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Abstract

In this talk I discuss a recently developed “Unfolded Quantization Framework”. It allows to

introduce a Hamiltonian Second Quantization based on a Hopf algebra endowed with a coproduct

satisfying, for the Hamiltonian, the physical requirement of being a primitive element. The scheme

can be applied to theories deformed via a Drinfel’d twist. I discuss in particular two cases: the abelian

twist deformation of a rotationally invariant nonrelativistic Quantum Mechanics (the twist induces

a standard noncommutativity) and the Jordanian twist of the harmonic oscillator. In the latter case

the twist induces a Snyder non-commutativity for the space-coordinates, with a pseudo-Hermitian

deformed Hamiltonian.

The “Unfolded Quantization Framework” unambiguously fixes the non-additive effective interac-

tions in the multi-particle sector of the deformed quantum theory. The statistics of the particles is

preserved even in the presence of a deformation.

1 Introduction

In this talk I will summarize the main results, recently appeared in four separate papers in J. Math.

Phys. [1, 2, 3, 4], concerning a new Hamiltonian quantization framework for (twisted) Hopf algebras,

which is applicable to noncommutative nonrelativistic Quantum Mechanics.

This paper is intended to provide a self-contained quick introduction to the addressed problem and

its proposed solutions. It will report the main relevant results obtained so far.

Let us start with the formulation of the problem. Hopf algebras are a natural framework to deal

with deformed theories. Indeed, a Drinfel’d twist preserves the Hopf algebra axioms while deforming

its structures/costructures. Among the Hopf algebra (co)structures, the undeformed coproduct admits a

∗Talk given at “Quantum Theory and Symmetries 7”, Prague, August 7-13, 2011.
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natural physical interpretation. The undeformed coproduct of a primitive element Ω is expressed through

∆(Ω) = Ω⊗ 1 + 1⊗ Ω. (1)

For our purposes we can consider here the Hopf algebra defined on the Universal Enveloping Algebra

U(G) of a Lie algebra G. A primitive element is a Lie algebra element (therefore Ω ∈ G).

It is quite natural to apply this undeformed scheme to a system of free, non-interacting quantum

systems: a chain of non-interacting harmonic oscillators, a chain of non-interacting spins, and so forth.

The free Hamiltonian H should therefore be regarded as a primitive element, with the undeformed

coproduct translating, into the Hopf algebra setting, the additivity of energy for the non-interacting

multi-particle state (the total energy being recovered as the sum of the single-particle energy levels).

These considerations are quite straightforward. It is also straightforward to realize that a Drinfel’d

twist can induce a deformation of the free theory. The real issue comes when we try to be specific and

implement this framework in a concrete setting. It has been observed several times in the literature (see

the discussion in [1]) that the standard quantization framework based on the Heisenberg algebra H (with

creation and annihilation operators acting on a Fock space) fails to provide a Hamiltonian which satisfies

(1). Let, for a harmonic oscillator, set H = ωa†a. Then, the creation and annihilation operators a†, a

satisfy ∆(a†) = a† ⊗ 1 + 1⊗ a† and ∆(a) = a⊗ 1 + 1⊗ a. On the other hand ∆(H) 6= H ⊗ 1 + 1⊗H.

The reason for that is that H is an element of the Heisenberg enveloping algebra and not one of the

Heisenberg algebra generators.

This simple example shows us that we cannot use, as we would have naively expected, U(H), the

Universal Enveloping Algebra of the Heisenberg algebra, as the undeformed Hopf algebra setting for the

Second Quantization of the harmonic oscillator.

Mathematically, there is nothing wrong of course with the Hopf algebra defined on U(H). It is a

mathematically consistent Hopf algebra. What U(H) fails to provide is a consistent, physical interpre-

tation for the undeformed coproduct (in accordance with (1)). If we insist in using it and apply to the

Second Quantization of the harmonic oscillator, we simply get wrong results.

It is clear, from the previous considerations, which strategy could be found to overcome this problem.

Since formula (1) applies to primitive elements, then we need to realize the undeformed free Hamiltonian

as a primitive element. One possibility [1] is offered by the so-called Wigner’s quantization [5] (mostly

known in the literature, see [6], as Wigner’s oscillators). In the Wigner’s approach the Hamiltonian of

the harmonic oscillator, in its symmetrized, Weyl form, can be expressed as an anticommutator. We

have H = {F+, F−}, where F± are two odd generators which, in Wigner’s case, play the role of the

creation/annihilation operators of the standard approach. F± belong to the odd sector G1 of the osp(1|2)

superalgebra whose even sector G0 is isomorphic to sl(2) (H,E± ∈ G0). H corresponds to the Cartan’s

element of osp(1|2).

The Fock’s space is replaced, in the Wigner’s setting, by a lowest weight representation of osp(1|2).

The lowest weight vector |λ > (F−|λ >= 0, H|λ >= λ|λ >) corresponds to the Fock’s vacuum, while

the lowest weight λ can be interpreted as a vacuum energy. If |λ > is assumed to be bosonic, the lowest

weight representation (spanned by the vectors F+
n|λ >) contains bosonic vectors for even values of n and
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fermionic vectors for odd values of n. The standard Hilbert space of the harmonic oscillator is recovered

[1] by setting a specific value for the vacuum energy λ and by projecting out the fermionic sector.

In the Wigner’s approach, H is a Cartan element of osp(1|2) and therefore a primitive element of the

superalgebra. The Wigner’s approach to the Second Quantization of the harmonic oscillator [1], based

on the Hopf algebra structure defined for the Z2-graded Universal Enveloping Algebra U(osp(1|2)) is

consistent, both mathematically and physically.

In dealing with more complicated Hamiltonians (not necessarily coinciding with harmonic oscillators

and their extensions) we would like to have at disposal a more flexible picture for a Second Quantization

based on Hopf algebra. This alternative, more flexible picture, introduced at first in [2] and further

elaborated in [3, 4], goes under the name of “Unfolded Quantization”. It will be discussed in the following.

2 The Unfolded Quantization

The Unfolded Quantization requires the preliminary identification of an abstract, dynamical Lie algebra

Gd which contains the Hamiltonian among its generators. The identification of Gd, that is which operators

should belong to Gd and regarded as primitive elements, is imposed by physical considerations and the

constraints put on the problem that we are investigating. Let us consider as an example a rotationally

invariant three-dimensional nonrelativistic system. The angular momentum ~L is a primitive element,

while ~L2 is not. This has to do with the fact that the coproduct

∆(~L2) = ∆(~L) ·∆(~L) = ~L2 ⊗ 1 + 1⊗ ~L2 + 2~L⊗ ~L (2)

encodes the notion that ~L2 is not an additive operator. Indeed, for a composite system we have the

identity (~L1+2)2 = (~L1 + ~L2)2.

To be specific let us discuss the example of the three-dimensional harmonic oscillator. Its Heisenberg

algebra is given by the generators h̄, xi, pi (i = 1, 2, 3). Its non-vanishing commutation relations are

[xi, pj ] = iδij h̄. (3)

We can define as its dynamical Lie algebra Gd, the one given by the generators h̄, xi, pi, Li, H,K,D,

together with its set of abstractly defined non-vanishing commutation relations

[xi, pj ] = iδij h̄,

[xi, Lj ] = iεijkxk,

[pi, Lj ] = iεijkpk,

[xi, H] = 2ipi,

[xi, D] = ixi,

[pi, D] = −ipi,

[pi,K] = −2ixi,

[H,D] = −2iH,
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[H,K] = −4iD,

[D,K] = −2iK, (4)

determined by the Heisenberg commutators (3) via the identifications

Li =
1
h̄
εijkxjpk,

H =
1
h̄
~p2,

D =
1

2h̄
(~x~p+ ~p~x),

K =
1
h̄
~x2. (5)

Within Gd, the Hamiltonian H of the harmonic oscillator is expressed as H = H +K.

As mentioned in the Introduction, the Hopf algebra structure relevant for physical purposes is defined

for U(Gd).
For more general Hamiltonians whose potential is no longer quadratic, an infinite number of generators

need to be introduced to consistently define the dynamical Lie algebra Gd. For such cases (unlike the

harmonic oscillator case) Gd becomes an infinite-dimensional Lie algebra.

The Hopf algebra structure of U(Gd) neatly encodes the Second Quantization. On the other hand, we

can perform the Second Quantization without even referring to its Hopf algebra structure just like, in a

different context, we can perform sums of trigonometric functions without referring to the Hopf algebra

structure of real functions closed under addition (the formula sin(x + y) = sin(x)cos(y) + cos(x)sin(y)

being traslated, in the Hopf algebra setting, as ∆(sin) = sin⊗ cos+ cos⊗ sin).

The real advantage of the introduction of a Hopf algebra structure lies in the fact that it allows

controlling the deformations. In the following we apply the Unfolded Quantization to some selected

examples of Drinfel’d twist [7, 8].

3 Deformations: the abelian twist

The U(Gd) algebra can be deformed via a twist F ∈ U(Gd)⊗U(Gd) satisfying the cocycle condition. The

abelian twist is defined to be

F = exp (iαijpi ⊗ pj) , αij = −αji. (6)

It is abelian since [pi, pj ] = 0 and well-defined due to the fact that the pi momenta are among the

generators of Gd.
The twist induces a deformation (g 7→ gF ) for the Gd generators, with gF belonging to U(Gd). The

generators which commute with pi remain undeformed. Among the deformed generators we have

xFi = xi − αijpj h̄,

KF = K − αijxipj +
αjkαjl

2!
pkplh̄. (7)

The deformation of the position operators xi corresponds to the Bopp shift.
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In the so-called “hybrid formalism” (see [1]) one can link the abelian twist to the (constant) noncom-

mutativity, through the relations

[xFi , x
F
j ] = iΘij , (8)

where the constant operator Θij is given by

Θij = 2αij h̄2. (9)

For single-particle operators the knowledge of the deformed generators, together with their commutators

and their action on a module V which possesses the structure of a Hilbert space, is sufficient to quantize

the system. For multi-particle operators the extra-structure of the (deformed) coproduct plays a role.

The deformed 2-particle operator associated with the deformed generator gF is constructed by applying

∆F (gF ) ∈ UF (Gd)⊗UF (Gd) to the Hilbert space V ⊗V . The twist F (6), applied to V ⊗V , corresponds

to the unitary operator F . Since

∆F (gF ) = F ·∆(gF ) · F−1,

(10)

with ∆(gF ) the undeformed coproduct, we end up that the operators ∆̂F (gF ), ∆̂(gF ), acting on V ⊗ V ,

are unitarily equivalent:

∆̂F (gF ) = F · ∆̂(gF ) · F−1. (11)

This feature also applies for n-particle operators with n ≥ 3.

It is convenient to introduce the symbol “ ̂ ” when we need to make the distinction between an

element Ω of the (tensor product of the) Universal Enveloping Lie Algebra and its action Ω̂ on a module.

Therefore, HF ∈ UF (Gd) while ĤF : V → V .

Let us express the deformation parameter αij through

αij = εijk
αk
Z
. (12)

Without loss of generality we can set ~α = (0, 0, α3 = α). Once applied the abelian twist-deformation (6)

the deformed Hamiltonian reads as

HF = H +K − α(xpy − ypx) +
α2

2
h̄(p2

x + p2
y). (13)

The undeformed coproduct of the deformed Hamiltonian reads

∆(HF ) = HF ⊗ 1 + 1⊗HF + α(y ⊗ px + px ⊗ y − x⊗ py − py ⊗ x)

+
α2

2

2∑
i=1

(2pih̄⊗ pi + 2pi ⊗ pih̄+ p2
i ⊗ h̄+ h̄⊗ p2

i ). (14)

It is symmetric under particle exchange. Therefore, the particles behave as ordinary bosons even in the

presence of the deformation. One should also note that the deformed two-particle Hamiltonian is no
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longer additive due to the extra terms which depend on α. Even if no longer additive, the coassociativity

of the coproduct guarantees in any case the associativity of the deformed Hamiltonian. Indeed, for

three-particle states, we have the equality

(id⊗∆)∆(HF ) = (∆⊗ id)∆(HF ) ≡ ∆(2)(HF ), (15)

where, explicitly

∆(2)(HF ) = HF ⊗ 1⊗ 1 + 1⊗HF ⊗ 1 + 1⊗ 1⊗HF

+α(1⊗ y ⊗ px + y ⊗ 1⊗ px + y ⊗ px ⊗ 1)

+α(1⊗ px ⊗ y + px ⊗ 1⊗ y + px ⊗ y ⊗ 1)

−α(1⊗ x⊗ py + x⊗ 1⊗ py + x⊗ py ⊗ 1)

−α(1⊗ py ⊗ x+ py ⊗ 1⊗ x+ py ⊗ x⊗ 1)

+α2
2∑
i=1

[1⊗ pih̄⊗ pi + pih̄⊗ pi ⊗ 1 + pih̄⊗ pi ⊗ 1

+1⊗ pi ⊗ pih̄+ pi ⊗ pih̄⊗ 1 + pi ⊗ pih̄⊗ 1

+h̄⊗ pi ⊗ pi + pi ⊗ pi ⊗ h̄+ pi ⊗ pi ⊗ h̄

+
1
2

(1⊗ h̄⊗ p2
i + h̄⊗ p2

i ⊗ 1 + h̄⊗ p2
i ⊗ 1

+1⊗ p2
i ⊗ h̄+ p2

i ⊗ h̄⊗ 1 + p2
i ⊗ h̄⊗ 1)]. (16)

The deformed two-particle energy EF12 can be expressed as

EF12 = EF1 + EF2 + Ω12, (17)

where EFi (i = 1, 2) are the single-particle energies and Ω12 is an effective interaction term. Therefore we

have at least two possible interpretations for the above results. Either we regard Ω12 as an interaction

or we regard (17) as describing a system of free (albeit deformed) particles, with Ω12 6= 0 as a measure

of deformation.

The associativity is expressed by the three-particle formula

EF123 ≡ EF(12)3 = EF1(23) = EF1 + EF2 + EF3 + Ω12 + Ω23 + Ω31 + Ω123, (18)

with Ω123 recovered from the Ωij ’s.

It should be stressed the crucial role of the coproduct in unambiguously determine the “interacting

term” Ω12.

The formulas (14) and (16) are equalities in the tensor products of the Universal Enveloping Lie

algebras UF (G2)⊗UF (G2) and UF (G2)⊗UF (G2)⊗UF (G2), respectively. To get the 2-particle, 3-particle

(and in general multi-particle) Hamiltonian we have to apply on the V ⊗ . . . ⊗ V multi-particle Hilbert

space (with h̄ mapped into the identity operator). It should be stressed that the computation of the

interacting term Ω̂12, made possible by the application of the Unfolded Quantization framework, goes

beyond the results of [9, 10].
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4 Deformations: the Jordanian twist and the Snyder noncom-

mutativity

The formalism of the Unfolded Quantization can be applied to another example of Drinfel’d twist, the

Jordanian deformation of sl(2) [11, 12, 13]. It is defined by the twist

F = exp (−iD ⊗ σ) , (19)

where σ = ln(1 + ξH). The parameter ξ is dimensional and is taken as a real, positive number. It can

be applied to twist the Universal Enveloping Algebra U(Gd), with Gd defined in (4). As before the twist

induces a deformation g 7→ gF on the generators of Gd. Explicitly, the deformed generators are

xFi = xie
σ
2

pFi = pie
−σ

2

HF = He−σ

KF = Keσ, (20)

the others remaining undeformed.

The deformed Hamiltonian of the harmonic oscillators reads as

HF = HF +KF = He−σ +Keσ. (21)

In the hybrid formalism [2] the commutator of the deformed position variables yields the Snyder non-

commutativity [14]:

[xFi , x
F
j ] = − iξ

2
(xFi p

F
j − xFj pFi ). (22)

The other nonvanishing commutators are

[xFi , p
F
j ] = ih̄δij +

iξ

2
pFi p

F
j

[xFi , D
F ] =

i

2
(xFi − ξxFi HF )

[xFi , H
F ] = ipFi (1− ξHF )

[xFi ,K
F ] = −ξ

2
xFi

(
1 +

ξ

2
HF

)
+ iξ(KFpFi +DFxFi )

[pFi , D
F ] = −ipFi

(
1− ξ

2
HF

)
[pFi ,K

F ] = −i(xFi + ξpFi D
F ) +

ξ2

4
pFi H

F

[DF , HF ] = iHF (1− ξHF )

[DF ,KF ] = −iKF (1− ξHF )

[KF , HF ] = 2iDF (1 + ξHF ) + 2ξHF − 2ξ2(HF )2. (23)

As in the abelian twist case, deformed and undeformed coproducts are unitarily equivalent for all n-

particle states. The particles remain bosonic even in the presence of the deformation. The associativity

of the multi-particle Hamiltonian is guaranteed by the coassociativity of the coproduct.
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The main difference with respect to the abelian case is that now the deformed Hamiltonian is no longer

Hermitian. On the other hand, it belongs to the so-called η-type class of pseudo-Hermitian Hamiltonians,

satisfying

HF† = ηHFη−1, (24)

with η a Hermitian operator. For the Jordanian twist we have

η = eσ = 1 + ξH. (25)

A consistent quantum mechanics can be made with such Hamiltonians, see [15, 16]. For that it is sufficient

to define an inner product <<,>> under which HF is self-adjoint. Obviously this deformed inner product

needs to satisfy some conditions, for instance, positiveness.

This different inner product is related to the usual one by

<< ψ, φ >>=< ψ, ηφ > . (26)

Note that η is a Hermitian, linear and invertible operator, and is analogous to a metric in a usual

finite-dimensional vector space.

Although as a vector space the Hilbert space endowed with the η-deformed inner product is isomorphic

to the original one, as Hilbert spaces this is not true. Thus, we denote the Hilbert space with the η-

deformed inner product as H̃. If η is positive definite, the new inner product will also be so.

Under this inner product we have

<< ψ,HFφ >> = < ψ, eσHFφ >

= < eσHFe−σeσψ, φ >

= < HFψ, eσφ >

= << HFψ, φ >> . (27)

Therefore, under the deformed inner product the Hamiltonian becomes self-adjoint. Operators such as

HF , which are self-adjoint under the η-deformed inner product, are called η-pseudo-Hermitian operators

[16].

It remains to be seen if the spectrum of the η-pseudo-Hermitian Hamiltonian is real. This will be true

because the formal square root of η, ρ such that ρ2 = η, is a unitary transformation ρ : H̃ → H, even

though it is a Hermitian operator in H .

To see this, consider a linear transformation T : W → V between two finite-dimensional vector spaces

W and V . Its adjoint will then be a transformation T ‡ : V ∗ → W ∗, where V ∗ and W ∗ are duals to the

original vector spaces. Then we have, by definition,

< w, T−1v >W=< T−1‡w, v >V , (28)

where <,>W is the inner product in W and <,>V is the one in V .

In our notation for the inner products of H and H̃ we have, for ρ = exp 1
2σ,

<< ψ̃, ρ−1φ >>=< ρ−1‡ψ̃, φ >, (29)



CBPF-NF-005/11 9

with ψ̃ ∈ H̃ and φ ∈ H. Using expression (26) we also find that

<< ψ̃, ρ−1φ >>=< ρψ̃, φ > . (30)

Therefore ρ−1‡ = ρ, so that ρ is unitary when regarded as a transformation ρ : H̃ → H. Note that ψ̃ can

also be regarded as a vector in H, since H and H̃ are identified as vector spaces.

A useful way of dealing with this scenario is to map all observables on H̃ back onto H where the inner

product is the usual one. This is done by

HF 7→ HFρ = ρHFρ−1. (31)

The new Hamiltonian will be given by

HFρ =
(

1− ξ2

4

)
HF +KF + iξD, (32)

which is explicitly Hermitian since KF† = KF + 2iξD. For our present consideration, ξ is a small

parameter. This shows that our pseudo-Hermitian Hamiltonian is related to a manifestly Hermitian

Hamiltonian by a unitary transformation, and is therefore guaranteed to have a real spectrum. The

transformation ρ is called a pseudo-canonical transformation; the systems described by HF in H̃ and HFρ
in H are physically equivalent [16].

5 Conclusions

In this talk I presented the Unfolded Quantization framework (developed in [2, 3, 4]) which allows

performing a Second Quantization within a Hopf algebra scheme which satisfies the physical requirements

for the (undeformed) coproduct. Its basic tenet is the correct determination of the dynamical Lie algebra

Gd. The Hopf algebra is defined on its Universal Enveloping Algebra. In application to Drinfel’d-

twist deformations of Hopf algebras (such as the abelian twist that was discussed in Section 3 and the

Jordanian twist that was discussed in Section 4), the Unfolded Quantization framework leads to non-

additive effective interactions in the multi-particle sectors. These interactions, induced by the twist,

satisfy consistency condition such as the associativity (induced by the coassociativity of the coproduct)

and symmetry under particle exchange. The Unfolded Quantization framework unambiguously fixes the

effective interactions, allowing to go beyond the results previously obtained in the literature concerning

single-particle operators (see, e.g., [9, 10] in the case of the abelian twist).

Applied to the Jordanian twist, the Unfolded Quantization leads to some surprises: the twist induces

a Snyder-type noncommutativity for the space coordinates and, moreover, the deformed Hamiltonian,

despite being no longer Hermitian, belongs to a well-known class of pseudo-Hermitian Hamiltonians

admitting a consistent quantization scheme (see [15, 16].

An important issue which was not mentioned in this talk concerns the role of the Noether charges

in the presence of a twist-deformation. In [2] this problem was addressed for the rotational symmetry

in the presence of an abelian-twist deformation. The results are quite illuminating. The introduction of
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twist-deformed brackets (see [17]) allows to close the so(3) rotational algebra even in the presence of the

deformation. This result, however, is only formal since it can be proven that, apart from the free-particle

Hamiltonian, no other Hamiltonian with a non-constant potential is invariant under this so(3) algebra.

Stated otherwise, in the presence of the (abelian) twist, the so(3) generators do not belong any more to

a dynamical symmetry algebra of the twist-deformed Hamiltonian.

These investigations concerned so far the Second Quantization of non-relativistic quantum mechanical

systes. Works devoted to the application of the Unfolded Quantization framework to DSR (deformed

special relativities) theories are in progress. Another line under current investigation concerns the appli-

cation of this framework to theories at finite temperature, defined via the Takahashi-Umezawa thermofield

dynamics approach [18].
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