Xppoe.

We use the relation,

l . . . .
1 a5 BF _C& _DH . . . . .
Rupap™ 2™ % A W Rof BF CcG DH °

From this equation and from (20) we can show that
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v_ieéﬁevno_m BF

Fpc = i « %  Bup pR ¢ oph e
This together with the Eq. (1) gives
1 L)
V.2 VD A B
wpe ST € {Uoc F%B  *amcp
E . _BF
"% B % ci’Eﬁ'cp} d (29)

It can be easily seen from this last relation that the trace of

fap ¢ v vanishes as consequence of the symmetries of bupep and

*aBCD®

 As the last subject of this-section we shall discuss the
case of empty spaces. In this sltuation we have seen that the
spinor curvature ¢AB@D vanish, and fhe remaining curvature‘xABCD
1s completely symmetrie, This spinor as it ig obvious is then
" directly related to the components of the Weyl tensor.,

The Eq. (27) takes the form,

: _ aF i
“pep = = 2 Fop fapep 7 (30)

-and the inverse given by (29) the form,

1
v o_ VD _4
kpe 7 16 = %F ;3 q’ABCD ° (31

The equatlons (9), (11) and (14) which imply in the symmetry of
ukBCD in BD can be used in order to obtain the following conditions
on the components of P wBCD®

o*dF-A G’BF ch[aCD =0 , (32)

‘This relation together with its Hermitian conjugate are equivalent

to the property that the scalar curvature vanishes, which is a
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result similar to the Eqs. (9) and (14).

The Blanchi identities written in terms of the PBygy" take the

form (see Egs. (15) and (30))
aF 8 aAE P

o A O8p wBCD =0 (33)
where 12
oAF = OPAEGF o

The relations (32) and (33) are the conditions on the components of

the spinor-tensor ExﬁAB for the case of empty spaces.

It is well known that there are four invariants of the Weyl
tensor in empty spaces. Presently we can represent these
invariants as the real and imaginary parts of the two complex

invariants of Wittents formalismy

I = Ypep V57 (34)
A ,
7= g Py T b (35)
Following our line in this paper we write these invariants in
terms of the components of RxﬁAB
I=32 P50 pPCD (36)

the second set of invariants is represented by the more complicated

relations,

T=ag ot of . 7T 8, D AR
Y. F AB ,
o n " Pupop Prsmr Bv ¢ (37)

These invariants can also be written in function of the spin

components of the Weyl tensor, which in this circunstance are
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identical to the spin components of the Riemann tensor. The real
and ilmaginary parts of such expression can in turn be written as
function of the canonical variables Emn and pmn of Diracrts theoryJIQ
Therefore, it is possible to write the invariants in complex form,
called before by I and J ag funetion of the canonical degrees of
freedom for the field. Since the details of this computation are

stralghtforward we will not reproduce them here.

REFERENCES:

1. Ho Weyl, Z, Physik 56, 330 (1929),

2. L, Infeld, B. L. van der Weerden, Sitzber. preuss, Akad, Wiss. Physik math,
K1. 9, 380 (1933),

3. W. L. Bade, H, Jehle, Revs. Mod, Phys. 25, 714 (1953).

4e P. G. Bergmann, Phys. Rev. 107, 624 (1957).

5. L. Witten, Phys. Rev. 113, 357 (1959).

6. R. Penrose, Annals of Phys. 10, 171 (1960).

7. G. G, Oliveira, Supp. Il Nuove Cim. vols 3, number 2 (1965),
8. R. Penrose, ARL 6356, Technicai Report, March 1963,

9. We are defining the Ricei tensor by Rpu = g“’\ Rapa;w which differs of the
definition of the reference (4) by a sign.

10. In the notation of reference (4) these equations read as tr(chPPq Y) =
= -tr(a;,l | *P). ‘

11. We recall that g%f = 1/ Gr;g oP ABo
12. The symbol o here as in Eq. (15) stands for covariant differentistion,
13. A, Komar, P. G. Bergmenn, Phys. Rev. Letters, 4, 432 (1960),



