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I, INTRODUCTION

It is well known that the perturbations @aleulatiensl of quantun
field theory give to the proten and the meutron ancmalous magnpetic mo =
ments (due to pioms) which differ from thoss givem by experimental mea-
suremsents., The perturbation calculatiom in higher order cammet be rele
led uwpon because of the large valuwe of the coupling constant and in ek,
for the neutron the disecrepancy increasez if the fourth order temm  is
inelnd@da.

Ir thig paper we use a&n alternative method, making use of the
Mass Operator formalism of Sehwingerﬁ ta ervaluate the nucleom magnetie
mements, Such a calcoulation for electrons has recently been @l@m@‘h’ and
negrlier @alemlati@ngo

served to show sme mumerical discrepanciss

% Work dome under the auspises of the Comsslho Nacioval de Pssguizmas.
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The Mass Operater describes the meass or self-energy of the par-
ticle in interaction with a extermal elsctromagpetic fleld, Taking a
constant (in space and time) exterpal magnetic field acting om the par-
ticle, the expectation walue of this operator, computed to the desired
order ef a?proxigati@ng contains a term linsar in the magnetic field,
and the magnetic moment is the ccefficient of this temm.

The calculations thus carried out in second order im the coup =
ling constant agrees with the perturbations @al@ulati@nséo

The anomalous magnetic moment of mucleons due to plons can arise

by the two followling possibilitiess
N ———> E@*Tfm%‘!! {a)
B =—=> K + TE —p N (b)

where the index ¢ demotes the particle which interacts with the const-
ant external electromagnetic fisld, and N stands for nueleon.
In the next section we calculate the contributions of these two

cases to the magnetic moments of nucleons,

Z;\\ CONTRIBUZION OF (a) (IN SECOND ORDER APFROXIMATION)

Usipg the property that pions are pseudoscalars in strong intep

action, we have for the expression of mass operators

i

J{fg}g ﬁ;‘f alty alhee ¥, o1 [yp 5]ty o B[R w2T S0 k)
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It ig necessary to chserve ﬁ;ha‘@c}{_ (mass operator) is a relativ-

istic scalar matriz in the sams algebrs as the ¥ -matrices and iz an

opsrator fanction of operater P ., This last satisfies

o B @
Laking & constant(in space and time)external electromagnetic
field, we geb

[51 . @;}] = 0 | (3)
Introducing,
’}'5 % d}w E(w (43

we have, in matrix potatioms

[ P, ’}]j 21 YPP (5)

Using the fsct Ghabt e °° behaves liks a trenslatiom operator,

R [K P+ m]}ml e IEE ﬂ:’o' iﬁmk)%m}ml

using (23, (4) and the anticommutativity of )’mtri@@s% we obtain

=,
- - = ¥(Polk)
H:lf (P <k)+ m:ﬂ = ﬁ% PR (6)

The mass operator then hag the forms

2 160\ 'y y mo¥(Pok)
M g ykg*ﬂaxgmg*@?ukzan} ¥ 0

-
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This integral is divergent for great values of k. Intreducing the ul-

tra=vieclet cut-eff

A g

: 2Y) =
¢ (69 k24 Ame

(vhere A 1s the dimensienless cut-off parameter),

We baves

(&) _ 16y 8 e gl ] ® - Y(P = k) 8
JVL 1‘(5 KCAME k2 +Am X5 wr (P - K)&-7 XS )
Makipe use of the identibys

1os |7 ot & (9

'f@@n

(&) g 2, M2 2
c){ m%ﬁ%;m ‘ds 4t dq @@k eXp {ais(k + MS)4 t(k“+ AmS )}
Whers,

XY [moYron] em {ﬁq(maa* (r-:)% Fo} ¥

Using (3) we bringc){"t@ the expression:

8z

-—-~ ds dt @@J@,@k eXp {ais (e 1 (k2 +A ma)}'rl
@

M= {n + ¥ (P= k)]ﬁzw ig Flexp {wi@[!ﬂa‘““ (» "kﬂ}

In the problem of magnstic moments we are interested only in terms ef
J‘{ vhick are of the firgt degree in extermal field, This has bsen us-
ed to obtaln the last relatiom.

We cap carry mow the integration over k., Firstly, we use in the



k-exponentials the identity.

(10)

2 g2,
(s+ 835s g B k)™ = (a4 t+q) H:k-m g@%—'ﬁ * o

Care has to be taken because we use exponentials of operators

and the uvsual algebrails relatiome are mot valid im gemeral, IThe k-ex-

ponentisl, by wsimg (10}, is put likes

A+ B
®
¥here >
- 4 :
A =cils+t+q [kwgﬁgﬁ] (11)
g (59
B=d oot tq

To first order in externsl fiselds
ATE L A B o 3 [6.3] (12)

Expanding the exporential with the commutator and r@tainingagﬂn,
only the first power im F we cbtain after some calculatiomss

2P = Q@Xp %;1 %%%%%}M®m{i(@%*@ [Tx S#%@J §> (13)

The notatien ﬂ g indiecates product of four factors affected by

the j-index, im the lagﬁ factor we must change the sign(time fa@t@r)7
<.> 4p Aindicates that an average must be taken of the guantity in bra-
ees and the same quantity with the order of P factors raversed,

¥We make now the translatioms

B
ettty

ZE,\ g kA L= QMD

<k«
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This brings J{ to the expressiomn:

ﬂ@ 9@?% jds dt dq exp {=i§!2= 1%&@&@]}&"&“ exp (A+ B)

where
?Lg [n + {1 = gﬁ;%;@_}‘d? m']'i'} {1+ 1q P

and sxp (,.k& B)is given by (13), (14). The k-integrals ares

j dk, ak; ak3 dke 7 exp {aikl ((s*ﬁ;ﬂﬂ-g)} exp {-ika (s+t+q)} exp {a-i%a(smw]
{ik@ (s*—t%ql)}

Terms of odd degres in k, will be integrate to zero, since they transf-
orms to their negatives under reflections k)-»-k,; drepping such terms

we gets

= o 0 - dovr] @ +iq})ﬁ 4 ¢

wheres

i %
3@ = 3’3
Hepce

8o
2
J{Z = % : A - j’ g dt dq exp {ﬁi@l@ - tn*(eere)f3 @)

©

SR S
P (settq) e

. (15)
| }>*E

<Sa>+P = <[n. * (1= E;%;ﬁﬂ?]@l«p ig}) exp {.,..

Esing the new variables s', w, w given bys

M7 =
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st=s+t+gqg

%
B Ts*t+g

w = 3
s+t

We have in (15),
d

@ ]
J(('Z)= i%;—h-a- j ds '} (lmu)dus dw exp {43 ' [mzumaaaau) {lcm)ﬂiaw(laug} Q ’
(. o

° |
fj' = [m + (l-u)YP] (L +4s' uJ) exp {wi P2 u 8t (lau)}

Carrying out the symmetrization:
é gp)ﬂ)= (m+ims'n 3’-& is'w(l - u)h’? 3’.) exp{cai qus%la&a)}-&’
sBa-n{in o Fus o]

Terms of first degree in F need not He symmetrized since, this womld
generate higher powers of Fj; the last symbol stands for snticommutator,
We must take the expectation value of mass-operator in a state

solution of Dirac equation,
(YP+m)VY = o
Because of this, we must use the relation.
(¥YP)2=F -p2
In order to replace pZ by (YP)Z in the exponentials of the last equat-

ion, BRetalning only the first power of P, and calculating the anticop

mutator on account of (5) ands

['5- , (YP)ZI =0
" -



We are left to,
2 @hp={nC2+ 102 B+ Gew W2 + 18 Qow) [(r¥ey -

- (law)F¥P ]]exp [:l.su (1-u) (XP)Z ]

we have dropped the prime from s. Integrating over s, (we use (9) and
the integré.l obtained from her by differentiation with respect to the

parameter g)

1
2) . 2
NP L% odn S (l-u)duf aw. S (18)
4y o

4]

d@m+ (L-u) ¥ P)
n2a +0% A (1-u) (1<w) + 2w (1-u)-u(l-u) ( ¥ P)&

1?3+ 3 aw [y awdve]
[nzu + 1 ) (L=ua) (Lw)+ 2w (1l-u) = u(l-u)( ¥ P)Z]2

8 =

The integration over w gives

2) 2
J{ = -Eﬂ—,%‘-“-j (1.u)du, W (19)
]

vwhere:

L sl XP m .
lo — - .. T et
(lu)¥e (1-u) b m& € gty + 1l

o F+ 1 Q) [y P'3;- (1-a)FYP ]
* - - — —
(m2u+ n? ) (1- w) - u(2-u)( ¥ P)°)( n%u+ (La)¥®= u (1-u)(¥ PF)

Introducing the approximation of ultraviolet cut-offs
=49~ |

W= +




(1 =) ¥% = (L-w)A B = (m=1)A u°
p%u + mZ A (lew)=u (l-m)( Y )2 - 2\ (1-m)

We are interested only in the field dspendent temms of mass-operator

and may forget the term in logarithms

o w3l [u+ W ¥P¥ - (-a)F¥r)(i-u) o (%)
? 2)\(1—11) nlu + (l-u)M® ou (1 @MXPDET

Then,
. 1 |
(2) %gg ™ J+ ;E |y ¥2 ¥ (1w ¥ 5 ] (201
S - n du - Y : ,
J’li' 7 mon + (l-u)MZo u(l-u)(¥ p)&
°
The wvariation of nucleon mass due to thelr int@ra@‘f@ién with the exterp

al field 1ss

(B n) @ =Y 102 1D @

Y being a solution of (16). After simple transformations we get,

Qen)® -- 52 B | s -

(D=3

Bsmz

xR =M
szz

The discriminant of the quadratic depomipator inm the integrapd of (22)

where

is negative on account of,

m ~TM
=250+
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Taking the correct solutlon for the u-integral in this case,we obtain:

(8en)” - - BH(E)O) @)

£(x) being the followlng function:

: 2 Y
£(x) =ﬁ§=uleg%+l?-%eos”l —-2‘- (21)

In (23) we include also c, $ which were assumed unity in earlier expres
sion of Jéa) (equation (1)),

The contribution for the second-order anomalous nucleon moment

is thens

/‘(;)-- -2 (Eg) (25)

in nuclear magnetons,

3, CONTRIBUTION OF (b) (in second order)

We have now explicitely a charged plon, and so we must take for
the s'quai'e of coupling constant the value 2 G, instead of Gy, The Mass-
Operator has the form,

2)
M- z:._Eo__e. J dip olPE Y s ¥ oW L (a4

we integrate now, over the nucleon four-momentum p, the syﬁbols have
the same meaning as in (1), and @ 15 the pion charge, We take this
charge like positive, for obtaining the result for negative charge we
must change the sign.

The calculations involved in the derivation of magnetic mcoment
using (26) are essenclaly the same as in section 2, The magnetic mo-

ment is given by,
51



o1l =

A2 = 3 o) @)
in nuclear magnetons. Here P is the function,
Px) =2 (28)
L, TOTAL CONTRIBUTION FOR PROTON AND NE;U?EROH
Introducing the notatlon,
NI (x) = Px)
I, () = ;Z?j £ (x) (29)

We have for I,, I, the same results as found by perturbations m@th()dsﬁo

For an earlier paper about this see for instance K.M. Casel his results
agree also with the ours,

In the new notation;

2
Contribution of (338}&2) =6, I, (%’5) (30)
Contribution of (b): )1(2) = G, Iq (;‘%) | {31)

For obtaining the total contribution for proton and neutron we proceed
like in perturbation theory, adding the contributions of each graph be
longing to self-energy of the proton and the neutron in external field,

this procedure is well known, we write the results:

(2)

M0 = 6 (I = 5y) (32)
(2)

Py (0 == 6 (I + 25,) (33)
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In (32); (33) we disregard the differences in mass between the T{-mesons
and between proton and neutron;

The I's in (32), (33) has the common argument (‘é’z-) o We have put {like
argument in this equations because this is the pion contribution to the
moments of p and n,

Replacing in (32), (33) the values of I1;, I, we have,

(2) G 3
ay=32 [4_3 oo & _ bx=21x2+25° -1 YF
)Jp ) = = [i‘- 2 '*'ﬁ (5-3x)1log T - > s cos™" =% ]‘(3@
(2) :
Jo =B Frordox Lot ot ] 9
| where,

e

Taking the ratlio of my tom 1ike 0,15 we have,

X -~ 0,023
Since x is very small we may retain only their first pewer in (34),35);
this glves:
(2)

)J.p (1) = %?’ [t-%-b%leg %-‘\f;‘ ces'lg] (36)

(2)
G
}"n(ﬂ)s-# [1+%leg %-ﬁ cos“’l%?] {37)
.Ihe numerical computation leads to,

(2) .

ot = 0,00 i (38)
(2) 2

Hp (1) = - 0,260 pE— (39)

53=
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These values are not the same as the experimental ones, the signs are

correct but the magnitude of Fp is too small while the magnitude of M

is too large in comparison with the experimental values,
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