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Abstract

It is shown that there are significant conceptual differences between QM and
QFT which make it difficult to view the latter as just a relativistic extension of
the principles of QM. At the root of this is a fundamental distiction between Born-
localization in QM (which in the relativistic context changes its name to Newton-
Wigner localization) and modular localization which is the localization underlying
QFT, after one separates it from its standard presentation in terms of field coordi-
nates. The first comes with a probability notion and projection operators, whereas
the latter describes causal propagation in QFT and leads to thermal aspects of lo-
cally reduced finite energy states. The Born-Newton-Wigner localization in QFT is
only applicable asymptotically and the covariant correlation between asymptotic in
and out localization projectors is the basis of the existence of an invariant scattering
matrix.

In this first part of a two part essay the modular localization (the intrinsic
content of field localization) and its philosophical consequences take the center stage.
Important physical consequences of vacuum polarization will be the main topic of
part II. The present division into two semi-autonomous essays is the result of a
partition and extension of an originally one-part manuscript.

1 Introductory remarks

Ever since the discovery of quantum mechanics (QM), the conceptual differences be-
tween classical theory and QM have been the subject of fundamental investigations with
profound physical and philosophical consequences. But the conceptual relation between
quantum field theory (QFT) and QM, which is at least as challenging and rich of surprises,
has not received the same amount of attention and scrutiny, and often the subsuming of
QFT under ”relativistic QM” nourished prejudices and prevented a critical foundational
debate. Apart from some admirable work on the significant changes which the theory of
measurements must undergo in order to be consistent with the structure of QFT, which
emanated from people who are or have been affiliated with the Philosophy of Science
Department of the University of Pittsburgh [1][2][3], as well as some related deep math-
ematical and conceptual work from quantum field theorists [4][91][92], this subject has
remained in the mind of a few individuals working on the foundations of QFT and is still
far from being part of the collective knowledge of the foundation of QT community.

Often results of this kind which involve advanced knowledge of QFT do not attract
much attention even when they have bearings on the foundations of QT as e.g. the issue
of Bell states in local quantum physics (LQP1) [6] or the important relations between
causal disjointedness with the existence of uncorrelated states as well as the issue to
what extent causal independence is a consequence of statistical independence [7]. The

1We use this terminology instead of QFT if we want to direct the reader’s attention away from the
textbook Lagrangian quantization towards the underlying principles [5]. QFT (the content of QFT
textbooks) and LQP deal with the same physical principles but LQP is less comitted to a particular
formalism (Lagrangian quantization, functional integrals) and rather procures always the most adaequate
mathematical concepts for their implementation. It includes of course all the results of the standard
perturbative Lagrangian quantization but presents them in a conceptually and mathematically more
satisfactory way. Most of the subjects in this article are outside of textbook QFT.
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reason is not so much a lack of interest but rather that QFT is often thought to be just
a kind of relativistic quantum mechanics and that possible differences are of a technical
nature. This may explain why there has been an amazing lack of balance between the
very detailed and sophisticated literature about interpretational aspects of QM and its
relation with quantum information theory (aiming sometimes at some very fine, if not
to say academic/metaphoric points e.g. the multiworld interpretation), and the almost
complete lack of profound interpretive activities about our most fundamental quantum
field theory of matter. Although the name QT usually appears in the title of foundational
papers, this mostly hides the fact that they deal exclusively with concepts from QM
leaving out QFT.

If on the other hand some foundational motivated quantum theorist become aware of
the deep conceptual differences between particles and fields, they tend to look at them as
antagonistic and create a battleground; the fact that they are fully compatible where for
physical reasons they must agree, namely in the asymptotic region of scattering theory,
remains often uncommented.

The aim of this essay is to show that at the root of these differences there are two
localization concepts: the quantum mechanical Born-Newton-Wigner localization and the
modular localization of LQP. The BNW localization is not Poincaré covariant but attains
this property in a certain asymptotic limit namely the one on which scattering theory is
founded. Modular localization on the other hand is causal and covariant at all distances
but provides no projectors on subspaces as they arise from spectral decompositions of
selfadjoint or unitary operators, instead the linear spaces of localized states are usually
dense in the Hilbert space of all states. One of the aims of this article is to collect some
facts which, somewhat oversimplified, show that besides sharing the notion of Hilbert
space, operators, states and Planck’s constant }, QM and QFT are conceptually worlds
apart and yet they harmonize perfectly in the asymptotic region of scattering theory.

For a long time the subtle distinction between the non-covariant BNW localization
based on the existence of a position operator and the autonomous covariant localization
concept of QFT was insufficiently understood. It has been claimed (private communica-
tion by Rudolf Haag) that the reason for Wigner, who together with Jordan significantly
enriched QFT, to become later disenchanted with this theory was that he failed to obtain
a covariant localization concept which was able to directly connect his representation the-
ory of the Poincaré group with QFT 2. The application of the non-covariant and hence
frame-dependent BNW localization to finite distances leads to incorrect results in par-
ticular to superluminal phenomena. But only after the publication of an article [8] in
which it was claimed that Fermi’s result about his two-atom Gedankenexperiment con-
tradicts understandings about spacetime localization and signal propagation came the
issue of BNW- and modular- localization to a climax. The editor of Nature at that time
wrote an article in which the main (sensational, but not incorrect) conclusion was that
the claimed superluminal propagation makes time-machines theoretically possible where
upon the world press especially in the US and Europe took up the sensational subject.

Fortunately this was not the end of this episode. The same journal which published
the article based on the use of BNW localization accepted a second article [9] in which

2This is precisely what modular localization achieves (section 6).
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Fermi’s conclusions about finite propagation speed were reinforced on the basis of modular
localization3. This episode underlines the subtlety of localization in QFT and most of the
content of both parts of this essay will consist in explaining why this is such a delicate
problem which led to many misunderstandings.

It is not our intention to present a new axiomatic setting (for an older presentation of
the existing one see [5]). Such a goal would be too ambitious in view of the fact that we
are confronting a theory where, in contradistinction to QM, no conceptual closure is yet
in sight. Although there has been some remarkable nonperturbative progress concerning
constructive control (i.e. solving the existence problem) of models, the main knowledge
about models of QFT is still limited to numerically successful, but nevertheless diverging
perturbative series.

Here the more modest aim is to collect some either unknown or little known facts
which could present some food for thoughts about a more inclusive measurement theory,
including all of quantum theory (QT) end not just QM. On the other hand one would
like to improve the understanding about the interface between QFT in CST (curved
spacetime) and the still elusive QG.

Since both expressions QFT and LQP are used do denote the same theory, let me em-
phasize again that there is no difference in the physical aims since LQP originated from
QFT and incorporated all concepts and computational results of QFT including renor-
malized perturbation theory; LQP is used instead of QFT whenever the conceptual level
of the presentations gets beyond what the reader is able to find in standard textbooks
of QFT, more specifically whenever one is interested in nonperturbative mathematically
controlled constructions of models in terms of intrinsic (”field-coordinatization indepen-
dent”) structures. There is one recommendable exception, namely Rudolf Haag’s book
”Local Quantum Physics” [5]; but in a fast developing area of particle physics two decades
(referring to the time it was written) are a long time.

The paper consists of two parts, the first is entirely dedicated to the exposition of
the differences between (relativistic4) QM and LQP and their coexistence at large time
separations within the setting of scattering theory. The second part which will appear
as a separate contribution deals with thermal and entropic consequences of vacuum po-
larization caused by causal localization as well as some consequences for QFT in curved
spacetime (CST). A quantum gravity theory (QG) theory does not yet exist, but a pro-
found understanding of those foundational aspects are expected to be important to arrive
at one.

The sections of the paper at hand are as follows. The first sections presents the little
known theory of direct particle interactions (DPI), a framework which incorporates all
those properties of a relativistic theory which one is able to formulate solely in terms
of relativistic particles; some of them already appeared in the pre Feynman S-matrix
work of E.C.G. Stückelberg. In contradistinction to nonrelativistic QM where the cluster
factorization follows from the additivity of two-particle interactions, its enforcement in
DPI requires more refined arguments. As a closely related result, DPI does not allow

3In the publications during the 90s, this terminology was not yet available. It was sufficient to simply
think in terms of the kind of localization which is intrinsic to pointlike covariant fields.

4In order to show, that by making QM relativistic, one does not remove the fundamental differences
with QFT, the next section will be on the relativistic setting of ”direct particle interactions”.
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a second quantization presentation, even though it is a perfect legitimate multiparticle
theory in which n-particles are linked to n+1 particles by cluster factorization. Most
particle physicists tend to believe that a relativistic particle theory, consistent with macro-
causality and a Poincaré-invariant S-matrix, must be equivalent to QFT5, therefore it
may be helpful to show that this is not correct. DPI theories fulfill all the physical
requirements which one is able to formulate solely in terms relativistic particles without
recourse to fields, as Poincaré covariance, unitary and macro-causality of the resulting
S-matrix (which includes cluster factorization).

In this way one learns to appreciate the fundamental difference between quantum
theories which have no algebraically built-in maximal velocity and those which have.
As a quantum mechanical theory DPI only leads to statistical ”effective” finite velocity
propagation for asymptotically large time-like separations between localized events as
they occur in scattering theory. With other words the causal propagation between Born-
localized events is a macroscopic phenomenon for which in analogy to the acoustic velocity
in QM, the large time behavior of dissipating wave packets is important, whereas in QFT
the maximal velocity is imprinted on the algebra. DPI does not possess covariant local
operators, the only covariant object is the Poincaré invariant S-matrix; from this viewpoint
DPI is an S-matrix theory.

At the root of the QM-QFT (particle-field) antagonism is the existence of two very
different concepts of localization namely the Born localization6 (which is the only local-
ization for QM), and the modular localization which underlies the causal locality in QFT.
The Born localization and the related position operator has been adapted to the covariant
normalization of relativistic wave functions in a paper by Newton and Wigner [11] and will
henceforth be referred to as the BNW localization. Whereas relativistic QM permits only
the BNW localization, QFT needs both, the modular localization7 in order to implement
causal propagation and the BNW localization to get to the indispensable scattering prob-
abilities (cross sections). Without the BNW localization QFT would remain a beautiful
mathematical construct with no accessible physical content; on the other hand without
modular localization QFT would not have interaction-induced vacuum polarization and
its description of reality at finite distances would contain acausal poltergeist-daemons.

Particles are objects with a well-defined ontological status, whereas (basic and com-
posite) fields form an infinite set of coordinatizations which generate the local algebras.
By this we mean that particles are the truly real and unique objects which are subject to
direct observations and independent of any ”field-coordinatization”, a property which is
not derogated by the fact that their existence is only an asymptotic. What is referred to as

5The related folklore one finds in the literature amounts to the dictum: relativistic quantum theory of
particles + cluster factorization property = QFT. Apparently this conjecture goes back to S. Weinberg.

6It is interesting to note that Born introduced the probability concept in QM in the context of the
Born approximation of what we call nowadays the cross section and not of the Schroedinger wave function
[10]. With other words he introduced it in the asymptotic region where it is indidpensible and where the
BNW localization becomes independent of the reference frame.

7Modular localization is the same as the causal localization inherent in QFT after one liberates the
letter from the contingencies of particular selected fields. It is a property of the local equivalence class of
relatively loca; fields (the Borchers class) or of the associated sysrem of local algebras. If one considers, as
it is done in algebraic QFT, the local fields as coordinatizations of the local algebras, modular localization
is independent of the ”field coordinatization”.
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an (asymptotic) n-particle state is a state in which n well separated coincidence counters
(in a world cobbled with counters) click simultaneously and apart from the localization
of the counters, the number n does not change at later times.

Quantum fields on the other hand have a more fleeting existence and there are always
infinitely many fields which are associated with one particle. This finds its expression
in the terminology ”interpolating fields” used in the LSZ scattering theory of the 50s.
But as epistemic entities fields or local algebras are indispensable since all our intuition
about local interactions and their causal localization properties is injected on the level of
fields or directly into the local observable algebras which they generate. Without Born
localization and the associated projectors, there would be no scattering theory leading to
cross sections and hence QFT would be reduced to just a mathematical playground.

In contradistinction to DPI, in interacting QFT there is no way in which in the presence
of interactions the notion of particles at finite times can be saved. The statement that an
isolated relativistic particle cannot be localized below its Compton wave length refers to
the (Newton-Wigner adaptation of the) Born localization and, as all statements involving
Born localization, it is meant in an effective probabilistic sense. Only in the timelike
asymptotic limit between two events the BNW localization becomes a sharp geometric
relations in terms of momenta with c being the maximal velocity which is independent
of the reference frame; fortunately this is precisely what one needs to obtain a Poincaré
invariant macrocausal S-matrix.

The maximal velocity in the sense of asymptotic expectations in suitable states of
relativistic particle theories plays a similar role as acoustic velocity in nonrelativistic QM
leads to (material-dependent) acoustic velocities. Placing our interpretation in the context
of prior work on this subject [2][12], Reeh-Schlieder neither ”defeats” Newton-Wigner,
nor does Newton-Wigner ”meet” Reeh-Schlieder, rather both indispensable localization
schemes approximate each other asymptotically at t → ±∞ where the Newton-Wigner
localization becomes covariant, macro-causality coalesces with micro-causality, and last
not least the modular localization shares the asymptotic probability notion with BNW,
i.e. no defeat of either one but harmony at the only places where both are valid.

The next section contains some remarks about the history of the growing awareness
about properties which separate QM from QFT. This is followed in section 3 with the
presentation of a little known consistent setting of interacting relativistic particles without
fields: the direct particle interaction theory (DPI) by Coester and Polyzou. Sections 4 and
5 focus on the radical difference between the Newton-Wigner (NW) localization (the name
for the Born localization after the adaptation to the relativistic particle setting) and the
localization which is inherent in QFT, which in its intrinsic form, i.e. liberated from sin-
gular pointlike ”field coordinatizations”, is referred to as modular localization [13][14][15].
The terminology has its origin in the fact that it is backed up by a mathematical theory
within the setting of operator algebras which bears the name Tomita-Takesaki8 modular
theory. Within the setting of thermal QFT, physicists independently discovered various
aspects of this theory [5]. Its relevance for causal localization was only spotted a decade
later [17] and the appreciation of its role in problems of thermal behavior at causal- and
event- horizons and black hole physics had to wait another decade [18].

8Tomita was a Japanese mathematician who discovered the main properties of the theory in the first
half of the 60s, but it needed a lot of polishing by Takesaki in order to be accepted.
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Sections 6-10 are all centered around an in-depth exposition of various aspects of
modular localization starting from the modular localization of states and passing to its
more restrictive algebraic counterpart. Among its very recent application is the notion
of semiinfinite spacelike string localization which on the one hand settled the age old
problem of the appropriate localization for the Wigner infinite spin representation but
also shows that the object of string theory is really an infinite component field (section
7).

The penultimate section presents LQP as the result of relative positioning of a finite
(and rather small) number of monads within a Hilbert space; here we are using a ter-
minology which Leibniz introduced in a philosophical context. This shows the enormous
conceptual distance between QM and LQP. Whereas a single monad also appears in differ-
ent contexts e.g. KMS states on open quantum systems and the information theoretical
interpretation of bipartite spin algebras in suitable singular states [4][19], the modu-
lar positioning of several copies is totally characteristic for LQP. Although its physical
and mathematical content is quite different from Mermin’s [20] new look (the ”Ithaca-
interpretation” of QM) at quantum mechanical reality exclusively in terms of correlations
between subsystems, the two concepts share the aspect of viewing reality in relational
terms. Mathematically a monad in the sense of this article is the unique hyperfinite
type III1 factor algebra to which all local algebras in LQP are isomorphic, so all concrete
monads are copies of the abstract monad. Naturally a monade in isolation is an abstract
entity without structure, the reality emerges from relations between monads within the
same Hilbert space.

Whereas for Newton physical reality consisted of matter moving in a fixed space ac-
cording to a universal time, reality for Leibniz emerges from interrelations between monads
with spacetime serving as ordering device. The modular positioning of monads goes one
step further in that even the Minkowski spacetime together with its invariance group the
Poincaré group appears as a consequence of positioning in a more abstract sense namely
of a finite number of monads in a joint Hilbert space (subsection 7). For actual construc-
tions of interacting LQP models it is however advantageous to start with one monad and
the action of the Poincaré group on it.

The algebraic structure of QM on the other hand, relativistic or not, has no such
monad structure; the global algebra as well as all Born-localized subalgebras in ground
states are always of type I i.e. either the algebra of all bounded operators B(H) in an
appropriate Hilbert space or multiples thereof. Correlations are characteristic features
of quantum mechanical states, whereas for the characterization of a QM system global
operators as the Hamiltonian are indispensable.

Part I of this essay closes with a section on the split inclusion which shows how in the
ubiquitous presence of vacuum polarization some of the notion known from QM (tensor
factorization of disjoint subsystem, entanglement) can be recuperated. The second part
will present many more applications of modular localization and the split property notably
those related to thermal and entropic properties which are of potential astrophysical and
cosmological relevance.
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2 Historical remarks on the interface between QM

and QFT

Shortly after the discovery of field quantization in the second half of the 1920s, there were
two opposed viewpoints about its content and purpose represented by Dirac and Jordan
[21]. Dirac’s maintained that quantum theory should stand for quantizing a real classical
reality which meant field quantization for electromagnetism and quantization of classical
mechanics for particles. Jordan, on the other hand, proposed an uncompromising field
quantization point of view; his guiding theme was that all what can be quantized should be
quantized, independent of whether there is a classical reality or not. The more radical field
quantization including particles finally won the argument, but ironically it was Dirac’s
particle setting (the hole theory) and not Jordan’s ”version of Murphy’s law” (”everything
which can be quantized must be quantized”) to all field objects which contributed the
richest structural property to QFT, namely charge-anticharge symmetry leading to the
necessary presence of antiparticles.

It was also Dirac’s hole theory setting in which the first perturbative QED compu-
tations (which entered the textbooks of Heitler and Wenzel) were done, before it was
recognized that this setting was not really consistent. This inconsistency showed up in
problems involving renormalization in which vacuum polarization plays the essential role.
The successful perturbative renormalization of QED in the charge symmetric description
was also the end of hole theory as well as the start of Dirac’s late conversion to QFT as
the general setting for relativistic particle physics at the beginning of the 50s.

Vacuum polarization is a very peculiar phenomenon which in the special context
of currents and the associated local charges of a complex free Bose field was noticed
already in the 30s by Heisenberg [22]. But only when Furry and Oppenheimer [23]
studied perturbative interactions of Lagrangian fields and became aware to their amaze-
ment that the Lagrangian field applied to the vacuum created inevitably some additional
particle-antiparticle pairs in addition to the expected one-particle state, the subtlety of
the particle-field relation within interacting QFT begun to be noticed. The number of
these pairs increase with the perturbative order, pointing towards the fact that in case of
sharp localization (”banging” with sharply localized operators onto the vacuum) one has
to deal with infinite polarization clouds containing arbitrary high energy components.

Whenever one tries in an interacting theory to create particles via local disturbances
of the vacuum, the vacuum polarization clouds corrupt the observation of those particles
which one intends to create, but after a sufficient amount of time the particle content
separates from the polarization cloud. In the presence of interactions the notion of par-
ticles in local regions at a fixed time is, strictly speaking, meaningless because even the
field with the ”mildest” vacuum polarization taken from the class of all possible relative
local fields which all interpolate the same particle still generates an infinite vacuum po-
larization cloud which sticks inseparably to the particle of interest9. It is somewhat ironic

9Only if one allows noncompact localization regions one is able to find ”PFGs” i.e. operators which
applied to the vacuum generate one-particle states without polarization admixture. Wedge regions in
Minkowski space lead to the best compromise between particles and fields and play a fundamental role in
recent model constructions [24][25][26] and is at the root of the crossing property [27]. For a philosophical
viewpoint see [28].
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that particles, which are the main bridge between QFT and its laboratory reality (and
which are the basic objects of QM), have only an asymptotic existence as incoming and
outgoing asymptotic particle configurations.

In the next subsection it will be shown that relativistic QM in the form of DPI, in
contradistinction of what most particle theorists believe, can be consistently formulated
[29] and this setting can even be extended to incorporate creation and annihilation chan-
nels [30]. This goes along way to vindicate Dirac’s relativistic particle viewpoint. But it
does not vindicate it completely, since theories which start as particle theories but then
lead to vacuum polarization as Dirac’s hole theory are at the end inconsistent unless one
converts their content into a charge symmetric field theoretic setting (in which case the
connection with Dirac’s whole theory is lost).

By contrasting QFT with DPI, one obtains a better appreciation of the conceptual
depth of QFT, in particular one becomes aware of its still unexplored regions. DPI
is basically a relativistic particle setting i.e. it deals only with properties which can
be formulated in terms of particles; this limits causality properties to macro-causality
i.e. spacelike cluster factorization and timelike causal rescattering. Apart from the fact
that the multi-particle representation theory of the Poincaré group is incompatible with
the additivity of interaction terms which complicates the implementation of the cluster
factorization property and prevents an elegant second quantization description in Wigner-
Fock space, the DPI setting is as well understood as nonrelativistic QM. In contrast
nobody who has studied QFT beyond a textbook level would claim that QFT is anywhere
near its closure. The last section illustrates this point by an unexpected new abstract
characterization of QFT which is different from any previous axiomatic attempt.

3 Direct particle interactions, relativistic QM

The Coester-Polyzou theory of direct particle interactions (DPI) (where ”direct” means
”not field-mediated”) is a relativistic theory in the sense of representation theory of the
Poincaré group which, among other things, leads to a Poincaré invariant S-matrix. Every
property which can be formulated in terms of particles, as the cluster factorization into
systems with a lesser number of particles and other timelike aspects of macrocausality,
can be implemented in this setting. The S-matrix does however not fulfill such analyticity
properties as the crossing [27] property whose derivation relies on the existence of local
interpolating fields.

In contradistinction to the more fundamental locally covariant QFT, DPI is primarily
a phenomenological setting, but one which is consistent with every property which can be
expressed in terms of relativistic particles only. So instead of approximating nonpertur-
bative QFT in a metaphoric way outside conceptional-mathematical control, the idea of
DPI is to arrange phenomenological calculations in such a way that at least the principles
of relativistic mechanics and macro-causality are maintained [29].

For the interaction of two relativistic particles the introduction of relativistic interac-
tions amounted to add to the free mass operator (the Hamiltonian in the c.m. system) an
interact which depends on the relative position and momentum. The exigencies of repre-
sentation theory of the Poincaré group are then fulfilled and the cluster property stating
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that S → 1 for large spatial separation is a consequence of the short ranged interaction.
Assuming for simplicity identical scalar Bosons, the c.m. invariant energy operator is
2
√
p2 +m2 and the interaction is introduced by adding an interaction term v

M = 2
√
~p2 +m2 + v, H =

√
~P 2 +M2 (1)

where the invariant potential v depends on the relative c.m. variables p, q in an invariant
manner i.e. such that M commutes with the Poincaré generators of the 2-particle system
which is a tensor product of two one-particle systems.

One may follow Bakamjian and Thomas (BT) [31] and choose the Poincaré generators
in their way so that the interaction only appears in the Hamiltonian. Denoting the
interaction-free generators by a subscript 0, one arrives at the following system of two-
particle generators

~K =
1

2
( ~X0H +H ~X0)− ~J × ~P0(M +H)−1 (2)

~J = ~J0 − ~X0 × ~P0

The interaction v may be taken as a local function in the relative coordinate which is
conjugate to the relative momentum p in the c.m. system; but since the scheme anyhow
does not lead to local differential equations, there is not much to be gained from such a
choice. The Wigner canonical spin ~J0 commutes with ~P = ~P0 and ~X = ~X.0 and is related
to the Pauli-Lubanski vector Wµ = εµνκλP

νMκλ .
As in the nonrelativistic setting, short ranged interactions v lead to Møller operators

and S-matrices via a converging sequence of unitaries formed from the free and interacting
Hamiltonian

Ω±(H,H0) = lim
t→±∞

eiHte−H0t (3)

Ω±(M,M0) = Ω±(H,H0) (4)

S = Ω∗+Ω−

The identity in the second line is the consequence of a theorem which say that the limit is
not affected if instead of M one takes take a positive function of M (4) as H(M), as long
as H0 is the same function of M0. This insures the the asymptotic frame-independence
of objects as the Møller operators and the S-matrix but not necessarily that of semi
asymptotic operators as formfactors of local operators between ket in and bra out particle
states. Apart from this identity for operators and their positive functions (4) which is
not needed in the nonrelativistic scattering, the rest behaves just as in nonrelativistic
scattering theory. As in standard QM, the 2-particle cluster property is the statement
that Ω

(2)
± → 1, S(2) → 1, i.e. the scattering formalism is identical. In particular the

two particle cluster property, which says that for short range interactions the S-matrix
approaches the identity if one separates the center of the wave packets of the two incoming
particles, holds also for the relativistic case.

The implementation of clustering is more delicate for three particles as can be seen
from the fact that the first attempts were started in 1965 by Coester [32] and considerably
later generalized (in collaboration with Polyzou [29]) to an arbitrary high particle number.
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To anticipate the result below, DPI leads to a consistent scheme which fulfills cluster
factorization but it has no useful second quantized formulation so it may stand accused
of lack of elegance; one is inclined to view less elegant theories also as less fundamental.
It is also more nonlocal and nonlinear than QM, This had to be expected since adding
interacting particles does not mean adding up interactions as in Schroedinger QM.

The BT form for the generators can be achieved inductively for an arbitrary number
of particles. As will be seen, the advantage of this form is that in passing from n-1 to n-
particles the interactions add after appropriate Poincaré transformations to the joint c.m.
system and in this way one ends up with Poincaré group generators for an interacting
n-particle system. But for n > 2 the aforementioned subtle problem with the cluster
property arises; whereas this iterative construction in the nonrelativistic setting complies
with cluster separability, this is not the case in the relativistic context.

This problem shows up for the first time in the presence of 3 particles [32]. The BT
iteration from 2 to 3 particles gives the 3-particle mass operator

M = M0 + V12 + V13 + V23 + V123 (5)

V12 = M(12, 3)−M0(12; 3), M(12, 3) =
√
~p2

12,3 +M2
12 +

√
~p2

12,3 +m2

and the M(ij, k) result from cyclic permutations. Here M(12, 3) denotes the 3-particle
invariant mass in case the third particle is a “spectator”, which by definition does not
interact with 1 and 2. The momentum in the last line is the relative momentum between
the (12)-cluster and particle 3 in the joint c.m. system and M12 is the associated two-
particle mass i.e. the invariant energy in the (12) c.m system. Written in terms of the
original two-particle interaction v, the 3-particle mass term appears very nonlinear.

As in the nonrelativistic case, one can always add a totally connected contribution.
Setting this contribution to zero, the 3-particle mass operator only depends on the two-
particle interaction v. But contrary to the nonrelativistic case, the BT generators con-
structed with M as it stands does not fulfill the cluster separability requirement. The
latter demands that if the interaction between two clusters is removed, the unitary rep-
resentation factorizes into that of the product of the two clusters.

One expects that shifting the third particle to infinity will render it a spectator and
result in a factorization U12,3 → U12 ⊗ U3. Unfortunately what really happens is that the
(12) interaction also gets switched off i.e. U123 → U1 ⊗ U2 ⊗ U3 . The reason for this
violation of the cluster separability property, as a simple calculation (using the transfor-
mation formula from c.m. variables to the original pi, i = 1, 2, 3 shows [29]), is that
although the spatial translation in the original system (instead of the 12, 3 c.m. system)
does remove the third particle to infinity as it should, unfortunately it also drives the
two-particle mass operator (with which it does not commute) towards its free value which
violates clustering.

In other words the BT produces a Poincaré covariant 3-particle interaction which is
additive in the respective c.m. interaction terms (5), but the Poincaré representation
U of the resulting system will not be cluster-separable. However this is the time for
intervention of a saving grace: scattering equivalence.
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As shown first in [32], even though the 3-particle representation of the Poincaré group
arrived at by the above arguments violates clustering, the 3-particle S-matrix computed in
the additive BT scheme turns out to have the cluster factorization property. But without
implementing the correct cluster factorization also for the 3-particle Poincaré generators
there is no chance to proceed to a clustering 4-particle S-matrix.

Fortunately there always exist unitaries which transform BT systems into cluster-
separable systems without affecting the S-matrix. Such transformations are called scatter-
ing equivalences. They were first introduced into QM by Sokolov [33] and their intuitive
content is related to a certain insensitivity of the scattering operator under quasilo-
cal changes of the quantum mechanical description at finite times. This is reminis-
cent of the insensitivity of the S-matrix against local changes in the interpolating field-
coordinatizations10 in QFT by e.g. using composites instead of the Lagrangian field.

The notion of scattering equivalences is conveniently described in terms of a subalgebra
of asymptotically constant operators C defined by

lim
t→±∞

C#eiH0tψ = 0 (6)

lim
t→±∞

(
V # − 1

)
eiH0tψ = 0

where C# stands for both C and C∗. These operators, which vanish on dissipating free
wave packets in configuration space, form a *-subalgebra which extends naturally to a C∗-
algebra C. A scattering equivalence is a unitary member V ∈ C which is asymptotically
equal to the identity (the content of the second line). Applying this asymptotic equivalence
relation to the Møller operator one obtains

Ω±(V HV ∗, V H0V
∗) = V Ω±(H,H0) (7)

so that the V cancels out in the S-matrix. Scattering equivalences do however change the
interacting representations of the Poincaré group according to U(Λ, a) → V U(Λ, a)V ∗.

The upshot is that there exists a clustering Hamiltonian Hclu which is unitarily related
to the BT Hamiltonian HBT i.e. Hclu = BHBTB

∗ such that B ∈ C is uniquely determined
in terms of the scattering data computed from HBT . It is precisely this clustering of Hclu

which is needed for obtaining a clustering 4-particle S-matrix which is cluster-associated
with the S(3). With the help of Mclu one defines a 4-particle interaction following the
additive BT prescription; the subsequent scattering formalism leads to a clustering 4-
particle S-matrix and again one would not be able to go to n=5 without passing from
the BT to the cluster-factorizing 4-particle Poincaré group representation. Coester and
Polyzou showed [29] that this procedure can be iterated and doing this one arrives at the
following statement

Statement: The freedom of choosing scattering equivalences can be used to convert
the Bakamijan-Thomas presentation of multi-particle Poincaré generators into a cluster-
factorizing representation. In this way a cluster-factorizing S-matrix S(n) associated to
a BT representation HBT (in which clustering mass operator M

(n−1)
clu was used) leads via

10In field theoretic terminology this means changing the pointlike field by passing to another (composite)
field in the same equivalence class (Borchers class) or in the setting of AQFT by picking another operator
from a local operator algebra.
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the construction of M
(n)
clu to a S-matrix S(n+1) which clusters in terms of all the previously

determined S(k), k < n. The use of scattering equivalences prevents the existence of a 2 nd

quantized formalism.
For a proof we refer to the original papers [29][30]. In passing we mention that the min-

imal extension, i.e. the one determined uniquely in terms of the two-particle interaction
v) from n to n+1 for n > 3, contains connected 3-and higher particle interactions which
are nonlinear expressions (involving nested roots) in terms of the original two-particle
v. This is another unexpected phenomenon as compared to the nonrelativistic case.

This theorem shows that it is possible to construct a relativistic theory which only uses
particle concepts only, thus correcting an old folklore which says relativity + clustering
= QFT. Whether one should call this DPI theory ”relativistic QM” or just a relativistic
S-matrix theory in a QM setting is a matter of taste; it depends on what significance one
attributes to those unusual scattering equivalences. In any case it defines a relativistic
S-matrix setting with the correct particle behavior i.e. all properties which one is able to
formulate in terms of particles (without the use of fields) as unitarity, Poincaré invariance
and macrocausality are fulfilled. In this context one should also mention that the S-matrix
bootstrap approach never addressed these macro-causality problems of the DPI approach;
it was a grand self-deluding design for a unique theory of all non-gravitational interactions
in which important physical details were arrogantly ignored.

As mentioned above Coester and Polyzou also showed that this relativistic setting
can be extended to processes which maintain cluster factorization in the presence of a
finite number of creation/annihilation channels, thus demonstrating, as mentioned before,
that the mere presence of particle creation is not characteristic for QFT (but rather the
presence of infinite vacuum polarization clouds from ”banging” with localized operators
onto the vacuum, see section 7). Different from the nonrelativistic Schroedinger QM,
the superselection rule for masses of particles which results from Galilei invariance for
nonrelativistic QM does not carry over to the relativistic setting; in this respect DPI is
less restrictive than its Galilei-invariant QM counterpart where such creation processes
are forbidden.

One may consider the DPI setting of Coester and Polyzou as that scheme which
results from implementing the mentioned particle properties within a n-particle Wigner
representation setting in the presence of interaction [29]. Apparently the work of these
mathematical nuclear physicists has not been noted by particle physicists since the authors
have published most of their results in nuclear physics journals. What makes it worthwhile
to mention this work is that even physicists of great renown as Steven Weinberg did not
believe that such a theory exists because otherwise they would not have conjectured that
the implementation of cluster factorization properties in a relativistic setting leads to
QFT [34].

Certain properties which are consequences of locality in QFT and can be formulated
but not derived in a particle setting as the TCP symmetry, the spin-statistics connection
and the existence of anti-particles, can be added ”by hand” to the DPI setting. Other
properties which are on-shell relics of locality which QFT imprints on the S-matrix and
which require the notion of analytic continuation in particle momenta (as e.g. the crossing
property for formfactors) cannot be implemented in the QM setting of DPI.
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4 First brush with the intricacies of the particles-

field problems in QFT

In contrast to QM (Schrödinger-QM or relativistic DPI), interacting QFT does not admit
a particle interpretation at finite times11. If it would not be for the asymptotic scattering
interpretation in terms of incoming/outgoing particles associated with the free in/out
fields, there would be hardly anything of a non-fleeting measurable nature. In QFT in
CST and thermal QFT where even this asymptotically valid particle concept is missing,
the set of conceivable measurements is essentially reduced to energy- and entropy- densities
in thermal states and in black hole states with event horizons as well as of cosmological
states describing the microwave background radiation.

Since the notion of particle is often used in a more general sense than in this paper, it
may be helpful to have a brief interlude on this issue. By particle I mean an asymptoti-
cally stable object which forms the Fock space tensor product basis for an asymptotically
complete description. It is precisely this particle concept which furnishes QFT with a
(LSZ, Haag-Ruelle) complete asymptotic particle interpretation12, so that the Hilbert
space of such an interacting theory has a Fock space tensor structure. The physics behind
is the idea [35] that if we were to cobble the asymptotic spacetime region with counters
which monitor coincidences/anticoincidences of localization events (local deviations from
the vacuum) after a collision of two incoming particles has taken place, then the defining
property of an outgoing n-particle state is the stable n-fold coincidence/anticoincidence
(the latter in order to insure that we registered all particles) between n counters. The
intuitive idea is that after some time the n would not change and the n-fold local excita-
tions from the vacuum would move along trajectories of free relativistic particles. would
eventually remain stable because the far removed localization centers would have ceased
to interact and from there on move freely. The occurrence rate of these coincidences as
well as their correlation with that of the incoming coincidences is independent of the frame
of reference even though BNW localization at finite spacetime regions is frame dependent.
In popular textbooks this is expressed as. the BNW localization becomes ”effectively”
covariant for distances beyond a Compton wavelength (exactly covariant only in the large
time limit.) The Newton-Wigner adaptation of the Born position operator would lead to
genuinely Poincaré invariant frame independent transition probabilities between incoming
and outgoing Newton-Wigner localization events.

The particle concept in QFT is therefore precisely applicable where it is needed, namely
for asymptotically separated BNW-localized events for which the probability interpreta-
tion and covariance become compatible. In fact the use of the BNW localization for finite
distances is known to lead to trouble in form of unphysical superluminal effects; in that
case one should formulate the problem in the setting of the modular localization which
has instead of probabilities and projectors dense subsets of states (the Reeh-Schlieder

11Although the one-particle states and their multiparticle counterparts are global states in the Hilbert
space, they are not accessible by acting locally on the vacuum. Scattering theory is the only known
nonlocal intervention.

12The asymptotic completeness property was for the first time established (together with a recent
existence proof) in a family of factorizing two-dimensional models (see the section on modular localization)
with nontrivial scattering.
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property [5]).
Tying the particle concept in QFT to asymptotically stable coincidences of counters

can be traced back to a seminal paper by Haag and Swieca [35]. These authors noticed
for the first time that the phase space degree of freedom density in QFT, unlike that in
QM, is not finite, rather its cardinality is mildly infinite (the phase space is nuclear).
The larger number of degrees of freedom in form of an enhanced phase space density is
yet another line of unexpected different consequences [36][37] resulting from the different
localization concepts in QM and QFT, but this interesting topic will not be pursued here.

Not all particles comply with this definition; in fact all electrically charged particles
are infraparticles i.e. objects which are asymptotically stable but in contrast to Wigner
particles they are inexorably attached to an unobserved cloud of infinitely many infrared
photons which are persistent even in the asymptotic large time limit. The existence of an
electron as a Wigner particle associated with a sharp mass hyperboloid on top of a pho-
ton background is a fiction which is incompatible with QED. Rather electrically charged
particles have instead of a mass shell delta function in their Kallen-Lehmann two´point
function a cut which starts at p2 = m2 which makes a precise description of such infra-
particles [38] and their scattering theory more involved. The application of LSZ scattering
theory leads to infrared divergencies which cannot be cured by renormalizing parameters.
The use of the conceptual ”sledge hammer” of an infrared cutoff and compensating the
divergence in the scattering amplitude against an infinite phase space factor obtained from
summing over inclusive photons gives an observational satisfactory recipe for calculating
an inclusive cross section with photon resolution ∆. Such successful recipes hide the fact
that the root of the problem is a radical change of the particle concept which entails a
fundamental adjustment [39].

In contrast to Wigner particles which are representation theoretical objects of the
Poincaré group, infraparticles exist only in QED-like interacting theories in which the
quantum adaptation of the Gauss law holds. The most dramatic differences between
infraparticles and Wigner particles show up in localization aspects. Whereas Wigner par-
ticles ”are pointlike” i.e. have pointlike generating wave functions, the sharpest localized
generators for infraparticles are semiinfinite stringlike. On a formal level this has been
known for a long time as expressed in the Dirac-Jordan-Mandelstam formulas in which
a Dirac spinor is multiplied by an exponential semiinfinite line integral over the vector-
potential (31). Their modern exposition would be an important part of an essay about
various localization concepts. However the description of string-localized infraparticles is
too subtle and would require a presentation which goes much beyond the content of this
essay. We hope to return to issue in a separate paper.

It is the asymptotic particle structure which leads to the observational richness of
QFT. Once we leave this setting by going to curved spacetime or to QFT in KMS thermal
representations, or if we restrict a Minkowski spacetime theory to a Rindler wedge with
the Hamiltonian being now the boost operator with its two-sided spectrum, in all these
cases we are loosing not only the setting of scattering theory but also the very notion of
particles as elementary systems with respect to the Poincaré group. With it also most of
the observational wealth related to scattering theory is lost. Any deviation from Poincaré
covariance also endangers the existence of a vacuum. The restriction to the Rindler
world preserves the Fock space particle structure of the free field Minkowski QFT, but it
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looses its intrinsic physical significance with respect to the Rindler situation13. Since the
Minkowski vacuum restricted to the Rindler world is now a thermal KMS state, there is no
particle scattering theory in the ”boost time” in such a thermal situation. The remaining
observable phenomena are Hawking-like [43] radiation densities and their fluctuations i.e.
observables such as they are presently studied in the cosmic background radiation. Some
of the conceptual problems related to the Unruh effect [42] have been addressed in the
philosophically oriented literature [40][41]. Quantum fields are not directly accessible to
measurements14 and therefore the problem what happens to the wealth of particle physics
in such QFT requires more research.

Formally the local covariance principle forces the construction of a QFT on all causally
complete manifolds and their submanifolds at once. So the QFT in Minkowski spacetime
with its particle interpretation is always part of the solution. What one would like to
have is a more direct physical connection e.g. a particle concept in the tangent space or
something in this direction.

The conceptual differences between a DPI relativistic QM and QFT are enormous,
but in order to appreciate this, one has to become acquainted with structural properties
of QFT which are somewhat removed from the standard properties of the Lagrangian
setting and therefore have not entered textbooks; it is the main purpose of the following
sections to highlight these contrasts by going more deeply into QFT.

There are certain folkloric statements about the relation QM–QFT whose refutation
does not require much conceptual sophistication. For example in trying to make QFT
more susceptive to newcomers it is sometimes said that a free field is nothing more than
a collection of infinitely many coupled oscillators. Although not outright wrong, this
characterization misses the most important property of how spacetime enters as an or-
dering principle into QFT. It would not help any newcomer who knows the quantum
oscillator, but has not met a free field before, to construct a free field from such a verbal
description. Even if he manages to write down the formula of the free field he would still
have to appreciate that the most important aspect is the causal localization and not that
what oscillates. This is somewhat reminiscent of the alleged virtue from equating QM via
Schrödinger’s formulation with classical wave theory. What may be gained for a newcomer
by appealing to his computational abilities acquired in classical electrodynamics, is more
than lost in the conceptual problems which he confronts later when facing the subtleties
of entanglement in quantum physics.

5 More on Born versus covariant localization

In this section it will be shown that the difference between QM and LQP in terms of
their localization result in a surprising distinction in their notion of entanglement. We
will continue to use the word Born localization for the probability density of the x-space
Schroedinger wave function p(x) = |ψ(x)|2 ; whereas its adaptation to the invariant inner

13There is of course the mathematical possibility of choosing a groundstate representation for a Rindler
world instead of restricting the Minkowski vacuum and to have a finite number of ”quanta” (excitations).
But there is no reason for believing that these objects fall into the range of validity of the Haag-Ruelle
scattering theory which is the hallmark of particle physics as we know it.

14An opposing opinion to this ”interpolating field point of view” can be found in [44].
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product of relativistic wave functions which was done by Newton and Wigner [11] and
will referred to as BNW localization. Being a bona fide probability density, one may
characterize the BNW localization in a spatial region R ∈ R3 at a given time in terms
of a localization projector P (R) which appears in the spectral decomposition of the
selfadjoint position operator. The standard version of QM and the various settings of
measurement theory rely heavily on these projectors; without BNW localization and the
ensuing projectors it would be impossible to formulate the conceptual basis for the time-
dependent scattering theory of QM and QFT.

The BNW position operator and its family of spatial region-dependent projectors P (R)
is not covariant under Lorentz boosts. For Wigner, to whom modular localization was not
available, this frame dependence raised doubts about the conceptual soundness of QFT.
Apparently the existence of completely covariant correlation functions in renormalized
perturbation theory did not satisfy him, he wanted an understanding from first principles
and not as an outgrowth of some formalism.

The lack of covariance of BNW localization in finite time propagation leads to frame-
dependence and superluminal effects, which is why the terminology ”relativistic QM” has
to be taken with a grain of salt. However, as already emphasized, in the asymptotic
limit of large timelike separation as required in scattering theory, the covariance, frame-
independence and causal relations are recovered. As shown in section 3 one obtains a
Poincaré-invariant unitary Møller operator and S-matrix whose DPI construction within
an interacting n-particle Wigner representation of the Poincaré group which also guar-
anties the validity of all the macro-causality requirements (spacelike clustering, absence of
timelike precursors, causal rescattering) which can be formulated in a particle setting i.e.
without taking recourse to interpolating local fields. Even though the localizations of the
individual particles are frame-dependent, the asymptotic relation between BNW-localized
events is given in terms of the geometrically associated covariant on-shell momenta or
4-velocities which describe the asymptotic movement of the c.m. of wave packets. In fact
all observations on particles always involve BNW localization measurements.

The situation of propagation of DPI is similar to that of propagation of acoustic waves
in an elastic medium; although in neither case there is a limiting velocity, there exists a
maximal ”effective” velocity, for DPI this is c and in the acoustic case this is the velocity
of sound in the particular medium.

In comparing QM with QFT it is often convenient in discussions about conceptual
issues to rephrase the content of (nonrelativistic) QM in terms of operator algebras and
states (in the sense of positive expectation functional on operator algebras); in this way
one also achieves more similarity with the formalism of QFT and develops a greater
awareness for genuine conceptual antinomies. In this Fock space setting the basic quantum
mechanical operators are the creation/annihilation operators a#(x) with

[a(x), a∗(y)]grad = δ(x− y) (8)

where for Fermions the graded commutator stands for the anticommutator. In the QFT
setting it is not forbidden to work with such operators (the Fourier transforms of the
Wigner creation/annihilation operators), except that it becomes nearly impossible to
keep track of covariance and express local observables in terms of them15.

15In fact local observables would appear nonlocal. The incorrect use of these operators led Irving Segal
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The ground state for T=0 zero matter density states is annihilated by a(x), whereas
for finite density one encounters a state in which the levels are occupied up to the Fermi
surface in case of Fermions, and contains a Bose-Einstein condensate groundstate in case
of Bosons.

In QFT the identification of pure states with state-vectors of a Hilbert space has no
intrinsic meaning and often cannot be maintained in concrete situations. For the reason
of facilitating the comparison with QM we use the unified Fock space setting instead of
the Schroedinger formulation. Although DPI is formulated in Fock space, there is no
useful second quantized formalism (8).

The global algebra which contains all observables independent of their localization is
the algebra B(H) of all bounded operators in Hilbert space. Physically important un-
bounded operators are not members but rather have the mathematical status of being
affiliated with B(H) and its subalgebras; this bookkeeping makes it possible to apply pow-
erful theorems from the theory of operator algebras (whereas unbounded operators are
treated on a case to case basis). B(H) is the correct global description whenever the phys-
ical system under discussion arises as the weak closure of a ground state representation
of an irreducible system of operators16 be it QM or LQP. According to the classification
of operator algebras, B(H) and all its multiples are of Murray von Neumann type I∞
whose characteristic property is the existence of minimal projectors; in the irreducible
case these are the one-dimensional projectors belonging to measurements which cannot
be refined. There are prominent physical states which lead to different global situations
as e.g. thermal KMS states, but for the time being our interest is in ground states.

The structural differences between QM and LQP emerge as soon as one defines a
physical substructure on the basis of localization. It is well known that a dissection of
space into nonoverlapping spatial regions i.e. R3 = ∪iRi implies via Born localization a
tensor factorization of B(H) and H

B(H) =
⊗

i

B(H(Ri)) (9)

H =
⊗

i

H(Ri), P (Ri)H = H(Ri)

X̃op =

∫
a∗(~x)~xa(~x)d3x =

∫
~xdP (~x) (10)

where the third line contains the definition of the position operator and its spectral de-
composition in the bosonic Fock space. Hence there is orthogonality between subspaces
belonging to localizations in nonoverlapping regions (orthogonal Born projectors) and
one may talk about states which are pure in H(Ri). As well known from the discussion of
entanglement, a pure state in the global algebra B(H) may not be of the special tensor
product form but rather be a superposition of factorizing states; the Schmidt decompo-

to the conclusion that local observable subalgebras in QFT are quantum mechanical type I factors a claim
which he withdrew after becoming aware of the results by Araki [45] who showed that they are of type
III (later refined to the unique ”hyperfinite type III1”).

16The closure in a thermal equilibrium state associated with a continuous spectrum Hamiltonian leads
to a unitarily inequivalent (type III) operator algebra without minimal projectors.
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sition is a method to achieve this with an intrinsically determined basis in the case of a
bipartite tensor factorization.

States which are not tensor products, but rather superpositions of such, are called
entangled; their reduced density matrix obtained by averaging over the environment of Ri

describes a mixed state on B(H(Ri)). This is the standard formulation of QM in which
pure states are vectors and mixed states are density matrices.

Although this quantum mechanical entanglement can be related to the notion of en-
tropy, it is an entropy in the sense of information theory and not in the thermal sense.
One cannot create a physical temperature as a quantitative measure of the degree of
quantum mechanical entanglement in this way. which results from BNW-restricting pure
global states to a finite region and its outside environment. In particular the ground
state always factorizes, a spatial tensor factorization never causes vacuum polarization
and entanglement in QM setting. The net structure of B(H) in terms the subalgebras
B(H(Ri)) is of a kinematical kind; although the reduced state may be impure, there is no
B(H(R) reduced Hamiltonian relative to which an impure state in QM becomes a KMS
state. Here QM stands for any QT without a maximal propagation speed i.e. one which
lacks causal propagation and vacuum polarization.

The LQP counterpart of the Born-localized subalgebras at a fixed time are the observ-
able algebras A(O) for spacetime double cone regions O obtained from spatial regions R
by causal completion O =R′′ (causal complement taken twice); they form what is called in
the terminology of LQP a local net {A(O)}O⊂M of operator algebras indexed by regions in
Minkowski spacetime ∪O = M which is subject to the natural and obvious requirements
of isotony (A(O1) ⊂ A(O2) if O1 ⊂ O2) and causal locality, i.e. the algebras commute
for spacelike separated regions.

The connection with the standard formulation of QFT in terms of pointlike fields is
that smeared fields Φ(f) =

∫
Φ(x)f(x)d4x with suppf ⊂ O under reasonable general

conditions generate local algebras. Pointlike fields, which by themselves are too singular
to be operators (even if admitting unboundedness), have a well-defined mathematical
meaning as operator-valued distributions briefly referred to as generators of algebras.
The singular nature of generating fields is therefore not a pathological aspect leading
to inescapable ultraviolet catastrophes, but rather a natural attribute of passing from
classical to quantum fields.

The real cumbersome aspect is not their singular behavior but their multitude; there
are myriads of fields which generate the same net of local operator algebras and interpolate
the same particles whereas in classical field theory they could be distinguished by classical
field measurements.

In this sense generating fields play a similar role in LQP as coordinates in modern
differential geometry i.e. they coordinatize the net of spacetime indexed operator alge-
bras and only the latter has an intrinsic meaning; in particular the particles and their
collision theory can be obtained from the local net without being forced to distinguish
individual operators within a local algebra. But as the use of particular coordinates often
facilitates geometrical calculations, the use of particular fields, with e.g. the one with the
lowest short-distance dimension within the infinite charge equivalence class of fields, can
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greatly simplify17 calculations in QFT. Therefore it is a problem of practical importance
to construct a covariant basis of locally covariant pointlike fields of an equivalence class.

For massive free fields and for massless free fields of finite helicity such a basis is
especially simple; the ”Wick-basis” of composite fields still follows in part the logic of
classical composites (apart from the definition of the double dot : :). This remains so
even in the presence of interactions in which case the Wick-ordering gets replaced by the
technically more demanding ”normal ordering” [46]. For free fields in curved spacetime
(CST) and the definition of their composites it is important to require the local covariant
transformation behavior under local isometries [47]. The conceptual framework of QFT
in CST in the presence of interactions has also been largely understood [48].

We now return to the main question namely: what changes if we pass from the BNW
localization of QM/DPI to the causal localization of LQP? The crucial property is that
a localized algebra A(O) ⊂ B(H) together with its commutant A(O)′ (which under very
general conditions18 is equal to the algebra of the causal disjoint of O i.e. A(O)′ = A(O′))
are two von Neumann factor algebras i.e.

B(H) = A(O) ∨ A(O)′, A(O) ∩ A(O)′ = C1 (11)

In contrast to the QM algebras the local factor algebras are not of type I and B(H)
does not tensor-factorize in terms of them, in fact they cannot even be embedded into
a B(H1) ⊗ B(H2) tensor product. The prize to pay for ignoring this important fact
and imposing wrong structures is the appearance of spurious ultraviolet divergences, the
typical way of a QFT model to resist enforcing an incompatible structure on it.

On the positive side, as will be explained in the second part of this essay, without
this significant change in the nature of algebras there would be no holography onto causal
horizons and the resulting huge symmetry enhancement to infinite-dimensional (BMS)
groups, and of course there would be no thermal behavior caused by localization and a
fortiori no area-proportional localization entropy.

The situation in LQP is radically different from that of entanglement and pure versus
mixed states in QM since local algebras as A(O) have no pure states at all ; so the
dichotomy between pure and mixed states breaks down and the kind of entanglement
caused by field theoretic localization is much more violent then that coming from BNW-
localization19, in the terminology of Ruetsche [3] these states are instrinsically mixed.
This implies that the standard pure-mixed dichotomy does not extend beyond QM i.e.
such intrinsically mixed states do not exist in any natural way on B(H). At the moment in
which they come into being as e.g. thermodynamic limit states in the infinite volume limit,
the algebra has ceased to be of the quantum mechanical B(H) type and become a type
III operator algebra [90]. The thermodynamic limit construction at finite temperature

17The field which is ”basic” in the sense of a Lagrangian field in a Lagrangian approach is generally
simpler to deal with than composites of that fields (the Massive Thirring field is simpler than the Sine-
Gordon field which maybe derived from it).

18In fact this duality relation can always be achieved by a process of maximalization (Haag dualization)
which increases the degrees of freedom inside O. A pedagogical illustration based on the ”generalized free
field” can be found in [49].

19By introducing in addtion to free fields A(x) which are covariant Fourier transforms also noncovariant
Fourier transforms a(~x, t), a∗(~x, t) one can explicitly that the latter are relatively nonlocal.
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gives also the correct hint to the nature of intrinsically mixed states; they are typically
”singular” KMS states i.e. KMS states which although being the thermodynamic limits
of Gibbs state cannot themselves be represented in the Gibbs form because the KMS
Hamiltonian has continuous spectrum.

Unlike Born localization, causal localization is not related to position operators and
projectors P (R); rather the operator algebras A(O) are of an entirely different kind than
those met in ground state (zero temperature) QM ; they are all isomorphic to one abstract
object, the hyperfinite type III1 von Neumann factor also referred to as the monad the
unique factor behind Araki’s 1963 discovery [45]. As will be seen later LQP creates its
wealthy mansion from just this one kind of brick; all its structural richness comes from
positioning the bricks, there is nothing hidden in the structure of one bricks. In a later
section it will be explained how this emerges from modular localization and a related
operator formalism.

The situation does not change if one takes for O a region R at a fixed time; as stated
before, in a theory with finite propagation speed one hasA(R) = A(D(R)), where D(R)
is the diamond shaped double cone subtended by R (the causal shadow of R). Even if
there are no pointlike generators and if the theory (as the result of the existence of an
elementary length) only admits a macroscopically localized net of algebras (e.g. a net
of non-trivial wedge-localized factor algebras A(W ) with trivial double cone intersection
algebras A(O) = {c1}), the algebras would still not tensor factorize B(H) 6= A(W ) ⊗
A(W ′). Hence the properties under discussion are not directly related to the presence of
singular generating pointlike/stringlike fields but are connected to the existence of well-
defined (sharp) causal shadows. There is a hidden singular aspect in the sharpness of the
O-localization which generates infinitely large vacuum polarization clouds on the causal
horizon of the localization. In the last section a method (splitting) will be presented
which permits to define a split-distance dependent, but otherwise intrinsically defined
finite thermal entropy.

Most divergencies (but not all, since the divergence of localization entropy for vanishing
splitting distance is an unavoidable consequence of the principles) in QFT are the result of
conceptual errors in the formulation resulting from tacitly identifying QFT with some sort
of relativistic QM20 and in this way ignoring the intrinsically singular nature of pointlike
localized fields.

Often it is thought that the avoidance of locality in favor of nonlocal covariant op-
erators eliminates the singular short distance behavior. But this is not quite true as
evidenced by the Kallen-Lehmann representation of a covariant scalar object

〈A(x)A(y)〉 =

∫
∆+(x− y, κ2)ρ(κ2)dκ2 (12)

which was proposed precisely to show that even without demanding locality, but retaining
only covariance and the Hilbert space structure (positivity), a certain singular behavior
of covariant objects is unavoidable. In the DPI scheme this was avoided, because even
though there are particles at all times, there are no covariant (tensors, spinors) objects

20The correct treatment of perturbation theory which takes into account the singular nature of pointlike
quantum fields may yield more free parameters than in the classical setting, but one is never required to
confront infinities or cut-offs.
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at finite times, the only covariant quantity arises in the form of the invariant S-matrix
in the t → ∞ limit. The next section shows that a separation between covariance and
localization in the pursuit of a less singular more nonlocal theory is a futile endeavour, at
least as long as one does not subject spacetime itself to a radical revision.

In the algebraic formulation the covariance requirement refers to the geometry of the
localization region A(O) i.e.

U(a,Λ)A(O)U(a,Λ)∗ = A(Oa,Λ) (13)

whereas no additional requirement about the transformation behavior under finite dimen-
sional (tensor, spinor) Lorentz representations (which would bring back the unbounded-
ness and thus prevent the use of powerful theorems in operator algebras) is imposed for
the individual operators. The singular nature of pointlike generators (if they exist) is then
a purely mathematical consequence. Using such singular objects in pointlike interactions
in the same way as one uses operators in QM leads to self-inflicted divergence problems.

We have seen that although QM and QFT can be described under a common math-
ematical roof of C∗-algebras with a state functional, as soon as one introduces the phys-
ically important localization structure, significant conceptual differences appear. These
differences show up in the presence of vacuum polarization in QFT as a result of causal
localization and they tend to have dramatic consequences; the most prominent ones will
be presented in this and the subsequent sections, more will be contained in the second
essay.

The net structure of the observables allows a local comparison of states : two states
are locally equal in a region O if and only if the expectation values of all operators in
are the same in both states. Local deviations from any state, in particular from the
vacuum state, can be measured in this manner; states which are equal on the causal
complement A(O′) that are indistinguishable from the vacuum are called localizable in
A(O) (”strictly localized states” in the sense of Licht [50]) can be defined. Due to the
unavoidable correlations in the vacuum state in relativistic quantum theory (the Reeh-
Schlieder property [5]), the space H(O) obtained by applying the operators in A(O) to
the vacuum is, for any open region O, dense in the Hilbert space and thus far from
being orthogonal to H(O′). This somewhat counter-intuitive fact is inseparably linked
with a structural difference between the local algebras and the algebras encountered in
non-relativistic quantum mechanics (or the global algebra of a quantum field associated
with the entire Minkowski space-time) as mentioned in connection with the breakdown
of tensor-factorization (11).

The result is a particular benevolent form of ”Murphy’s law” for interacting QFT:
everything which is not forbidden (by superselection rules) to couple, really does couple.
On the level of interacting particles this has been termed nuclear democracy : any particle
whose superselected charge is contained in the spectrum which results from fusing the
charges in a cluster of particles can be viewed as a bound state of that cluster of particles.
Nuclear democracy even strips a particle with a fundamental charge of its individuality
since such an object can be considered as bound of itself + an arbitrary number of
particles with non-fundamental charges. This renders interacting QFT conceptually much
more attractive and fundamental than QM, but it also contributes to its computational
complexity i.e. the benevolent character of Murphy’s LQP law unfortunately does not
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necessarily extend to the computational side, at least if one limits oneself to the standard
tools of QT.

The Reeh-Schlieder property [5] (in more popular but less precise terminology: the
”state-field relation”) is perhaps the strongest realization of Murphy’s law since it secures
the existence of a localization region dependent dense subspace H(O) = A(O)Ω ⊂ H
which cannot be associated with a nontrivial projector. It also implies that the expectation
value of a projection operator localized in a bounded region cannot be interpreted as the
probability of detecting a particle-like object in that region, since it is necessarily nonzero
if acting on the vacuum state. The A(O)-reduced ground state is a KMS thermal state
at a appropriately normalized (Hawking) temperature (more in part II). The intrinsically
defined modular ”Hamiltonian” associated via modular operator theory21 to a ”standard
pair” (A(O),Ωvac) is always available in the mathematical sense but allows a physical
interpretation only in those rare cases when there exists an invariance group of O which
is a subgroup of the spacetime group leaving Ωvac invariant. Well known cases are the
Lorentz boost for the wedge region in Minkowski spacetime (the Unruh effect) and the
generator of a double-cone preserving conformal transformation in a conformal theory
and certain Killing symmetries in black hole physics. Its general purpose is to give an
intrinsic description of the A(O)- reduced vacuum state in terms of an KMS state of an
Hamiltoian ”movement” where we used brackets in order to highlight the fact that this is
generally not a geometric movement but only an algebraic automorphism of A(O) (and
simultaneously of A(O′)) which respects the geometric boundaries (the causal horizon) of
O 22. It is never the Hamiltonian associated with a globally inertial reference frame as in
case of heat bath thermal systems.

There exists in fact a whole family of modular Hamiltonians since the operators in
A(O) naturally fulfill the KMS condition for any standard pair (A(Ǒ),Ωvac) for Ǒ ⊃ O:
i.e. the different modular Hamiltonians and the KMS states change with the causally
closed world Ǒ of the observer. The surprising aspect is that the causal localization
structure of one QFT leads to an infinite supply of different Hamiltonians without any
change of interactions. The change of the modular Hamiltonian KO via a change of
the localization region will lead to a new Hamiltonian whose automorphic movement
maintains the new region but leaves (after some ”modular time”) the old region i.e. this
is not a family of Hamiltonians on a quantum mechanical algebra. Of particular interest
is the restriction of a modular automorphism to the horizon of a causally closed region
Hor(O); there are good indications that this defines a diffeomorphism which belongs to
the infinite dimensional Bondi-Metzner-Sachs subgroup of a gigantic symmetry group of
holographic projection onto horizons (see part II on holography).

The situation just described is one of extreme ”virtuality”, i.e. there is generally
not even the possibility to view it in terms of an Gedankenexperiment of a non-inertial
(accelerated) O-confined observer for whom the modular movement is an O - preserving
diffeomorphism; such pure algebraic movements without individual orbits are often called
”fuzzy”. Whenever the modular movement passes to a diffeomorphism one can at least
envisage a Gedankenexperiment which keeps the observer on an O-preserving track by

21The modular Hamitonian is the infinitesimal generator Kmod of the modular group ∆it ≡
e−itKmod .(see next two sections).

22In fact it induces a geometric movement on the horizon.
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appropriate accelerations. The only geometric case in Minkowski spacetime is the situa-
tion proposed first by Unruh [42], when O is a wedge i.e. a region W which is bounded
by two intersecting lightfronts which only share the 2-dim. edge of their intersection..
Conformal theories for which the observables live in the Dirac-Weyl compactification M̃
of the Minkowski spacetime lead to modular diffeomorphisms even for compact double
cones D23.

The most interesting and prominent case comes about when spacetime curvature is
creating a black hole. In case there are time-like Killing orbits and an extension of the
spacetime such that the black hole horizon is a event horizon in the sense of dividing the
extended manifold into a causally inside/outside with separate Killing movements, one
is in the classical Hawking-like situation. What one in additions needs for the quantum
setting is the existence of a quantum state which is invariant under the Killing group
action.

In the case of the Schwarzschild black hole all these requirements are fulfilled, the
extension is the Schwarzschild-Kruskal extension and the invariant state is the Hartle-
Hawking state ΩH−H . In this case (A(OS−K),ΩH−H) is a standard pair and the modular
movement is the Killing orbit which respects the black hole event horizon. Whereas
the causal horizons in the previous Minkowski spacetime examples was an extremely
”fleeting” object, a black hole event horizon has an intrinsic metric-imprinted position.
Besides their astrophysical interests, black holes are therefore of considerable philosophical
interest. The only future development which could still enforce a significant modification
of the present concepts is the still unknown quantum gravity (more remarks on QG in
part II).

For computations of thermal properties, including thermal entropy, it does not matter
whether the horizon is a ”fleeting” observer-dependent causal localization24 horizon or a
fixed curvature generated black hole event horizon; only its direct observable significance
depends on the black hole event horizon. This leads to a picture about the LQP-QG
(quantum gravity) interface which is somewhat different from that in most of the lit-
erature; we will return to these issues in connection with the presentation of the split
property in part II of the essay.

Causality in relativistic quantum field theory is mathematically expressed through
local commutativity, i.e., mutual commutativity of the algebras A(O) and A(O′). There
is an intimate connection of this property with the possibility of preparing states that
exhibit no mutual correlations for a given pair of causally disjoint regions. In fact, in
a recent paper Buchholz and Summers [7] show that local commutativity is a necessary
condition for the existence of such uncorrelated states.

Conversely, in combination with some further properties related to degrees of freedom
densities (split property [53], existence of scaling limits [54]), local commutativity leads
to a very satisfactory picture of statistical independence and local preparabilty of states
in relativistic quantum field theory. We refer to [55][56] for thorough discussions of these
matters and [51][15] for a brief review of some physical consequences. The last two pa-

23The region obtained by intersecting a forward lightcone with arbitrary apex with an backward
lightcone;

24The localization entropy which depends on the ”split” size (see below) is however an important
property of the model, even if it not directy experimentally accessible.
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pers also explain how the above mentioned concepts avoids spurious problems rooted in
assumptions that are in conflict with basic principles of relativistic quantum physics. In
particular it can be shown how an alleged difficulty [8][9] with Fermi’s famous Gedanken-
experiment [52], which Fermi proposed in order to show that the velocity of light is also
the limiting propagation velocity in quantum electrodynamics, can be resolved by taking
[51] into account the progress on the conceptual issues of causal localization and the gain
in mathematical rigor since the times of Fermi.

After having discussed some significant conceptual differences between QM and LQP,
one naturally asks for an argument why and in which way QM appears as a nonrelativistic
limit of LQP. The standard kinematical reasoning of the textbooks is acceptable for
fermionic/bosonic systems in the sense of ”FAPP”, but has not much strength on the
conceptual level. To see its weakness, imagine for a moment that we would live in a
3-dim. world of anyons (abelian plektons, where plektons are Wigner particles with braid
group statistics). Such relativistic objects are by their very statistics so tightly interwoven
that there simply are no compactly localized free fields which only create a localized
anyon without a vacuum polarization cloud admixture. In such a world no nonrelativistic
limit which maintains the spin-statistic connection could lead to QM, the limiting theory
would rather remain a nonrelativistic QFT. In order to avoid misunderstandings, its
is not claimed here that the issue of nonrelativistic limits of any interacting relativistic
QFT is mathematically understood25, rather the statement is that plektonic (braid-group)
commutation relations, relativistic or nonrelativistic, interacting or not, are incompatible
with the structure of (Schroedinger) QM. In 4-dimensional spacetime there is no such
obstacle against QM, simply because it is not the Fermi/Bose statistics which causes
vacuum polarization; to formulate it more provocatively: there would be no Schroedinger
QM without the existence of free relativistic fermions/bosons.

6 Modular localization

Previously it was mentioned on several occasions that the localization underlying QFT
can be freed from the contingencies of field coordinatizations. This is achieved by a phys-
ically as well mathematically impressive, but for historic and sociological reasons little
known theory. Its name ”modular theory” is of mathematical origin and refers to a vast
generalization of the (uni)modularity encountered in the relation between left/right Haar
measure in group representation theory. In the middle 60s the mathematician Tomita
presented a significant generalization of this theory to operator algebras and in the sub-
sequent years this theory received essential improvements from Takesaki and later from
Connes.

At the same time Haag, Hugenholtz and Winnink published their work on statistical
mechanics of open systems [5]. When the physicists and mathematicians met at a confer-
ence in Baton Rouge in 1966, there was surprise about the similarity of concepts, followed
by deep appreciation about the perfection with which these independent developments

25The arguments about the nonrelativistic limit og QFT have remained metaphoric; however the ex-
istence of exactly solved interacting 2-dim. QFTs raises now hopes that age old problem will be better
understood.
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supported each other [57]. Physicists not only adapted mathematical terminology, but
mathematicians also took some of their terminology from physicists as e.g. KMS states
which refer to Kubo, Martin and Schwinger who introduced an analytic property of Gibbs
states merely as a computational tool (in order to avoid computing traces), Haag, Hugen-
holtz and Winnink realized that this property (which they termed the KMS property) is
the only aspect which survives in the thermodynamic limit when the trace formulas loses
its meaning and must be replaced by the analytic KMS boundary condition.

This turned out to be the right concept for formulating and solving problems directly
in the setting of open systems. In the present work the terminology is mainly used
for thermal states of open systems which are not Gibbs states. They are typical for
LQP, for example every multiparticle state Ωparticle of finite energy, including the vacuum,
(i.e. every physical particle state) upon restriction to a local algebra A(O) becomes a
KMS state with respect to a ”modular Hamiltonian” which is canonically determined by
(A(O),Ωparticle).

Connes, in his path-breaking work on the classification of von Neumann factors [59],
made full use of this hybrid math.-phys. terminology which developed after Baton Rouge.
Nowadays one can meet mathematicians who use the KMS property but do not know
that this was a mere computational tool by 3 physicists (Kubo. Martin and Schwinger)
to avoid calculating traces and that the conceptual aspect was only realized later by Haag
Hugenholtz and Winnink who gave it its final name. One can hardly think of any other
confluence of mathematical and physical ideas on such a profound and at the same time
equal and natural level as in modular theory; even the Hilbert space formalism of QM
already existed for many years before quantum theorists became aware of its use.

About 10 years after Baton Rouge, Bisognano and Wichmann [17] discovered that
a vacuum state restricted to a wedge-localized operator algebra A(W ) in QFT defines
a modular setting in which the restricted vacuum becomes a thermal KMS state with
respect to the wedge-affiliated L-boost ”Hamiltonian”. This step marks the beginning
of a very natural yet unexpected relation between thermal and geometric properties, one
which is totally characteristic for QFT i.e. which is not shared by classical theory nor by
QM. Thermal aspects of black holes were however discovered independent of this work,
and the first physicist who saw the connection with modular theory was Geoffrey Sewell
[18].

The theory becomes more accessible for physicists if one introduces it first in its more
limited spatial- instead of its full algebraic- context. Since as a foundational structure of
LQP it merits more attention than it hitherto received from the particle physics commu-
nity, some of its methods and achievements will be presented in the sequel.

It has been realized by Brunetti, Guido and Longo26 [13] that there exists a natural
localization structure on the Wigner representation space for any positive energy repre-
sentation of the proper Poincaré group. The starting point is an irreducible representation
U1of the Poincaré´group on a Hilbert space H1 that after ”second quantization” becomes
the single-particle subspace of the Hilbert space (Wigner-Fock-space) HWF of the quan-
tum fields act27. In the bosonic case the construction then proceeds according to the
following steps [13][58][15].

26In a more limited context and with less mathematical rigor this was independently proposed in [14].
27The construction works for arbitrary positive energy representations, not only irreducible ones.
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One first fixes a reference wedge region, e.g. W0 = {x ∈ Rd, xd−1 > |x0|} and considers
the one-parametric L-boost group (the hyperbolic rotation by χ in the xd−1 − x0 plane)
which leaves W0 invariant; one also needs the reflection jW0 across the edge of the wedge
(i.e. along the coordinates xd−1 − x0). The jW0 extended Wigner representation is then
used to define two commuting wedge-affiliated operators

δit
W0

= u(0,ΛW0(χ = −2πt)), jW0 = u(0, jW0) (14)

where attention should be paid to the fact that in a positive energy representation any
operator which inverts time is necessarily antilinear28. A unitary one- parametric strongly
continuous subgroup as δit

W0
can be written in terms of a selfadjoint generator K as

δit
W0

= e−itKW0 and therefore permits an ”analytic continuation” in t to an unbounded
densely defined positive operators δs

W0
. With the help of this operator one defines the

unbounded antilinear operator which has the same dense domain as its ”radial” part

sW0 = jW0δ
1
2
W0
, jδ

1
2 j= δ−

1
2 (15)

Whereas the unitary operator δit
W0

commutes with the reflection, the antiunitarity of
the reflection changes the sign in the analytic continuation which leads the commutation
relation between δ and j in (15). This causes the involutivity of the s-operator on its
domain, as well as the identity of its range with its domain

s2
W0
⊂ 1

dom s = ran s

Such operators which are unbounded and yet involutive on their domain are very unusual;
according to my best knowledge they only appear in modular theory and it is precisely
these unusual properties which are capable to encode geometric localization properties
into domain properties of abstract quantum operators, a fantastic achievement completely
unknown in QM. The more general algebraic context in which Tomita discovered modular
theory will be mentioned later.

The idempotency means that the s-operator has ±1 eigenspaces; since it is antilinear,
the +space multiplied with i changes the sign and becomes the - space; hence it suffices
to introduce a notation for just one eigenspace

K(W0) = {domain of ∆
1
2
W0
, sW0ψ = ψ} (16)

jW0K(W0) = K(W ′
0) = K(W0)

′, duality

K(W0) + iK(W0) = H1, K(W0) ∩ iK(W0) = 0

It is important to be aware that, unlike QM, we are here dealing with real (closed)
subspaces K of the complex one-particle Wigner representation space H1. An alternative
which avoids the use of real subspaces is to directly deal with complex dense subspaces as
in the third line. Introducing the graph norm of the dense space the complex subspace in
the third line becomes a Hilbert space in its own right. The second and third line require

28The wedge reflection jW0 differs from the TCP operator only by a π-rotation around the W0 axis.
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some explanation. The upper dash on regions denotes the causal disjoint (which is the
opposite wedge) whereas the dash on real subspaces means the symplectic complement
with respect to the symplectic form Im(·, ·) on H1.

The two properties in the third line are the defining property of what is called the
standardness property of a real subspace29; any standard K space permits to define an
abstract s-operator

s(ψ + iϕ) = ψ − iϕ (17)

s = jδ
1
2

whose polar decomposition (written in the second line) yields two modular objects, a
unitary modular group δit and a antiunitary reflection which generally have however no
geometric significance. The domain of the Tomita s-operator is the same as the domain of
δ

1
2 namely the real sum of the K space and its imaginary multiple. Note that this domain

is determined solely in terms of Wigner group representation theory.
It is easy to obtain a net of K-spaces by U(a,Λ)-transforming the K-space for the

distinguished W0. A bit more tricky is the construction of sharper localized subspaces via
intersections

K(O) =
⋂

W⊃O

K(W ) (18)

where O denotes a causally complete smaller region (noncompact spacelike cone, compact
double cone). Intersection may not be standard, in fact they may be zero in which case
the theory allows localization in W (it always does) but not in O. Such a theory is still
causal but not local in the sense that its associated free fields are pointlike. One can show
that the intersection for spacelike cones O = C for all positive energy is always standard.

Note that the relativistic DPI setting also starts from Wigner particles but it com-
pletely ignores the presence of this modular localization structure which, as will be seen
in brief, is the royal path into QFT which would have pleased Wigner and reconciled him
with the conceptual structure of QFT.

There are three classes of irreducible positive energy representation, the family of
massive representations (m > 0, s) with half-integer spin s and the family of massless rep-
resentation which consists really of two subfamilies with quite different properties namely
the (0, h = half-integer) class, often called the neutrino-photon class, and the rather large
class of (0, κ > 0) infinite helicity representations parametrized by a continuous-valued
Casimir invariant κ [15].

For the first two classes the K-space the standardness property also holds for double
cone intersections O = D for arbitrarily small D, but this is definitely not the case for the
infinite helicity family for which the localization spaces for compact spacetime regions turn
out to be trivial30. Passing from localized subspaces K in the representation theoretical

29According to the Reeh-Schlieder theorem a local algebra A(O) in QFT is in standard position with
respect to the vacuum i.e. it acts on the vacuum in a cyclic and separating manner. The spatial
standardness, which follows directly from Wigner representation theory, is just the one-particle projection
of the Reeh-Schlieder property.

30It is quite easy to prove the standardness for spacelike cone localization (leading to singular stringlike
generating fields) just from the positive energy property which is shared by all three families [13].
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setting to singular covariant generating wave functions (the first quantized analogs of gen-
erating fields) one can show that the D localization leads to pointlike singular generators
(state-valued distributions) whereas the spacelike cone localization C is associated with
semiinfinite spacelike stringlike singular generators [15]. Their second quantized counter-
parts are pointlike or stringlike covariant fields. It is remarkable that one does not need
to introduce generators which are localized on hypersurfaces (branes).

Although the observation that the third Wigner representation class is not point-
like generated was made many decades ago, the statement that it is semiinfinite string-
generated and that this is the worst possible case of state localization (which needs the
knowledge of modular theory) is of a more recent vintage [13][15].

There is a very subtle aspect of modular localization which one encounters in the
second Wigner representation class of massless finite helicity representations (the photon,

graviton..class). Whereas in the massive case all spinorial fields Ψ(A,Ḃ) the relation of
the physical spin s with the two spinorial indices follows the naive angular momentum
composition rules [16] ∣∣∣A− Ḃ

∣∣∣ ≤ s ≤
∣∣∣A+ Ḃ

∣∣∣ , m > 0 (19)

s =
∣∣∣A− Ḃ

∣∣∣ , m = 0

the second line contains the significantly reduced number of spinorial descriptions for
zero mass and finite helicity representations. What is going on here, why is there, in
contradistinction to classical field theory no covariant s=1 vector-potential Aµ or no gµν

in case of s=2 ? Why are the admissible covariant generators of the Wigner representation
in this case limited to field strengths (for s=2 the linearized Riemann tensor)?

The short answer is that all these missing generators exist as stringlike covariant
objects, the above restriction in the massless case only results from the covariantization
to pointlike generators. The full range of spinorial possibilities (19) returns in terms of

string localized fields Ψ(A,Ḃ)(x, e) if s 6=
∣∣∣A− Ḃ

∣∣∣. These generating free fields are covariant

and ”string-local”

U(Λ)Ψ(A,Ḃ)(x, e)U∗(Λ) = D(A,Ḃ)(Λ−1)Ψ(A,Ḃ)(Λx,Λe) (20)[
Ψ(A,Ḃ)(x, e),Ψ(A′,Ḃ′)(x′, e′

]
±

= 0, x+ R+e >< x′ + R+e
′

Here the unit vector e is the spacelike direction of the semiinfinite string and the last
line expresses the spacelike fermionic/bosonic spacelike commutation. The best known
illustration is the (m = 0, s = 1) vectorpotential representation; in this case it is well-
known that although a generating pointlike field strength exists, there is no pointlike
vectorpotential acting in a Hilbert space.

According to (20) the modular localization approach offers as a substitute a stringlike
covariant vector potential Aµ(x, e). In the case (m = 0, s = 2) the ”field strength” is
a fourth degree tensor which has the symmetry properties of the Riemann tensor (it
is often referred to as the linearized Riemann tensor). In this case the string-localized
potential is of the form gµν(x, e) i.e. resembles the metric tensor of general relativity. Some
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consequences of this localization for a reformulation of gauge theory will be mentioned in
section 8.

Even in case of massive free theories where the representation theoretical approach of
Wigner does not require to go beyond pointlike localization, covariant stringlike localized
fields exist. Their attractive property is that they improve the short distance behavior
e.g. a massive pointlike vector-potential of sdd=2 passes to a string localized vector
potential of sdd=1. In this way the increase of the sdd of pointlike fields with spin s
can be traded against string localized fields of spin independent dimension with sdd=1.
This observation would suggest the possibility of an enormous potential enlargement of
perturbatively accessible higher spin interaction in the sense of power counting.

A different kind of spacelike string-localization arises in d=1+2 Wigner representations
with anomalous spin [60]. The amazing power of the modular localization approach is
that it preempts the spin-statistics connection already in the one-particle setting, namely
if s is the spin of the particle (which in d=1+2 may take on any real value) then one
finds for the connection of the symplectic complement with the causal complement the
generalized duality relation

K(O′) = ZK(O)′ (21)

where the square of the twist operator Z = eπis is easily seen (by the connection of Wigner
representation theory with the two-point function) to lead to the statistics phase = Z2

[60].
The fact that one never has to go beyond string localization (and fact, apart from

s ≥ 1, never beyond point localization) in order to obtain generating fields for a QFT is
remarkable in view of the many attempts to introduce extended objects into QFT.

It is helpful to be again reminded that modular localization which goes with real
subspaces (or dense complex subspaces), unlike BNW localization, cannot be connected
with probabilities and projectors. It is rather related to causal localization aspects; the
standardness of the K-space for a compact region is nothing else then the one-particle
version of the Reeh-Schlieder property. As will be seen in the next section modular
localization is also an important tool in the non-perturbative construction of interacting
models.

7 Algebraic aspects of modular theory

A net of real subspaces K(O) ⊂ H1 for an finite spin (helicity) Wigner representation can
be ”second quantized”31 via the CCR (Weyl) respectively CAR quantization functor; in
this way one obtains a covariant O-indexed net of von Neumann algebras A(O) acting
on the bosonic or fermionic Fock space H = Fock(H1) built over the one-particle Wigner
spaceH1. For integer spin/helicity values the modular localization in Wigner space implies
the identification of the symplectic complement with the geometric complement in the
sense of relativistic causality, i.e. K(O)′ = K(O′) (spatial Haag duality in H1). The Weyl

31The terminology 2nd quantization is a misdemeanor since one is dealing with a rigorously defined
functor within QT which has little in common with the artful use of that parallellism to classical theory
called ”quantization”. In Edward Nelson’s words: (first) quantization is a mystery, but second quantiza-
tion is a functor.
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functor takes this spatial version of Haag duality into its algebraic counterpart. One
proceeds as follows: for each Wigner wave function ϕ ∈ H1 the associated (unitary) Weyl
operator is defined as

Weyl(ϕ) := expi{a∗(ϕ) + a(ϕ)} ∈ B(H) (22)

A(O) := alg{Weyl(ϕ)|ϕ ∈ K(O)}′′ , A(O)′ = A(O′)

where a∗(ϕ) and a(ϕ) are the usual Fock space creation and annihilation operators of
a Wigner particle in the wave function ϕ. We then define the von Neumann algebra
corresponding to the localization region O in terms of the operator algebra generated by
the functorial image of the modular constructed localized subspace K(O) as in the second
line. By the von Neumann double commutant theorem, our generated operator algebra
is weakly closed by definition.

The functorial relation between real subspaces and von Neumann algebras via the Weyl
functor preserves the causal localization structure and hence the spatial duality passes to
its algebraic counterpart. The functor also commutes with the improvement of localiza-
tion through intersections ∩ according to K(O) = ∩W⊃OK(W ), A(O) = ∩W⊃OA(W ) as
expressed in the commuting diagram

{K(W )}W −→ {A(W )}W (23)

↓ ∩ ↓ ∩
K(O) −→ A(O)

Here the vertical arrows denote the tightening of localization by intersection whereas the
horizontal ones denote the action of the Weyl functor.

The case of half-integer spin representations is analogous [58], apart from the fact that
there is a mismatch between the causal and symplectic complements which must be taken
care of by a twist operator Z and as a result one has to use the CAR functor instead of
the Weyl functor.

In case of the large family of irreducible zero mass infinite spin representations in
which the lightlike little group is faithfully represented, the finitely localized K-spaces are
trivial K(O) = {0} and the most tightly localized nontrivial spaces are of the form K(C)
for C an arbitrarily narrow spacelike cone. As a double cone contracts to its core which
is a point, the core of a spacelike cone is a covariant spacelike semiinfinite string. The
above functorial construction works the same way for the Wigner infinite spin represen-
tation, except that in that case there are no nontrivial algebras which have a smaller
localization than A(C) and there is no field which is sharper localized than a semiinfinite
string. As stated before, stringlike generators, which are also available in the pointlike
case, turn out to have an improved short distance behavior which makes them preferable
from the point of view of formulating interactions within the power counting limit. They
can be constructed from the unique Wigner representation by so called intertwiners be-
tween the unique canonical and the many possible covariant (dotted-undotted spinorial)
representations. The Euler-Lagrange aspects plays no direct role in these construction
since the causal aspect of hyperbolic differential propagation are fully taken care of by
modular localization and also because most of the spinorial higher spin representations
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(19) anyhow cannot be characterized in terms of Euler-Lagrange equations. The modular
localization is the more general method of implementating causal propagation than that
from hyperbolic equations of motions.

A basis of local covariant field coordinatizations is then defined by Wick composites of
the free fields. The case which deviates furthest from classical behavior is the pure string-
like infinite spin case which relates a continuous family of free fields with one irreducible
infinite spin representation. Its non-classical aspects, in particular the absence of a La-
grangian, is the reason why the spacetime description in terms of semiinfinite string fields
has been discovered only recently rather than at the time of Jordan’s field quantization
or Wigner’s representation theoretical approach.

Using the standard notation Γ for the second quantization functor which maps real
localized (one-particle) subspaces into localized von Neumann algebras and extending this
functor in a natural way to include the images of the K(O)-associated s, δ, j which are
denoted by S,∆, J, one arrives at the Tomita Takesaki theory of the interaction-free local
algebra (A(O),Ω) in standard position32

HFock = Γ(H1) = eH1 ,
(
eh, ek

)
= e(h,k) (24)

∆ = Γ(δ), J = Γ(j), S = Γ(s)

SAΩ = A∗Ω, A ∈ A(O), S = J∆
1
2

With this we arrive at the core statement of the Tomita-Takesaki theorem which is a
statement about the two modular objects ∆it and J on the algebra

σt(A(O)) ≡ ∆itA(O)∆−it = A(O) (25)

JA(O)J = A(O)′ = A(O′)

in words: the reflection J maps an algebra (in standard position) into its von Neumann
commutant and the unitary group ∆it defines an one-parametric automorphism-group
σt of the algebra. In this form (but without the last geometric statement involving the
geometrical causal complement O′) the theorem hold in complete mathematical generality
for standard pairs (A,Ω). The free fields and their Wick composites are ”coordinatizing”
singular generators of thisO-indexed net of operator algebras in the sense that the smeared
fields A(f) with suppf ⊂ O are (unbounded operators) affiliated with A(O) and in a
certain sense generate A(O).

In the above second quantization context the origin of the T-T theorem and its proof
is clear: the symplectic disjoint passes via the functorial operation to the operator algebra
commutant (19) and the spatial one-particle automorphism goes into its algebraic coun-
terpart. The definition of the Tomita involution S through its action on the dense set of
states (guarantied by the standardness of A) as SAΩ = A∗Ω and the action of the two
modular objects ∆, J (24) is part of the general setting of the modular Tomita-Takesaki
theory of abstract operator algebras in ”standard position”; standardness is the mathe-
matical terminology for the physicists Reeh-Schlieder property i.e. the existence33 of a

32The functor Γ preserves the standardness i.e. maps the spatial one-particle standardness into its
algebraic counterpart.

33In QFT any finite energy vector (which of course includes the vacuum) has this property as well
as any nondegenerated KMS state. In the mathematical setting it is shown that standard vectors are
”δ−dense” in H.
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vector Ω ∈ H with respect to which the algebra acts cyclic and has no ”annihilators”
of Ω. Naturally the proof of the abstract T-T theorem in the general setting of operator
algebras is more involved34.

The domain of the unbounded Tomita involution S turns out to be ”kinematical” in
the sense that the dense set which features in the Reeh-Schlieder theorem is determined
in terms of the representation of the connected part of the Poincaré group i.e. the parti-
cle/spin spectrum35. In other words the Reeh-Schlieder domains in an interacting theory
with asymptotic completeness are identical to those of the incoming or outgoing free field
theory.

The important property which renders this useful beyond free fields as a new construc-
tive tool in the presence of interactions, is that for (A(W ),Ω) the antiunitary involution
J depends on the interaction, whereas ∆it continues to be uniquely fixed by the represen-
tation of the Poincaré group i.e. by the particle content. In fact it has been known for
some [14] time that J is related with its free counterpart J0 through the scattering matrix

J = J0Sscat (26)

This modular role of the scattering matrix as a relative modular invariant between
an interacting theory and its free counterpart comes as a surprise. It is precisely this
property which opens the way for an inverse scattering construction. If one only looks at
the dense localization of states which features in the Reeh-Schlieder theorem, one misses
the dynamics. There is presently no other way to inject dynamics than generating these
states by applying operators from operator algebras. The properties of J are essentially
determined by the relation of localized operators A to their Hermitian adjoints A∗36.

The physically relevant facts emerging from modular theory can be condensed into
the following statements:

• The domain of the unbounded operators S(O) is fixed in terms of intersections of the
wedge domains associated to S(W ); in other words it is determined by the particle
content alone and therefore of a kinematical nature. These dense domains change
with O i.e. the dense set of localized states has a bundle structure.

• The complex domains DomS(O) = K(O) + iK(O) decompose into real subspaces
K(O) = A(O)saΩ. This decomposition contains dynamical information which in
case O = W reduces to the S-matrix (26). Assuming the validity of the crossing
properties for formfactors, the S-matrix fixes A(W ) uniquely [24].

34The local algebras of QFT are (as a consequence of the split property) hyperfinite; for such operator
algebras Longo has given an elegant proof [62].

35For a wedge W the domain of SW is determined in terms of the domain of the ”analytic continuation”
∆

1
2
W of the wedge-associated Lorentz-boost subgroup ΛW (χ), and for subwedge localization regions O the

dense domain is obtained in terms of intersections of wedge domains.
36According to a theorem of Alain Connes [59] the existence of operator algebras in standard position

can be inferred if the real subspace K permit a decompositions into a natural positive cone and its
opposite with certain facial properties of positive subcones. Although this construction has been highly
useful in Connes classification of von Neumann factors, it has not yet been possible to relate this to
physical concepts.
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The remainder of this subsection contains some comments about a remarkable con-
structive success of these modular methods with respect to a particular family of interact-
ing theories. For this one needs some additional terminology. Let us enlarge the algebraic
setting by admitting unbounded operators with Wightman domains which are affiliated
to A(O) and let us agree to just talk about ”O-localized operators” when we do not
want to distinguish between bounded and affiliated unbounded operators. We call an O-
localized operators a vacuum polarization free generator (PFG) if applied to the vacuum
it generated a one-particle state without admixture of a vacuum-polarization cloud. The
following three theorems have turned out to be useful in a constructive approach based
on modular theory.

Theorem ([25]): The existence of an O-localized PFG for a causally complete sub-
wedge region O ⊂ W implies the absence of interactions i.e. the generating fields are ( a
slight generalization [25] of the Jost-Schroer theorem (referred to in [61][63]) which still
used the existence of pointlike covariant fields).

Theorem ([25]): Modular theory for wedge algebras insures the existence of wedge-
localized PFGs. Hence the wedge region permits the best compromise between interacting
fields and one-particle states37.

Theorem ([25]): Wedge localized PFGs with good (Wightman-like) domain properties
(”temperate” PFGs) lead to the absence of particle creation (pure elasic Sscat) which in
turn is only possible in d=1+1 and leads to the factorizing models (which hitherto were
studied in the setting of the bootstrap-formfactor program [64]). The compact localized in-
teracting subalgebras A(O) have no PFGs and possess the full interaction-induced vacuum
polarization clouds.

Some additional comments will be helpful. The first theorem gives an intrinsic (not
dependent on any Lagrangian or other extraneous properties) local definition of the pres-
ence of interaction, even though it is not capable to differentiate between different kind
of interactions (which would be reflected in the shapes of interaction-induced polariza-
tion clouds). The other two theorems suggest that the knowledge of the wedge algebra
A(W ) ⊂ B(H) may serve as a useful starting point for classifying and constructing mod-
els of LQP in a completely intrinsic fashion. Knowing generating operators of A(W )
including their transformation properties under the Poincaré group is certainly sufficient
and constitutes the most practical way for getting the construction started (for additional
informations see later section).

All wedge algebras possess affiliated PFGs but only in case they come with reasonable
domain properties (”temperate”) they can presently be used in computations. This re-
quirement only leaves models in d=1+1 which in addition must be factorizing (integrable);
in fact the modular theory used in establishing these connections shows that there is a
deep connection between integrability in QFT and vacuum polarization properties [25].

Temperate PFGs which generate wedge algebra for factorizing models have a rather
simple algebraic structure. They are of the form (in the absence of boundstates)

Z(x) =

∫ (
Z̃(θ)e−ipx + h.c.

) dp

2p0

(27)

37It is the smallest causally closed region (its localization representing a field aspect) which contains
one-particle creators.
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where in the simplest case Z̃(θ), Z̃∗(θ) are one-component objects38 which obey the
Zamolodchikov-Faddeev commutation relations [24]. In this way the formal Z-F device
which encoded the two-particle S-matrix into the commutation structure of the Z-F alge-
bra receives a profound spacetime interpretation. Like free fields these wedge fields are on
mass shell, but their Z-F commutation relations renders them non-local, more precisely
wedge-local [24].

The simplicity of the wedge generators in factorizing models is in stark contrast to
the richness of compactly localized operators e.g. of operators affiliated to a spacetime
double cone D which arises as a relative commutant A(D) = A(Wa)

′∩A(W ). The wedge
algebra A(W ) has simple generators and the full space of formal operators affiliated with
A(W ) has the form of an infinite series in the Z-F operators with coefficient functions
a(θ1, ...θn) with analyticity properties in a θ-strip

A(x) =
∑ 1

n!

∫
∂S(0,π)

dθ1...

∫
∂S(0,π)

dθne
−ix

P
p(θi)a(θ1, ...θn) : Z̃(θ1)...Z̃(θ1) : (28)

where for the purpose of a compact notation we view the creation part Z̃∗(θ) as Z̃(θ+ iπ)
i.e. as coming from the upper part of the strip S(0, π)39. The requirement that the series
(28) commutes with the translated generator A(fa) ≡ U(a)A(f)U∗(a) affiliated with
A(Wa) defines formally a subspace of operators affiliated with A(D) = A(Wa)

′ ∩ A(W ).
As a result of the simplicity of the Z̃ generators one can characterize these subspaces in

terms of analytic properties of the coefficient functions a(θ1, ...θn). The latter are related
to the formfactors of A which are the matrix elements of A between ”ket” in and ”bra”
out particle states. The coefficient functions in (28) obey the crossing property. In this
way the computational rules of the bootstrap-formfactor program [64] are explained in
terms of an algebraic construction [14].

This is similar to the old Glaser-Lehmann-Zimmermann representation for the inter-
acting Heisenberg field [65] in terms of incoming free field. Their use has the disad-
vantage that the coefficient functions are not related by the crossing property to one
analytic master function. The convergence of both series has remaind an open problem.
So unlike the perturbative series resulting from renormalized perturbation theory which
have been shown to diverge even in models with optimal short distance behavior (even
Borel resummability does not help), the status of the GLZ and formfactor series remains
unresolved.

The main property one has to establish, if one’s aim is to secure the existence of a
QFT with local observables, is the standardness of the double cone intersection A(D) =
∩W⊃DA(W ). Based on nuclearity properties of degrees of freedom in phase space (discov-
ered by Buchholz and Wichmann [69]), Lechner has established the standardness of these
intersections and in this way demonstrated the nontriviality of the model as a localized
QFT [26][70]. For the first time in the history of QFT one now has a construction method
which goes beyond the Hamiltonian- and measure-theoretical approach of the 60s [71].

38This case leads to the Sinh-Gordon theory and related models.
39The notation is suggested by the the strip analyticity coming from wedge localization. Of course only

certain matrix elements and expectation values, but not field operators or their Fourier transforms, can
be analytic; therefore the notation is symbolic.
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The old approach could only deal with superrenormalizable models i.e. models whose
basic fields did not have a short distance dimension beyond that of a free field.

The factorizing models form an interesting theoretical laboratory where problems,
which accompanied QFT almost since its birth, resurface in a completely new light. The
very existence of these theories, whose fields have anomalous trans-canonical short dis-
tance dimensions with interaction-dependent strengths, shows that there is nothing in-
trinsically threatening about singular short distance behavior. Whereas in renormalized
perturbation theory the power counting rule only permits logarithmic corrections to the
canonical (free field) dimensions, the construction of factorizing models starting from
wedge algebras and their Z generators allow arbitrary high powers. That many problems
of QFT are not intrinsic but rather caused by a particular method of quantization had
already been suspected by the protagonist of QFT Pascual Jordan who, as far back as
1929, pleaded for a formulation ”without (classic) crutches” [72]. The above construction
of factorizing models which does not use any of the quantization schemes and in which
the model does not even come with a Lagrangian name may be considered at the first
realization of Jordan’s plea at which he arrived on purely philosophically grounds.

The significant conceptual distance between QM and LQP begs the question in what
sense the statement that QM is a nonrelativistic limit of LQP should be understood.
By this we do not mean a formal manipulation in a Lagrangian or functional integral
representation, but an argument which starts from the correlation functions or operator
algebras of an interacting LQP and explains in what way an interacting QFT looses its
modular localization + vacuum polarization and moves into the conceptual setting of QM.
This is far from evident since in certain cases as that of 3-dimensional plektonic statistics
the nonrelativistic limit retains the vacuum polarization, which is necessary to sustain the
braid group statistics and thus becomes a nonrelativistic QFT instead of QM.

Apparently such arguments do not yet exist. One attempt in this direction could
consist in starting from the known formfactors of a factorizing model (as e.g. the Sinh-
Gordon model) and study the simplifications for small rapidity θ. An insight of this kind
would constitute an essential improvement of our understanding of the QM-QFT interface.

Since modular theory continues to play an important role in the remaining section
as well as part II, some care is required in avoiding potential misunderstandings. It is
crucial to be aware of the fact that by restricting the global vacuum state to, a say double
cone algebra A(D) whereupon it becomes a thermal KMS state, there is no change in the
values of the global vacuum expectation values

(Ωvac, AΩvac) = (Ωmod,β, AΩmod,β) , A ∈ A(D) (29)

where for the standard normalization of the modular Hamiltonian40 β = −1. This notation
on the right hand side means that the vacuum expectation values, if restricted to A ∈
A(D), fulfill an additional property (which without the restriction to the local algebra
would not hold), namely the KMS relation

(Ωmod,β, ABΩmod,β) =
(
Ωmod,β, B∆A(O)AΩmod,β

)
(30)

40The modular Hamiltonian lead to fuzzy motions within A(O) except in case of O = W when the
modular Hamiltonian is identical to the boost generator.
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At this point one may wonder how a global vacuum state can turn into a thermal state
on a smaller algebra without any thermal exchange taking place. The answer is that
the in terms of (A(D),Ωvac) canonically defined modular Hamiltonian Kmod with ∆ =
e−Kmod is very different from the original translative Hamiltonian Htr whose lowest energy
eigenstate defines the vacuum, whereas Kmod is the generator of a modular automorphism
of A(D) which in the geometric terminology preferred by physicists (even when it becomes
inappropriate) describes a ”fuzzy” motion inside D.

The modular automorphism is actually defined on the global algebra B(H) where
it acts in such a way that A(D) and A(D)′ = A(D′) are automorphically mapped into
themselves. The state vector Ωvac ∈ H is a zero eigenvalue ofKmod which sits in the middle
of a symmetric two-sided spectrum. What has changed through the process of restriction
is not the state but rather the way of looking at it: Hmod describes the dynamics of
an ”observer” confined to D whereas Htr has obviously no intrinsic meaning in a world
restricted to D. In fact it turns out that the fuzzy automorphism becomes geometric near
the causal horizon of the region O (see second part)

The thermal aspect of modular theory refers to the modular Hamiltonian; it does not
mean that one is creating heat with respect to the usual inertial frame Hamiltonian; its
energy conservation is always maintained and observer-relevant heat is never generated as
long as the observer’s system remains inertial. Already in this context of inertial observer
in the ground state and a modular observer for whom this state becomes thermal, the
attentive reader may correctly presume an anticipation of the thermal manifestations
of black holes as localized restrictions of a larger system (the Kruskal extension of the
Schwartzschild black hole).

Going back to the Unruh Gedankenexperiment featuring a non-inertial observer which
in order to follow the path of the modular Hamiltonian of a Rindler wedge W must be
uniformely accelerated in some spatial direction, the standard question is the thermal
aspect of the W-reduced vacuum real or is it a mathematical aspect carried too far ? The
Unruh effect claims that this is really what the non-inertial observer measures in his taken
along counter. Although the effect is so tiny that it will probably never be observed, the
existence of the thermal radiation is a inescapable consequence of our most successful
theories. One is accustomed to all kind of forces in noninertial systems but where does
the nonzero thermal radiation density come from?

In order to create a causal horizon the observer must be uniformely accelerated which
requires feeding energy into the system. In other words the realization of the innocent
looking restriction in localization requires an enormous energy expenditure thus reveal-
ing in one example what is behind the physics of the harmless sounding word ”restric-
tion”. Only when the modular Hamiltonian describes a movement which corresponds to
a diffeomorphism of spacetime is there a chance to think in terms of an Unruh kind of
Gedankenexperiment. As was explained before the modular situation is more physical in
black hole situations where the position of event horizons is fixed by the metric indepen-
dent of what an observer does. This is underlined by the earlier mentioned existence of
a pure state on the Kruskal extension of the Schwarzschild solution (the Hartle-Hawking
state); this state has the position of the event horizon worked in and does not need any
observer for its definition. Restricted to the region outside of the black hole the modular
automorphism describes the timelike Killing movement which is as close as one can come
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to an inertial path. The correponding Killing Hamiltonian is the closest analog of the
inertial Hamiltonian in Minkowski spacetime.

There remains the question to what extent quantum physics in an Unruh frame is
different from that in an inertial frame. There are no particles (in the sense of Wigner)
since the vacuum behaves like a thermal densitiy in which counter experiments only
permit the measurement of radiation densities as in standard thermal radiation or cosmic
microwave background radiation. In fact it is quite straightforward to show the LSZ
scattering limit does not exist in the Unruh boost time, a fact which is related to the
two-sided spectrum of the modular Hamiltonian with respect to the W-reduced reduced
ground state of the original inertial system. To wit, the global zero temperature Wigner-
Fock space can be used also after the wedge restriction, but the global n-particle states
loose their intrinsic physical meaning. Apart from the modular aspects the problems of the
Unruh effect have been treated by many authors including authors from the foundational
community [40][41].

In fact there is a continuous family of modular ”Hamiltonians” which are the gener-
ators the modular unitaries for sequences of included regions. The modular Hamiltonian
of the larger region will spread the smaller localized algebra into the larger region.

Besides the thermal description of restricted states there is one other macroscopic
manifestation of vacuum polarization which has caused unbelieving amazement in philo-
sophical circles namely the cyclicity of the vacuum (the Reeh-Schlieder property) with re-
spect to algebras localized in arbitrarily small spacetime region or in its more metaphoric
presentation the idea that by doing something in a small earthly laboratory for an ar-
bitrary small fraction of time one can approximate any state ”behind the moon” with
arbitrary precision by (however with ever increasing expenditure in energy [5]).

Both consequences of vacuum polarization and as such interconnected, they 41 are
manifestations of an holistic behavior which in this extreme form is absent in QM. Instead
of the division between an object to be measured, the measuring apparatus and the
environment, without which the modern quantum mechanical measurement theory cannot
be formulated, in LQP such a separation is called into question. By restricting the vacuum
to the inside, one already specifies the vacuum polarization driven dynamic on the causal
disjoint. In the ”state behind the moon argument” the difficulty in a system-environment
dichotomy is even more palpable.

This is indeed an extremely surprising feature which goes considerably beyond the
kinematical change caused by entanglement as the result of the quantum mechanical
division into measured system and environment. It is this dependence of the reduced
vacuum state on the localization region inside which it is tested with localized algebras
which raises doubts about what are really non-fleeting persistent properties of a material
substance. The monad description in the next section strengthens this little holistic aspect
of LQP.

As we have seen the thermal aspects of modular localization are very rich from an
epistemic viewpoint. The ontological content of these observations on the other hand
is quite weak; it is only when the (imagined) causal localization horizons passes from a
Gedanken objects to a (real) event horizons through the curvature of spacetime, that the

41Sometimes used as a metaphor for the Reeh-Schlieder property.
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fleeting aspect of causal horizons of observers pass to an intrinsic ontological property
of spacetime in the case of black holes. But even if one’s main interest is to do black
hole physics, it is wise to avoid a presently popular ”shut up and compute” attitude
and to understand the conceptual basis in LQP of the thermal aspect of localization and
the peculiar thermal entanglement which contrasts the information-theoretical quantum
mechanical entanglement. Ignoring these conceptual aspects one may easily be drawn
into a fruitless and protractive arguments as it happened (and still happens) with the
entropy/information loss issue.

Up to now the terminology ”localization” was used both for states and for subalgebras.
In the absence of interactions they are synonymous; this is because free fields are uniquely
determined by positive energy representations of the Poincaré, in fact the generators of
covariant wave functions pass directly to generating fields. A representation which has no
infinite spin components is always pointlike generated. This applies in particular to string
theory which is a misnomer for infinite component field theory [27]. Such a close relation
between algebraic and state localization breaks down in the presence of interactions. It is
perfectly conceivable to have a theory with ”topological charges” [5] which by definition
cannot be described by compactly localizable operators but need spacelike string localiz-
able generating fields. In that case the neutral observable algebra has the usual compact
localizability whereas the charge-carrying part of the total algebra may need semiinfinite
string generators for its description [66]. The fact that this possibility could even occur
in massive QCD like theories makes it very interesting, but unfortunately there is no
illustrative example.

The problem of localization is of pivotal relevance for QFT. But nowhere is glory and
failure so interlinked as in this issue. The misunderstandings range from the comparatively
harmless confusion between the BNW localization of states and the modular localization
of observables to the very serious misunderstanding of string theory.

In particular the 10 dimensional covariant infinite component unitary superstring rep-
resentation of the Poincaré group coming from the quantization of the bilinearized Nambu-
Goto Lagrangian is according to the before mentioned theorem (for representations which
do not contain Wigner’s infinite spin representation) a pointlike localized object, and this
also applies to its predecessor, the dual resonance model. For a more detailed presen-
tation of these points see [27]. Every explicit computation of the (graded) commutator
of two string fields carried out by string theorists has confirmed the infinite component
pointlike nature [67][68], but there is a strange ideological spirit which pervades the string
community which prevents them from saying clearly what they really compute. Reading
the two cited papers is a strange experience because it shows that correct computations
in times of a dominating metaphorical idea are no guaranty for a correct interpretation.
The authors come up with all kinds of metaphoric ideas (including that of a string of
which one only sees a point) in order to avoid having to say ”infinite component pointlike
field”.

Any philosophically motivated historian who wants to understand the Zeitgeist which
led to string theory and its various revolutions in the service of a theory of everything,
should find these (computationally correct but conceptually strange) papers a rich source
of information. Less than 7 decades after Bohr and Heisenberg removed the metaphoric
arguments of the old quantum theory by introducing the concept of observables, the
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discourse within the string theory community is trying to re-introduce metaphoric argu-
ments into the relativistic particle discourse. Surely one does not want to miss the kind
of fruitful transient metaphors which at the end led to valuable insights, but what is a
reasonable attitude with respect to an obviously incorrect metaphor which hovers over
particle theory ever since its beginnings in the 70s?

8 String-localization and gauge theory

Zero mass fields of finite helicity play a crucial role in gauge theory. Whereas in classical
gauge theory a pointlike massless vectorpotential is a perfectly acceptable concept, the
situation changes in QT as a consequence of the Hilbert space positivity which for massless
unitary representations leads to the loss of many spinorial realizations as expressed in the
second line of (19), in particular to that of the vector-potential without which it is hardly
possible to formulate perturbative QED. The traditional way to deal with this situation
has been to allow vector-potentials in an indefinite metric space and to add ghost degrees
of freedom in intermediate calculations in such a way that the physical objects in form of
the local observables in a Hilbert space coalesce with the gauge invariant objects under a
suitably defined gauge group action.

Despite the undeniable success of this kind of quantum adaptation of the perturbative
gauge setting, there are two arguments against considering the present formulation as
the end of the story. One is of a more philosophical kind and the other points towards a
serious limitation of the gauge formalism. ¿From a philosophical point of view this setting
violates the maxim of Bohr and Heisenberg that one should always look for a formulation
in which the computational steps (and not only the final result) can be formulated in
terms of observables. More tangible is the objection that the existing gauge formalism
aims only at local observables. There are interacting generators of physical objects which
do not admit pointlike generators but whose sharpest possible localization is semiinfinite
stringlike; the most prominent ones are electric charge-carrying operators [69]. Their
construction is not part of the standard perturbative formalism but they have to be
defined ”by hand”.

The best localization for a charged generating field is that of a semiinfinite Dirac-
Jordan-Mandelstam string characterized formally by the well-known expression

Ψ(x, e) = ”ψ(x)e
R∞
0 ieelA

µ(x+λe)dλ” (31)

Using a version of perturbation theory which was especially designed to incorporate this
formal DJM expression into the nth order renormalization setting, Steinmann [73] suc-
ceeded to attribute a renormalized perturbative meaning to this formal expression. Con-
nected with this nonlocality aspect is the subtle relation of electrically charged fields to
charged particles which shows up in infrared divergencies of on mass shell objects. In
addition a charged particle, even after a long time of having left the scattering region,
will never be without an infinite cloud of infrared real (not virtual!) photons whose en-
ergy is below the (arbitrarily small but nonvanishing) registering resolution and which
therefore remain ”invisible”. This makes charge particles ”infraparticles” i.e. objects
whose scattering theory does not lead to scattering amplitudes but only to inclusive cross
sections.
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The infrared divergence problems in QED, first studied in a simpler model by Bloch
and Nordsiek, whose phenomenological remedy required to trade scattering amplitudes
with inclusive cross section [74], turned out to have a very profound conceptual expla-
nation: the Hilbert space of QED does not contain an irreducible representation with a
sharp mass, rather the electron two-point function starts with a cut at me which depends
on e. For this to occur the presence of zero mass particles is necessary but not sufficient.
Their coupling for low energies must also be sufficiently strong, a requirement which is
fulfilled for the minimal coupling of photons in QED but e.g. not for the π-N coupling
with massless pions. Also the converse holds, if the theory allows for one particle states
in the sense that the theory has a mass-shell than even if this mass shell is not separated
from the continuum by a gap) the theory possess a standard (LSZ) scattering theory [76].

For global gauge symmetries, the idea that the local observables in their vacuum
representation determines all charged representation and, by suitably combining them,
lead to the physical charged fields, was one of the most seminal conceptual conquests in
local quantum physics [5]. The superselected charge-carrying fields are in this way (up
to some conventions) uniquely determined in terms of the vacuum representation of the
local observables. In d ≥ 4 these fields are Bose/Fermi fields which act irreducibly in a
Hilbert space which contains all superselected sectors associated to the system of local
observables. They transform according to a compact internal symmetry group whose
existence is preempted by the discrete presence of a copy of the dual of a group within
the net of local observables; the latter in turn is the is the fixpoint subalgebra of the field
algebra under the action of the internal symmetry. Each compact group with the exception
of supersymmetry can appear as the internal symmetry of a QFT. With this structural
insight a long path of the somewhat mysterious42 concept of internal symmetries, which
begun with Heisenberg’s SU(2) isospin in nuclear physics, came to a beautiful conclusion.
Global symmetry groups are a tool by which the quantum locality principle arranges
the various inequivalent local representations of a given observable algebra belonging to
different superselection charges.

In d=3,2, the commutation relations may be plektonic or solitonic, meaning that the
fields obey braid group or soliton commutation relations which require semiinfinite string-
like localization and lead to a generalized spin&statistics theorem [60] and to a situation
in which the internal and spacetime symmetries allow no clearcut separation among them.
But as before, the net of local observables determines modulo some conventions its full
field algebra which incorporates the superselected charge-carrying fields. In both cases,
the low- and higher- dimensional case, there is no better characterization for the inverse
problem neutral observables → charge-carrying fields than the metaphor which Mark Kac
used in connection with an acoustic inverse problem: ”how to hear the shape of a drum”.

It is a natural question to ask whether this reconstruction permits a more concrete
formulation in the form of reconstructing bilocals by breaking up local expressions as the
electric current ψ̄(x)γµψ(x) in an analogous manner as was done in the 60s in order to
reconstruct bilocals A(x)A(y) from Wick-ordered locals :A2(x) : via a lightlike limiting
process [77]. In the case that the local operators are associated with a local gauge theory
as QED, one expects bilocals with ”gauge-bridges” between the two points. The partial

42This concept, which is central to local quantum physics, does not exist in classical physics.
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results on this problem are scarce but encouraging [78]. It would be a major progress
in gauge theory if electrically charged bilocals including gauge bridges could be obtained
from local currents by such a lightlike splitting, so that formally the stringlike DJM charge
generating field (31) appears in the limit of dumping one charge at infinity.

The problem of possible presence of interacting nonlocal generating fields in the phys-
ical Hilbert space becomes more serious in theories involving vectorfields coupled among
themselves. Whereas one believes to have a physical understanding of the local (= gauge
invariant) composites (whose perturbation expansion in terms of invariant correlation
functions has incurable infrared divergencies43), there is no convincing idea about the
conceptual status of the degrees of freedom which are the analogs of the charged fields
in QED. For many decades we have been exposed to such evocating metaphoric words
as quark- and gluon- confinement. Whereas such ideas are quite natural in QM where
they point to enclosing quantum matter in a potential vault, QFT has no mechanism of
hiding degrees of freedom by localizing them. The only mechanism through which degrees
of freedom may escape observations in a theory in which localization is the dominating
physical principle is a weakening of localization i.e. the opposite of a quantum mechanical
vault44. The delocalization of electrically charged particles due to surrounding photon
clouds in QED is obviously not sufficient. What one needs is the understanding of a
situation in which the gluon plays a double role at the same time: that of a charge carrier
and that of the photons hovering around it. Contrary to the formal DJM expression
for charged fields, there is little chance that the formal spacetime structure of such a
”hermaphroditic” object can be guessed ”by hand”.

A potential alternative to the present gauge method in which the pointlike localiza-
tion of covariant vectorpotentials is paid for by the unphysical ghost formalism and the
subsequent restriction to local observables, is to use string-localized potentials Aµ(x, e)
from the start. As was explained in the section on modular localization (19) one can find
intertwiners from the Wigner representation to all spinor representations if one admits
string-localized potentials. In particular the one with the string-localized field of lowest
Lorentz spin (Aµ(x, e) for helicity h=1, gµν(x, e) for h=2,..) has the lowest short dis-
tance dimension namely sdd=1 and hence the optimal behavior from the viewpoint of
renormalization theory. This poses completely new and largely unsolved problems. But
before commenting on this new task, it is helpful to delineate what one expects of such
an alternative approach.

Superficially the use of such string-localized fields seem to be indistinguishable from
the axial gauge; in both cases the conditions ∂µAµ(x, e) = 0 = eµAµ(x, e) are obeyed.
In the axial gauge interpretation the e is a gauge parameter and does not participate in
Lorentz transformations, whereas in case of string-localized field the spacelike unit vector
transforms as a string direction or, what is the same, as a point in a 3-dimensional de
Sitter spacetime. The axial gauge failed as a perturbative computational tool as a result
of its incurable infrared divergence problems. In a way the string-localized approach
explains this as a consequence of quantum fluctuations both in x and e which makes it

43Only if perturbation theory is formulated in a pure algebraic setting and the problem of states is
treated as a second step there is a chance to control the infrared divergencies.

44The use of lattice theory has also its limitations; for example there is no lattice description of
infraparticles.
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necessary to use testfunction smearing in x and e. The guiding idea is that the use of
string dependent potentials delocalizes the charged field automatically so that there is no
necessity to use ad hoc formulas as (31) and to engage in the difficult task to construct
their renormalized counterpart apart from the standard formalism.

But this string-localized approach in the presence of interactions poses one hurdle
which at the time of writing this essay had not yet been overcome: the adaptation of the
perturbative Epstein-Glaser iteration [79]. In the pointlike case the knowledge of the nth

order determines the n+1 order up to a term on the total diagonal which limits the freedom
to the addition of pointlike composites. The presence of string-like fields invalidates this
argument. What one hopes for is that the freedom can be described in terms of some
suitably defined string composites so that the interaction does not lead out of the family
of string-localized fields inasmuch as it did not lead out of the pointlike setting. The
aspect which makes the idea of formulating interactions in terms of stringlike localized
fields attractive is the fact that their short distance dimension is sdd=1, independent of
the spin.

This leads to many more interactions which for which the sdd of the interaction poly-
nomial does not surpass the power-counting limit sdd=4 than with point-localized fields.
Among them are all interactions which became renormalizable in the Gupta-Bleuler or
BRST ghost setting of gauge theory but now nonlocal objects as electrically charged fields
would be part of the formalism. Finally, the use of ghosts and other intermediate technical
devices, as useful as they may appear, do not remove the desire to become philosophically
clean and look for arguments which in the spirit of Bohr and Heisenberg eliminate non-
observable structures from calculations altogether. In the present context this means that,
although gauge theory is the QFT with the largest reality content already in its present
form, it is also that area of QFT where, even after more than 3 decades of stagnation,
one still can expect fundamental conceptual and mathematical changes.

It is my conviction that this will not be possible without restarting the discussion of
what four decades ago was appropriately called the Schwinger-Higgs screening mechanism
[36]. It was Schwinger who proposed for the first time the idea that a gauge theory as QED
may not follow the logic of an electrically charged (infra)particles coupled to photons, but
there may exist another phase in which the charge is screened (leading to a loss of the
charge conservation rule, hence a loss of symmetry) and the photon becomes massive.
Since Schwinger was unable to find a convincing argument in 4-dimensional spinor QED,
he invented the soluable Schwinger model (2-dim. massless QED) as the simplest non
perturbative model which exemplifies his idea of screening45). Higgs took instead of the
model of scalar QED i.e. a charged complex field coupled minimally to a photon. This
model has one more coupling parameter (the quadrilinear selfcoupling) than spinor QED.
Its screened (or broken) phase may be reached perturbatively by appropriate choice of its
3 parameters. In this phase the complex scalar field becomes real and half of its degrees
of freedom get hooked onto the photon which thus becomes a massive vector meson. The
screened model lost its nonlocal charge-carrying sectors and describes a fully local system
of a massive vectormeson interacting with a copiously produced neutral particle.

The important question which remained unanswered in the 70s is this screening mech-

45There is a mathematical theorem (Swieca’s screening theorem) which says that the only way a photon
in a Maxwellian setting can become massive is through charge screening [36].



CBPF-NF-005/10 43

anism a peculiar illustration for how an interacting massive vectormeson can be part of
a pointlike local QFT. Perhaps this is a special case of a general more general intrinsic
mechanism which states that in order to maintain locality interacting massive higher spin
particles must always be accompanied by lower spin objects? Different spins have been
linked together by the invention of supersymmetry, but it would be more natural to un-
derstand this as a consequence of the locality principle. i.e. smaller spin companions of a
high spin interacting particle are necessary in order to maintain locality. An supporting
argument was given within the BRST setting [80]: if one starts with a massive vectorme-
son, the Higgs meson (but now with vanishing vacuum expectation) has to be introduced
for maintaining consistency of the BRST formalism. Only by removing the non-intrinsic
BRST formalism by the use of stringlike sdd=1 vector-potentials one hopes to begin see
the crucial role of locality in a conjectured lower spin companion mechanism behind the
Higgs issue.

In view of the impending LHC data it would a great leap forward to get the Schwinger-
Higgs screening mechanism away from its present ”the God particle” metaphor back to
to its origins.

9 Building LQP via positioning of monads in a Hilbert

space

We have seen that modular localization of states and algebras is an intrinsic i.e. field-
coordinatization-independent way to formulate the kind of localization which is charac-
teristic for QFT. It is deeply satisfying that it also leads to a new constructive view of
QFT.

Definition (Wiesbrock [84]): An inclusion of standard operator algebras (A ⊂ B,Ω)
is ”modular” if (A,Ω) and (B,Ω) are standard and ∆it

B acts like a compression on A
i.e. Ad∆it

BA ⊂ A. A modular inclusion is said to be standard if in addition the relative
commutant (A′ ∩ B,Ω) is standard. If this holds for t < 0 one speaks about a -modular
inclusion.

The study of inclusions of operator algebras has been an area of considerable mathe-
matical interest. Particle physics uses three different kind of inclusions; besides the mod-
ular inclusions, which play the principal role in this section, there are split inclusions and
inclusions with conditional expectations (or using the name of their protagonist, Vaughn
Jones inclusions). Split inclusions play an important role in structural investigation and
are indispensable in the study of thermal aspects of localization, notably localization
entropy (see second part). Inclusions with conditional expectations result from reformu-
lating the DHR theory of superselection sectors which in its original formulation uses the
setting of localized endomorphisms of observable algebras [5].

Inclusions A ⊂ B with conditional expectation E(B) cannot be modular and the pre-
cise understanding of the reason discloses interesting insights. According to a theorem
of Takesaki [81] the existence of a conditional expectation is tantamount to the modular
group of the smaller algebra being equal to the restriction of that of the bigger. Hence
the natural generalization of this situation is that the group Ad∆it

B of the larger algebra
acts on A for either t < 0 or for t > 0 as a bona fide compression (endomorphism) which
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precludes the existence of a conditional expectation. Intuitively speaking modular inclu-
sions are ”too deep” to allow conditional expectations. Continuing this line of speculative
reasoning one would expects that inasmuch as ”flat” inclusions with conditional expecta-
tions are related to inner symmetries, ”deep” inclusions of the modular kind should lead
to spacetime symmetries.

This rough guess turns out to be correct. The main aim of modular inclusions is really
twofold, on the one hand to generate spacetime symmetry which than acts on the original
algebras and creates a net of spacetime indexed algebras which are covariant under these
symmetries. For the above modular inclusion of two algebras this is done as follows:
from the two modular groups ∆it

B,∆
it
A one can form a unitary group U(a) which together

with the modular unitary group of the smaller algebra ∆it
B leads to the commutation

relation ∆it
BU(a) = U(e−2πta)∆it

B which characterizes the 2-parametric translation-dilation
(Anosov) group. One also obtains a system of local algebras by applying these symmetries
to the relative commutant A′ ∩B. ¿From these relative commutants one may form a new
algebra C

C ≡
⋃
t

Ad∆it
B(A′ ∩ B) (32)

In general C ⊂ B and we are in a situation of a nontrivial inclusion to which the Takesaki
theorem is applicable (the modular group of C is the restriction of that of B) which leads
to a conditional expectation E : B → C; C may also be trivial. The most interesting
situation arises if the modular inclusion is standard i.e. all three algebras A,B,A′∩B are
standard with respect to Ω; in that case we arrive at a chiral QFT.

Theorem: (Guido,Longo and Wiesbrock [82]) Standard modular inclusions are in
one-to-one correspondence with strongly additive chiral LQP.

Here chiral LQP is a net of local algebras indexed by the intervals on a line with a
Moebius-invariant vacuum vector and strongly additive refers to the fact that the removal
of a point from an interval does not “damage” the algebra i.e. the von Neumann algebra
generated by the two pieces is still the original algebra. One can show via a dualization
process that there is a unique association of a chiral net on S1 = Ṙ to a strongly additive
net on R. Although in our definition of modular inclusion we have not said anything
about the nature of the von Neumann algebras, it turns out that the very requirement of
the inclusion being modular forces both algebras to be hyperfinite type III1 algebras.

The closeness to Leibniz’s idea about (physical) reality of originating from relations
between monads (with each monad in isolation being void of individual attributes) more
than justifies our choice of name; besides that ”monad” is much shorter than the somewhat
long winded mathematical terminology ”hyperfinite type III1 Murray-von Neumann factor
algebra”. The nice aspect of chiral models is that one can pass between the operator
algebra formulation and the construction with pointlike fields without having to make
additional technical assumptions46. Another interesting constructive aspect is that the
operator-algebraic setting permits to establish the existence of algebraic nets in the sense
of LQP for all c < 1 representations of the energy-momentum tensor algebra. This is
much more than the vertex algebra approach is able to do since that formal power series

46The group theoretic arguments which go into that theorem [83] seem to be available also for higher
dimensional conformal QFT.
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approach is blind against the dense domains which change with the localization regions.
The idea of placing the monad into modular positions within a common Hilbert space

may be generalized to more than two copies. For this purpose it is convenient to define
the concept of a modular intersection in terms of modular inclusion.

Definition (Wiesbrock [84]): Consider two monads A and B positioned in such a
way that their intersection A ∩ B together with A and B are in standard position with
respect to the vector Ω ∈ H. Assume furthermore

(A ∩ B ⊂A) and (A ∩ B ⊂ B) are ±mi (33)

JA lim
t→∓

∆it
A∆−it

B JA = lim
t→∓

∆it
B∆

−it
A

then (A,B,Ω) is said to have the ± modular intersection property (± mi).
It can be shown that this property is stable under taking commutants i.e. if (A,B,Ω)±

mi then (A′,B′,Ω) is ∓mi.
The minimal number of monads needed to characterize a 2+1 dimensional QFT

through their modular positioning in a joint Hilbert space is three. The relevant the-
orem is as follows

Theorem: (Wiesbrock [85]) Let A12,A13 and A23 be three monads47 which have the
standardness property with respect to Ω ∈ H. Assume furthermore that

(A12,A13,Ω) is −mi (34)

(A23,A13,Ω) is +mi

(A23,A′12,Ω) is −mi

then the modular groups ∆it
12, ∆it

13 and ∆it
23 generate the Lorentz group SO(2, 1).

Extending this setting by placing an additional monad B into a suitable position with
respect to the Aik of the theorem, one arrives at the Poincaré group P(2, 1) [86]. The
action of this Poincaré group on the four monads generates a spacetime indexed net i.e.
a LQP model and all LQP have a monad presentation.

To arrive at d=3+1 LQP one needs 6 monads [87]. The number of monads increases
with the spacetime dimensions. Whereas in low spacetime dimensions the algebraic po-
sitioning is natural within the logic of modular inclusions, in higher dimensions it is
presently necessary to take some additional guidance from geometry, since the number of
possible modular arrangements for more than 3 monads increases. There is an approach
with similar aims of characterizing a QFT by its modular data by Buchholz and Sum-
mers [88]. Instead of the modular groups these authors use the modular reflections J. For
our purpose of characterizing local quantum physics in terms of positioning of monads
the approach proposed by Wiesbrock based on modular inclusions and intersections is
more convenient. Its orgin dates back to the observation that the Moebius group can be
extracted from the modular groups of the quarter circle algebras [89].

We have presented these mathematical results and used a terminology in such a way
that the relation to Leibniz philosophical view is visible.

47As in the case of a modular inclusion, the monad property is a consequence of the modular setting.
But for the presentation it is more convenient and elegant to talk about monads from the start.
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Since this is not the place to give a comprehensive account, but only to direct the
attention of the reader to this (in my view) startling conceptual development in the heart
of QFT.

Besides the radically different conceptual-philosophical outlook on what constitutes
QFT, the modular setting offers new methods of construction. For that purpose it is
however more convenient to start from one monad A ⊂ B(H) and assume that one knows
the action of the Poincaré group via unitaries U(a,Λ) on A. If one interprets the monad
A as a wedge algebra A = A(W ) than the Poincaré action generates a net of wedge
algebras {A(W )}W∈W . A QFT is supposed to have local observables and hence if the
double cone intersections48 A(D) turn out to be trivial (multiples of the identity algebra),
the net of wedge algebras does not leads to a QFT. This is expected to be the algebraic
counterpart of a Lagrangian which does not have a have a corresponding QFT. If however
these intersections are nontrivial, we would have a rigorous existence proof; the existence
of a generating field for those double cone algebras is then merely a technical problem.
There are of course two obvious sticking points: (1) to find the action of the Poincaré
on A(W0) and (2) a method which establishes the non-triviality of intersections of wedge
algebras and leads to formulas for their generating elements.

As was explained in the previous section, both problems have been solved within a
class of factorizing models [26]. Nothing is known about how to address these two points
in the more general setting i.e. when the tempered PFG are not available.

The monad setting has only been formulated for Poincaré-covariant QFT. A extension
to locally covariant QFT in CST is expected to present a new path into the still elusive
Quantum Gravity. It is tempting to think of the diffeomorphisms of AQFT in CST to
be of modular origin. A particularly simple illustration is Diff(S1), the diffeomorphism
group of chiral theories on a circle. It is well known that the vacuum is only invariant
under the Moebius subgroup and there are no states which are invariant under higher
diffeomorphisms. The candidates for the higher modular groups are the diffeomorphisms
which fix more than two points which can be obtained from a covering construction
involving roots. The resulting multi-interval construction suggests to look for the modular
group of a multi-interval; the problem is to find the appropriate states which lead to a
geometric modular group. This problem was solved very recently by Longo, Kawahigashi
and Rehren [93]. The interesting aspect of their solution (in agreement with the absence
of eigenstates of higher diffeomorphisms) is that the resulting modular groups are only
partially geometric i.e. geometric only inside the multi-interval. This is of course what
one expects in the case of isometries in CST.

Another interesting problem which is on the verge of being solved is the problem of the
higher Aharonov-Bohm effect. The A-B effect in the setting of AQFT is the statement
that the zero mass spin=1 electromagnetic free field shows a violation of Haag duality for
a non simply connected toroidal spacetime region T

A(T ) ⊂ A(T ′)′ (35)

whereas for simply connected regions the equality (Haag duality) holds. For higher spin
massive fields Haag duality holds for any region. The A-B interpretation is that that

48Double cones are the typical causally complete compact regions which can be obtained by intersecting
wedges.
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the right hand side contains observables which cannot be constructed from field strengths
in the torus. This violation of Haag duality has been shown in an old unpublished work
before the modular methods became available. A modular approach to this problem yields
more than just the violation of Haag duality, one also can compute a modular group and
there is a close relation to the previous 4-fix point problem. What makes this problem
so fascinating is the fact that it has a nontrivial extension to zero mass s>1 in which
case higher genus A-B fluxes result. So it places s=1 gauge theory and the higher spin
extensions on the same A-B footing.

Finally we should mention one unsolved long-lasting issue of modular theory: the
modular group of the free massive double cone algebra (with respect to the vacuum) which
is known to act ”fuzzy” (non-geometric) and has been conjectured to have a Hamiltonian
which acts as a pseudo-differential operator [94]. There are rather convincing arguments
that the holographic projection of such a situation leads to a geometric modular movement
on the horizon. This suggested the idea that if one knew a formula for the propagation
of characteristic massive data on the horizon into the inside of the double cone, the fuzzy
action may simply come about by applying this formula to the geometric group on the
horizon. Such a formula has recently appeared in [95] and it is trivial to check that it
reproduces the modular group of the wedge from that of its horizon but its application to
the double-cone horizon is more involved. So it looks that there is some new movement
on this long-lasting issue. A solution of this problem in the interaction-free case would
also shed light onto the interacting case since the modular groups are determined by the
representation theory of the Poincaré group i.e. they do not require the knowledge about
the interaction dependent modular reflections J.
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