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2/Abstract: We present a set of lectures on topics of advanced calculus in one real

and complex variable with several new results and proofs on the subject, specially with a

detailed proof - always missing in the literature - of the Cissoti explicitly integral formula

conformally representing a polygon onto a disc. Besides we present - in the paper ap-

pendix - a new study embodied with a mathematical physicist perspective, on the famous

Riemann conjecture on the zeros of the Zeta function, reducing its proof to a conjecture

on the positivity of a numerical series.

Introduction

In this initial, we introduce with detailed proofs all mathematical objects and tools of

the basic advanced calculus (Real Numbers, Uniform Convergence, Power Series, Fourier

Series, Cauchy theorem in Functions of one Complex Variable, etc.), all of them needed

to formulate the results exposed in next chapters of this set of complementary advanced

calculus lectures notes.
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1.2. On the real numbers: an abstract overview ([1] and [3]).

We start this section by trying to solve the simple algebraic equation of second order

through rational numbers x ∈ Q (the attempt for understanding of Pytaghoras theorem

for a rectangle triangle with equal lenght catets was the ancestor of this inquirie)

x2 = 2 (1.1)

Let us suppose that there is a rational number in the irreducible prime form x = m/n

satisfying eq.(1.1). Obviously m2 is an even number, so four is a divisor of m [note that

if m were odd, m2 would be odd!]. As a consequence n is even. A contradiction with the

prime number irreducibility of m and n. So x /∈ Q.

We must thus introduce a new notion of mathematical objects called the real numbers,

mathematical concept making the basis of all western mathematical continuum thinking

in terms of logical objects: the so called real numbers. The most suitable mathematical

procedure is the constructive method due to the mathematician G. Dedekind ([1]). Let

us briefly sketch the basics of his idea.

Firstly, we define mathematical objects called Dedekind cuts which are sets of rational

numbers.

Definition 1. A set [α] of rational numbers is a Dedekind cut if it satisfies the following

conditions:

a) [α] is a non empty set of rational numbers

b) if p ∈ [α] and q < p, then q ∈ [α]

c) there is no maximal element x̄ ∈ [α]. Namely if for all p ∈ [α] and p < x̄ with

x̄ ∈ [α], then [α] = ∅.

It is easy to accept that the above set of assertives defines non trivial mathematical

objects. For instance the set [1/3] = {x ∈ Q | x < 1/3} is a Dedekind cut in the context

of Definition 1.
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As an extended exercise (see for instance ref.[1]), one can show that there is a somewhat

intuitive (althought highly non trivial to prove!) order relation among the set of all

Dedekind cuts. Namely: [α] ≺ [β] if there is an element y ∈ β which is maximal for [α],

for instance, one has the following result on basis of the above mentioned order relation

among the Dedekind cuts.

Theorem 1. Let [α] and [β] be Dedekind cuts. We have thus the following set of order

relations (which turns the set of Dedekind cuts an Ordered Complete Field [3]).

a) [α] = [β], [α] ≺ [β] or [β] ≺ [α].

b) If [α] ≺ [β] and [β] ≺ [γ], then [α] ≺ [γ].

c) [α]⊕ [β]
def≡ {x ∈ Q | x = u+ v, with u ∈ [α] e v ∈ [β]} is a Dedekind cut.

d) [α] · [β]
def≡ {x ∈ C | x = u · v, with u ∈ [α], v ∈ [β]} is a Dedekind cut.

e) If [α] 6= [0], there is a unique [β] such that [α] · [β] = [1]. We call the Dedekind cut [β]

by the suggestive notation [β] = [α−1].

f) ([α] · [β]) · [γ] = [α] · ([β] · [γ]).

g) [α]([β]⊕ [γ]) = ([α] · [β] + [α] · [γ]).

Now we can see that the set of real numbers as rigorous mathematical object defined

as the set of all Dedekind cuts makes real numbers such as abstract objects in Modern

Mathematics as ever one could hardly imagine. In Modern Calculus it is common to

consider a further abstraction by taking into account the extended real numbers with a

point called infinite point, denoted by ∞, and satisfing the operational rules

a) [α] + [∞] = +∞

b) [α]− [∞] = −∞

c) if [α] > [0], then [α][+∞] = +∞, [α][−∞] = −∞

d) if [α] < [0], then [α][+∞] = −∞, [α][−∞] = +∞

e) [α] · [α−1] = [α][(−∞)−1] = 0

Let us now announcing the basic result of the rigorous theory of real numbers in this

framework of Dedekind cuts:
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Theorem 2 (Dedekind). Let be given two sets of real numbers A and B such that

a) (B)C = A

b) A ∩B = {∅}

c) A 6= ∅ and B 6= {∅}

d) If [α] ∈ A and [β] ∈ B, then [α] ≺ [β]. Then there is only one Dedekind cut [γ] such

that [α] ≺ [γ] and [γ] ≺ [β] (∃ γ ∈ R | x ≤ γ ≤ y, for any x ∈ [α] and y ∈ [β]).

As an important result of the above theorem one can show that for any given non-

empty set of real numbers E with a upper bound M (which is a real number M ∈ R, such

that all elements x of E [x] ≺ [M ], ∀ [x] ∈ E), there is a real number [y] such that for any

[x] ∈ E with [x] ≺ [y] and given another (y′) satisfying the above property, necessarily

[y] ≺ [y′]. We call this real number [y] as the supremum of E, namely: supE = [y].

We have the following algebric theorem producing a plenitude of real numbers.

Theorem 3. Let Pn(x) = xn + a1x
n−1 + · · ·+ an be a polinomial of degree n with all the

coeficients belonging to the set of integers. If the algebric equation pn(x) = 0 has roots

in Q, then theses roots are necessarily integers numbers.

Proof. Let x = p/q, with p and q primes irreducibles and being a root of our given

polinomial equation. By elementary arithmetic manipulations we have

0 = qn Pn(p/q) = pn + a1p
n−1q + a2p

n−2q2 + · · ·+ anq
n. (1.2)

As a consequence

pn = −a1p
n−1q − · · · − anq

n. (1.3)

So q is a divisor of pn, and thus q is a prime factor of p. A contradiction. �

As an application of this beautiful elementary theorem, one can show that the real

number 3
√

7 (the cubic root of seven) is not a rational number by just considering the

equation x3 = 7 (the roots’candidates satisfying x < 2 are x = 0 or 1 and obviously are

not its roots!).
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At this point appears curious to note the fact that the famous Fermat theorem about

the impossibility of satisfying the polinomial relationship an + bn = cn, for n ≥ 3 and a, b,

c belonging to positive integers is equivalent to the assertive that for n ≥ 3 the equation(
1−αn

)− 1
n = x for x > 1 and x ∈ Q does not have solution in Q. Since if this would be the

case for some α = p
q

and x = r
s

(with r > s), one would trivially obtain the relationship

(qr)n = (pr)n + (qs)n. (Note that (qr)n − (qs)n = qn(rn − sn) > 1). It becomes worth to

have a concrete representation of the real numbers as sequences of rational numbers – an

usual axiomatic concept.

We left as an exercise of our reader to show that every real number in [0, 1] (and

consequently all R!) can be expressed by a sequence of rational numbers called the

binary expansion x =
∞∑

n=1

bk/2
k where bk are either 0 or 1. It is clear that the set of

these sequences has the same cardinality (can be put in a bijective correspondence) with

the set of all functions of I in the set {0, 1} which has cardinality 2#(Q), this prove that

#(R) = 2#(Q), where #(A) means the cardinal number of the set A (see references). It

is interesting to call the reader attention that there is a hypothesis in abstract set theory

which still remains an open problem: the called continuous hypothesis which conjectures

that there is no cardinal number between the cardinality of the integers (or the rationals)

#(Q) = ℵ0 (aleph zero) and the cardinality of the real numbers ℵ1 = 2ℵ0 (the aleph one).

After having defined precisely in an axiomatic context the set of real numbers, denoted

from here on by R, let us introduce some objects in this abstract set.

Definition 3. A number ā is called the limit supremum (lim sup for short) of a given

enumerable set of real numbers {xn} (which can be tought as the range of an application

of the Positive Integers I+ on R⇔ xn = f(n), f ∈ F(I+, R) = set of real valued functions

defined on the integers) if for any real number ε > 0, we have always that

a) There is an infinite number of terms of the given sequence which are greater (or equal)

than ā− ε.

b) Solely a finite number of term (elements) of the sequence {xn} are greater (or equal)
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than ā+ ε.

We introduce the notation lim sup(xn) = ā.

The limit infimum of a given sequence is defined by the relationship

lim inf(xn) = − lim sup(−xn). (1.4)

One thus says that a given sequence {xn} converges for a given real number x̄ if

lim sup(xn) = lim inf(xn) = x̄.

From these definitions, one can turn the abstract definition of real numbers in terms

of the more concrete sequence of rational number (the decimal/binary expansion, etc.) so

familiar to the elementary Calculus students.

Let us show that the sequence below defined

xn =
n∑

k=0

(
1

k!

)
(1.5)

defines an irrational number (it converges - there is lim {xn} denoted here on by e).

Firstly we left as an exercise to our reader to prove that

0 < e− xn <
1

n · n!
· (1.6)

Let us suppose now that e ∈ Q. So there is p and q primes irreducible with q > 1. As

a consequence

0 < q!(e− xq) <
1

q
(1.7)

or

0 <

[
q! · e− q!

(
1 + 1 +

1

2!
+ · · ·+ 1

q!

)]
<

1

q
· (1.8)

From the above inequality [note that q! · e is an integer and q!

[
1 + 1 +

1

2!
+ · · ·+ 1

q!

]
is an integer too!] one obtains that there is an integer between 0 and 1 if e is a rational

number. A contradiction. �

At this point we invite our reader to remember with paper and pencil all those sections

of one-variable calculus books related to convergence of series and sequences (Cauchy

criterium, the ε− δ definitions, etc.).
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As a final point of this introductory review on axiomatic concepts, about real numbers,

let us introduce the definition of double sequences and appropriate convergence criterions

for them.

One call a double sequence an,m as the range of a real-valued application of the set

Z+ × Z+ (the Cartesian Product of the positive integers). Namely

f : Z+ × Z+ −→ R

(n,m) −→ f(n,m) = an,m (1.9)

For instance

an,m = (−1)m n

(n+ 1)!
(1.10)

an,m = m cos
[
(2n+ 1)π

]
(1.11)

an,m =
1(

Am2 + 2Bmn+ Cn2
)p (with real numbers A > 0, B2 < AC, p > 1) (1.12)

In our more oriented advanced calculus context we stand for the usual Cauchy defini-

tion for the convergence as a practical criterium to test convergence of sequences.

Definition 3. We say that the double sequence {anm} converges to a limit ā if for any

ε > 0 (∀ ε > 0), there is (∃) an integer-function of ε (N(ε)) such that (|) for any n and m

greater than N(ε) (n,m > N(ε)) it is true the relation (inequality) below

{
∀ ε > 0,∃N(ε) | |an,m−ā| < ε, for n > N(ε),m > N(ε) means that lim

m→∞
n→∞

an,m = ā
}

(1.13)

Since it is harder to apply the usual elementary calculus criteriums for test the con-

vergence of double sequences, we present the integral criterium which appears the most

suitable one for practical applications within advanced calculus context.

Lemma 1. Let an,m = f(m,n) ∈ Z+ be such that defines a function of two-variables

with domain in R2
+ = {(x, y) | x ≥ 0; y ≥ 0}, namely f(x, y) and such that

a) f(x, y) is continuous and Improper Riemann integrable in R2
+
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b) f(x, y) is monotone non increasing (f(x+ h, y + r) ≤ f(x, y) for any h, r ≥ 0).

We have thus:

c) the double series
∑
n,m

an,m and the improper (Riemann) integral

∫∫
R2

+

f(x, y)dxdy, both

converge and diverge at the same time.

Proof. Let us observe firstly that by a simple application of the mean value theorem

under the hypothesis a) and b) we have the estimate

an+1,m+1 ≤
∫ n+1

n

dx

∫ m+1

m

dy f(x, y) ≤ an,m . (1.14)

The result below stated as an solved exercise complete the proof of Lemma 1.

Exercise – Prove that the Improper Riemann Integral below is finite (for δ1, δ2 ∈ R+

fixed)

lim
A1→∞
A2→∞

{∫ A1

δ1

dx

∫ A2

δ2

dy g(x)h(y) f(x, y)

}
< +∞ (1.15)

if

a) g(x) and h(y) are monotone non increasing continuously differentiable functions van-

ishing at the infinite

b) the indefinite integrals∫ ξ

f(ξ′, η)dξ′ = Ω1(ξ, η);

∫ η

f(ξ, η′)dη′ = Ω2(ξ, η)

are bounded functions in [δ1,∞)× [δ2,∞)

Answer to exercise:

By an application of the elementary double integration theorems on the exchange
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order of integration, we have that∫ A1

δ1

dξ

∫ A2

δ2

dη g(ξ)h(η) f(ξ, η)

Fubini-Toneli theorem

=

∫ A2

δ2

dη h(η)

[
g(A1)f(A1, η)− g(δ1)f(δ1, η)−

∫ A1

δ1

dξ g′(ξ)Ω1(ξ, η)

]
= g(A1)

(∫ A2

δ2

dη h(η) f(A1, η)

)
− g(δ1)

(∫ A2

δ2

dη h(η) f(δ1, η)

)
−
(∫ A2

δ2

dη

∫ A1

δ1

dξ h(η)g′(ξ) Ω1(ξ, η)

)
(1.16)

= g(A1)

(
h(A2)Ω2(A1, A2) +

∫ A2

δ2

dη(−h′(η))Ω2(A2, η)

)
− g(δ1)

(
h(A2)Ω2(A1, A2) +

∫ A2

δ2

dη(−h′(η))Ω2(A2, η)

)
−
(∫ A2

δ2

dη

∫ A1

δ1

dξ h(η)g′(ξ) Ω1(ξ, η)

)
(1.17)

Since the functions g(x), h(y) vanish at x, y → +∞ and the estimates below hold true:∣∣∣∣∫ A2

δ2

dη

∫ A1

δ1

dξ h(η)(−g′(ξ))Ω1(ξ, η)

∣∣∣∣
≤ sup

(x,y)∈R2
+

|Ω1(x, y)h(y)|
(∫ A1

+δ1

dξ(−g′(ξ))
)

=

(
sup

(x,y)∈R2
+

|Ω1(x, y)h(y)|

)(
g(δ1)− g(A1)

)
< +∞ (1.18)

and,∣∣∣∣∫ A2

δ2

dη(−h′(η)Ω2(A2, η)

∣∣∣∣
≤

(
sup

(x,y)∈R2
+

|Ω2(x, y)|

)(
h(δ2)− h(A2)

)
≤ +∞, (1.19)

we have that the improper Riemann integral as defined by the limit of A1 and A2 → +∞

in the left-hand side of eq.(1.15) exists.

As another exercise apply these results for the double infinite series eq.(1.12) and

generalize them for the case of n-uple infinite series.



CBPF-NF-005/09 10

Exercise – Show that the limit below exists

lim
n→∞

(
1 +

1

n

)n

= e, with 2 < e < 3.

Answer: Let us consider the sequence of rational numbers

xn =

(
1 +

1

n

)n

, with n = 1, 2, . . . .

We note the obvious identity for a given k ≤ n

1

nk

(
n(n− 1) . . . (n− k + 1)

k!

)
=

1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− (k − 1)

n

)
. (1.20)

On the basis of eq.(1.20), one can see that (the Newton Binomial Theorem!)

xn =

(
1 +

1

n

)n

= 1 +
n

1!

(
1

n

)
+ · · ·+ n(n− 1) . . . (n− k + 1)

k!

(
1

n

)k

+ · · ·+

n(n− 1) . . . (n− (n− 1))

n!

(
1

n

)n

= 1 +
1

1!
+

1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . .

1

k!

(
1− 1

n

)
. . .

(
1− (k − 1)

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
. . .

(
1− (k − 1)

n

)
(1.21)

We remark now that if we consider the case of n → n + 1 in eq.(1.21), the new k-th

term takes the form
1

k!

(
1− 1

(n+ 1)

)
. . .

(
1− (k − 1)

n+ 1

)
(1.22)

which is greater then the k-term corresponding to n-th term in eq.(1.21).

As consequence, we have showed that {xn} is a monotone non-decreasing sequence

(xn ≤ xn+1 , ∀n ∈ Z+) and consequently has a limit (see any text-book on Elementary

Calculus). Let us show that the bound below is correct

xn ≤ bn = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
(1.23)
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This result is straightforward since

1

k!

<1︷ ︸︸ ︷(
1− 1

n

)
. . .

<1︷ ︸︸ ︷(
1− (n− 1)

n

)
≤ 1

n!
(1) . . . (1) =

1

k!
(1.24)

Additionally, one has the immediate estimate

1

k!
=

1

1.2 . . . k
≤ 1

1.2.2 . . . 2
=

1

2k+1
(1.25)

which by its turn leads to the bound below and thus showing our claim:

bn < 1 +

(
1 +

1

2
+

1

4
+ · · ·+ 1

2n−1

)
= 3− 1

2n−1
⇒ e < 3 (1.26)

Exercise – For any positive integer n, letRn be set of all n-ordered uples (Rn = R×· · ·×R,

the Cartesian Product Set) x = (x1, . . . , xn), with xn ∈ R, for 1 ≤ k ≤ n. Show that if

one defines the operations below

a) x+ y = (x1 + y1, . . . , xn + yn) (1.27)

b) αx = (αx1, . . . , α xn), x ∈ R (1.28)

c) x · y =
n∑

i=1

xiyi (1.29)

one has that Rn is a vectorial space and the lenght function

d) |x| = (x · x)1/2 =

(
n∑

n=1

x2
k

)1/2

(1.30)

satisfies the relations

d-1) |x| = 0 ⇔ x = 0. |x · y| ≤ |x| |y|; |x+ y| ≤ |x|+ |y|;

|x− z| ≤ |x− y|+ |y − z|;
∣∣|x| − |y|∣∣ ≤ |x− y|;

|x+ y|2 + |x− y|2 = 2
(
|x|2 + |y|2

)
(1.31)

Exercise – Let x > 1 and y > 0. Show that there is a unique real number z such that

xz = y. This number is called the logarithm of the number y in the “log basis” x.
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Answer: Show that the set E = {t ∈ R | xt < y} is non empty and is upper bounded.

Exercise – Let {xn} be a sequence of positive real numbers. We have that
∞∑

n=1

xn converges

if and only if
∞∑

n=1

2nx2n = x1 + 2x2 + 4xn + . . . converges (prove it!). Apply this result to

analyze the convergences of the following series

a)
∞∑

n=2

1

n `g n `g(`gn)
(diverges)

b)
∞∑

n=3

1

n `g n (`g(`gn))2
(converges)

1.3 On sequence of functions of one variable – an overview ([1], [2], [3]).

Let us be given a sequence of real valued functions {fn(x)} with a common domain

E ⊂ R of the extended real line and such that for any given x̄ ∈ E, the numerical

sequence {fn(x)} converges. One can show (exercise) that
⋃

x∈[a,b]

{
lim

n→∞
fn(x)} defines

a function f(x), denoted by f(x) = lim
n→∞

fn(x) and called the pointwise limit of the

functional sequence {fn(x)}. Note that for a given x̄ ∈ E, and any ε > 0, ∃N0(ε, x) such

that |fn(x)− f(x)| < ε for n ≥ N0(ε, x). In the all important cases one can show that it

is possible to consider N0 as an unique function of ε and uniformly for x ∈ E. One thus

says that the convergence of the functional sequence {fn(x)} is uniform on E and it is

represented by the notation f(x)
unif.conv.

= lim
n→∞

fn(x).

As an example of the above cited uniform convergence let us consider the sequence

fn(x) = 1 + x+ · · ·+ xn (1.32)

E =
[
− 1/2, 1/2

]
(1.33)

Since (the usual Geometrical series!)

max
x∈
[
− 1

2
, 1
2

] ∣∣∣∣ 1

1− x
− (1 + x+ · · ·+ xn)

∣∣∣∣
= max

x∈
[
− 1

2
, 1
2

] ∣∣∣∣xn

(
1

1− x

)∣∣∣∣
= 2−n · 2 = 2n−1, (1.34)
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we can see that eq.(1.32) converges uniformly for f(x) = 1/(1− x) on E (eq.(1.33)).

We have the obvious quite important K. Weierstrass criterium for uniform convergence:

If sup
x∈E

|fn(x) − f(x)| = Mn is a sequence of real numbers converging to zero, then fn(x)

converges uniformly for f(x).

The basic operational result in such setting of uniform convergence is the following:

a) If fn(x) ∈ C(E) then f(x) ∈ C(E)

b)

∫ x

a

fn(ξ) dξ →
∫ x

a

f(ξ) dξ for any (a, x) ∈ E × E.

c) If fn ∈ C1(E) and f ′n(x)
conv. unif.−→ G(x) for x ∈ E and there is x0 ∈ E such fn(x0)

converges. Then

fn(x)
conv. unif.−→

∫ x

x0

dξ G(ξ) +
(

lim
n→∞

fn(x0)) (1.35)

An important sequence of uniformly convergent real functions are these associated to

the Taylor theorem with remainders

Theorem 4 (Taylor). Let f(x) be a real function on [0, b] (just for simplicity) and

possessing (n+ 1)-derivatives there. Let x ∈ [0, b] be an arbitrary point of [0, b]. Then we

have the equality

f(x) = f(0) + f ′(0)x+ · · ·+ xn

n!
f(0) +

xn+1

(n+ 1)!
f (n+1) (θ(x) · x) (1.36)

with the function θ(x), such that 0 < θ(x) < 1.

On the basis of the above theorem one is lead to the following easy result

Theorem 5 (Power Series). Let f(x) ∈ C∞([0, b]) and

a) {an} =

{
f (n)(0)

n!

}
be a sequence of real numbers with

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
1

R
< +∞ (1.37)

then the sequence of polinomial functions

fn(x) =
n∑

n=1

an x
k (1.38)
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converges uniformly for f(x) in −R < x < R.

Proof. Let us estimate the following difference for ε > 0

max
[−R+ε,R−ε]

|f(x)− fn(x)| = max
[−R+ε,R−ε]

∣∣∣∣∣
∞∑

m=n+1

am x
m

∣∣∣∣∣
≤

∞∑
m=n+1

|an|(R− ε)m = Mn → 0 (1.39)

since
∞∑

m=0

|an|(R− ε)m < +∞.

By the Weierstrass criterium we have our Theorem 4 proved. �

We call a given function in C∞(E) with E ⊂ R, an analytical function at a point

x0 ∈ E if there is an open interval Ix0 = (x0 − ε, x0 + ε) ⊂ E such that f(x) can be

expanded as a power series centered at x0 for any x ∈ Ix0 : f(x) =
∞∑

n=0

f (n)(x0)

n!
(x− x0)

n.

An useful criterium for analyticity besides eq.(1.32) is the theorem of Pringshein that

says that if lim
n→∞

([
sup

a≤x≤b
|f (n)(x)|

]1/n/
n

)
= 0, then f(x) is an analytic function on [a, b].

Exercise – On the uniform convergence of sum of functions in RN . Let now be given

a sequence of real valued functions un(x) in a given common domain Ω ⊂ RN . Let us

consider the sum
(
un(x) ≡ un(x1, . . . , xN)).

SN(x, [un]) =
N∑

n=0

an un(x). (1.40)

If we suppose that un+1(x)
/
un(x) never vanishes in Ω and(

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣) lim
n→∞

(
sup

∣∣∣∣un+1(x)

un(x)

∣∣∣∣)︸ ︷︷ ︸
g(x)

< L < 1 (1.41)

then

{
N∑

n=0

an un(x)

}
converges uniformly for a function u(x) in any domainW ⊂ g−1([0, R]),

with
1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ (this is a real-version of ours of the famous theorem of Burmann-
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Lagrange in Complex Calculus to be seen in the end of this article). Of couse, the deter-

mination of the coefficients an makes recourse to integrals representation in the complex

plane as we are going to show.

Exercise – Extend all the above presented results for the RN case.

We now apply the above results to solve second order linear differential equations with

analytical variable coefficients.

Our aim now is to determine two linearly independent solutions of the following

variable-coefficients homogeneous second order ordinary differential equation

y′′ + a(x)y′ + b(x)y = 0 (1.42)

in a form of power series if the function a(x) and b(x) have convergent power series around

a given point x0 which will allways be considered to be the origin x0 = 0 without lost of

generality.

Let us thus consider the power series expansions of the variable coefficients on the

common interval −R < x < R

a(x) =
∞∑

n=0

an x
n (1.43-a)

b(x) =
∞∑

n=0

bn x
n (1.43-b)

and the searched solution written as a power series

y(x) =
∞∑

n=0

yn x
n. (1.43-c)

Here the coefficients yn are defined from the recurrence relationship

(n+ 1)(n+ 2) yn+2 = −

{
n∑

k=0

[
(k + 1)an−k yk+1 + bn−k yk

]}
. (1.43-d)

Let us show that eq.(1.43-c) has the same radius of convergence R.
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Let ε > 0 be given such that for some M > 0, we have the bounds

|an|(R− ε)n ≤M (1.44-a)

|bn|(R− ε)n ≤M (1.44-b)

We have the estimate (with r = R− ε)

(n+ 1)(n+ 2)|yn+1| ≤
M

rn

{
n∑

k=0

[
(k + 1)|yk+1|+ |yk|

]
rk

}
+
(
M |yn+1|r) (1.45)

We now define the majorant series zn by the equation

(n+ 1)(n+ 2)zn+2 =

{
M

rn

[
n∑

k=0

(
(k + 1)zk+1 + zk

)
rk

]}
+Mzn+1 r (1.46)

Obviously

|yn| ≤ zn . (1.47)

Let us consider eq.(1.46) for n = n− 1 and n = n− 2 respectively

n(n+ 1)zn+1 =

{
M

rn−1

(
n−1∑
k=0

[
(n+ 1)zk+1 + zk

]
rk

]}
+Mzn r (1.48-a)

(n− 1)nzn =

{
M

rn−2

(
n−2∑
k=0

[
(n+ 1)zk+1 + zk

]
rk

]}
+Mzn−1 r (1.48-b)

By multiplying eq.(1.48-a) by r, we have that

r n(n+ 1)zn+1 =

{
M

rn−2

[
n−2∑
k=0

[
(k + 1)zk+1 + zk

]
rk

]}
+Mzn r

2

+

 (nzn+zn−1)rM︷ ︸︸ ︷
(n− 1 + 1)zn−1+1 + zn−1

 M

rn−2

 rn−1 (1.49-a)

which leads to

rn(n+ 1)zn+1 = (n− 1)nzn −Mzn−1r + rM(nzn + zn−1) +Mznr
2

=
[
(n− 1)n+ rMn+Mr2

]
zn (1.49-b)
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As a consequence one has immediately that

lim
n→∞

zn+1

zn

=
(n− 1)n+ rMn+Mr2

r(n)(n+ 1)
=

1

r
(1.50)

Showing thus our result eq.(1.43-c)
/
eq.(1.43-d). �

After having determined two linearly independent solutions with integration constants

y1 and y2 left undetermined one can use the Lagrange result to write a particular solu-

tion of the non homogeneous equation (1.42) as a functional of these two linearment

independent homogeneous solutions y1(x) and y2(x)

yp(x) = C1(x)y1(x) + C2(x)y2(x)

where the Lagrange multipliers are given by

dC1(x)

dx
= −f(x)y2(x)

/
(y1y

′
2 − y′1y2)(x) (1.51-a)

dC2(x)

dx
= +f(x)y1(x)

/
(y1y

′
2 − y′1y2)(x) (1.51-b)

where f(x) denotes the non-homogeneous term.

It is useful to know that if it is possible to determine one homogeneous solution of

eq.(1.42), the other solution will be always given by Lagrange integral representation

formula

y2(x) = y1(x)

{∫
exp

(
−
∫ x

a(ξ) dξ

)(
y1(x)

)−1
dx

}
. (1.52)

At this point it is worth to write explicitly formulae for the coefficients of an inverse

power series (Exercise) (see eq.(1.16a)(
∞∑

n=0

anx
n

)−1

=
∞∑

n=0

bnx
n (1.53)
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where

b0 =
1

y0

(1.54-a)

bn =
(−1)n

(y0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 . . . yn

y0 y1 y2 . . . yn−1

0 y0 y1 . . . yn−1

0 . . . y1 y2

∣∣∣∣∣∣∣∣∣∣∣∣
(1.54-b)

Formal solutions of non-linear second order ordinary differential equations can in prin-

ciple be easily written. Let us scketch such procedure

d2y

d2x
= F

(
x, y(x),

dy

dx
(x)

)
. (1.55)

Here F (x, u, v) is a C∞(Ω) function of 3-variables in a given domain Ω ⊂ R3.

Let us call y(x0) = y0 and y′(x0) = v0 . We have that y′′(x0) = F (x0, y0, v0). The next

coefficients are easily determined from eq.(1.55) through derivatives. Namely

d3y

dx3
=
∂F

∂x
(x0, y0, v0) +

∂F

∂u
(x0, y0, v0)v0 +

∂F

∂v
(x0, y0, v0)y

′′(x0) (1.56)

One must now analyze the convergence of the resulting power series case by case.

A further application of power series is the determination of linearment independent

solutions of a second order ordinary differential equation of the form (the so called regular

singular point)

x2y′′(x) + x a(x)y′(x) + b(x)y(x) = 0. (1.57)

Here

a(x) =
∞∑

n=0

anx
n for |x| < R (1.58-a)

b(x) =
∞∑

n=0

bnx
n for |x| < R (1.58-b)

Let us try a solution of eq.(1.57) in the (Laurent-Frobenius) power series generalized form

x−r y(x) =
∞∑

n=0

yn(r)xn for 0 < |x| < R. (1.58-c)
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The coefficients yn(r) are functions of the parameter r and satisfy the recurrence

relationship below

yn(r)
[
(r + n)(r + n− 1) + (r + n)a0 + b0

]
= −

{
n−1∑
k=0

yk

[
(r + k)an−k + bn−k

]}
. (1.58-d)

Now one can show (exercise!) that the function y(x, r) = xr

[
∞∑

n=0

yn(r)xn

]
satisfy the

non-homogeneous equation

x2 y′′(x, r) + xa(x)y′(x, r) + b(x)y(x, r) = r(r − 1) + ra0 + b0 . (1.59)

Let us obviously choose the free parameter r as solution of the algebric (indicial)

equation

r(r − 1) + r a0 + b0 = 0. (1.60)

We have now the two cases

a) If the two roots r1 and r2 of eq.(1.60) have their difference not being an integer number,

then y(x, r1) and y(x, r2) are two linearment (`.i) solutions of eq.(1.57).

b) If r1 = r2 (a double root), then y(r, r1) and lim
r→r1

(
d

dr
y(r, r)

)
is another solution (just

derive in relation to the r-formula eq.(1.59) and take the limit of r approaching r1 to

obtain another (formal) solution).

c) Now if r1 − r2 ∈ Z, and the recurrence relationship eq.(1.58-d) is ill-defined for the

root r2. The two linearment independent solutions are thus given by lim
r→r2

[
(r− r2)y(r, r)

]
or lim

r→r2

d

dr

(
(r− r1)y(, r)

)
. (Note that y(x, r1) is a linear combination of the two previous

considered solutions).

Exercise – The reader should reads the paper about elementary special functions (Bessel,

Legendre, etc...) on any elementary book of calculus ([2]).

Exercise – Show that the recurrence relation for the equation

xy′′ − 3y′ + xy = 0 (1.61)
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is given by

yn(r) = −
(

1

(r + 4− n)(r + n)

)
yn−2(r), n ≥ 1. (1.62)

As a consequence r2 = 0 is a problematic indicial root. So the solutions are given explictly

by

y(x, r) = y0 x
r

{
r −

(
r

(r − 2)(r + 2)

)
x2 +

1

(r − 2)(r + 2)(r + 4)
x4

− 1

(r − 2)(r + 2)2(r + 4)(r + 6)
x6 + . . .

}
(1.63)

y1(x) = y(x, 0) = − 1

24
x4 +

1

26 3
x6 − . . . (1.64)

y2(x) =

(
d

dr
y(r, r)

) ∣∣∣∣
r=0

= y1(x) ` nx

+ 1 +
1

22
x2 +

1

26
x4

− 1

1! 3! 26

(
1 +

1

2
+

1

3

)
x6 + . . . (1.65)

1.4 – Basics of Fourier Series in one-variable.

In this section we wish to highlight the main basic points of the important theory of

Fourier Series for piecewise continuous functions in the interval [−π, π] for definiteness.

Let us start our study by introducing the following definition.

Definition 4. A function f(x) defined on the closed interval [−π, π] is called piecewise

continuous if the interval [−π, π] can be splitted into a finite number of disjoint sub-

intervals

(
[−π, π] =

N⋃
i=1

[xi, xi+1)

)
such that on each subinterval (xi, xi+1), the function

f(x) is a continuous function on the open interval (xi, xi+1) and the function f(x) possesses

(finite) limits at the left end

(
lim
h→0
h>0

f(xi + h) = f+(xi) < +∞
)

and at the right end(
lim
h→0
h>0

f(xi+1 − h) = f−(xi+1) < +∞
)

.
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The Fourier Expansion of a piecewise continuous function f(x) on the interval [−π, π]

is defined by the following sequence of functions in C∞([−π, π])

SN(x, [f ]) =
a0[f ]

2
+

N∑
n=1

an[f ] cos(nx) + bn[f ] sin(nx) (1.66-a)

where the Fourier coefficients are defined by the integrations below in a suggestive nota-

tion by keeping the functional dependence of the given function f(x) explicitly on these

coefficients

a0[f ] =
1

π

∫ π

−π

f(x) dx (1.66-b)

an[f ] =
1

π

∫ π

−π

f(x) cos(nx) dx (1.66-c)

bn[f ] =
1

π

∫ π

−π

f(x) sin(nx) dx (1.66-d)

It is useful to re-write the above expansion into the so called complex notation

SN(x, [f ]) =
N∑

n=−N

cn[f ]einx (1.67-a)

with the Complex Fourier Coefficients

Cn[f ] =
1

2π

∫ π

−π

f(x) e−inx dx. (1.68)

In order to study the uniform convergence of the above written series of functions let

us state the following lemma called the Bessel inequality

(a0[f ])2

4
+

N∑
n=1

(
(an[f ])2 + (bn[f ])2

)
≤ 1

π

∫ π

−π

(f(x))2 dx (1.69-a)

or
N∑

n=−N

|Cn[f ]|2 ≤ 1

2π

(∫ π

−π

|f(x)|2 dx
)

(1.69-b)

Its proof is get easily from the obvious inequality(∫ π

−π

|f(x)|2 dx
)
− 2π

(
N∑

n=−N

|Cn[f ]|2
)

=

∫ π

−π

∣∣∣∣∣f(x)−
N∑

n=−N

Cn[f ]einx

∣∣∣∣∣
2

dx ≥ 0 (1.70)
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With this result in hands let us show the uniform convergence of the “Fourier Par-

tial sums” eq.(1.66-a) under the hypothesis that f(x) ∈ C1([−π, π)) (a continuously

differentiable function on [−π, π] : f ′(x) ∈ C([−π, π]) and such tht f(π) = f(−π);

f ′(+π) = f ′(−π)).

This result is a simple consequence of the Weierstrass criterium applied to sequence

of functions eq.(1.66-a) through the following chains of estimates

sup
x∈[−π,π]

|SN(x, [f ])| ≤
N∑

n=0

sup
x∈[−π,π]

|an[f ] cos(nx) + bn[f ] sin(nx)|

≤
√

2

{
N∑

n=0

(
an[f ])2 + (bn[f ])2

)1/2

}

≤
√

2

(
N∑

n=0

1

n
· n
(
(an[f ])2 + (bn[f ])2

)1/2

}

≤
√

2

(
N∑

n=1

(
1

n2

))1/2( N∑
n=1

(nan[f ])2 + (nbn[f ])2

)1/2

≤
√

2

(
π2

6

)1/2(∫ π

−π

dx(f ′(x))2

)
< +∞. (1.71)

As a consequence Mn = sup
x∈(−π,π)

|SN(x, [f ])| is a non-decreasing bounded monotone

sequence of real numbers, which concludes our proof. �

As an exercise the reader should extend theses results to a general interval: C1([a, b])per,

i.e: f
(
x+

T︷ ︸︸ ︷
(b− a)

)
= f(x).

As a simple consequence of the above exposed result on the uniform convergence of the

Fourier Series. It is possible to give an advanced calculus proof of the famous Weierstrass

theorem as a simple “one line remark”, however under the restrictive condition that the

function f(x) (to be approximated uniformly by polinomials) should be in C1([−1, 1]).

We take a given function f(x) ∈ C1([−1, 1]) and consider the following (even exten-

sion) function on S1: g(θ) = f(cos θ). We easily verify that g′(θ) =
(
−
√

1− x2
)
f(x). As



CBPF-NF-005/09 23

a consequence

f(x) = g(θ)
unif. conv.

= lim
N→∞

{
a0[g]

2
+

N∑
n=1

an[g] cos(nθ)

}

unif. conv.
= lim

N→∞

a0[g]

2
+

N∑
n=1

an[g]×
Tn(x)≡ Tchebichef Polinomials︷ ︸︸ ︷

cos(n arcos x)


= lim

N→∞
(B0 +B1x+B2x

2 + · · ·+Bnx
n) (1.72)

Here the coefficients an[g] are easily written as integrals with integrands depending

explicitly of the given function f(x)

an[g] =
2

π

∫ 1

−1

f(x) cos(n arcos x)dx√
1− x2

· (1.73)

Note that the Tchebichef Polinomials are given explicitly by the Newton Binomial

formula

Tn(x) =
n∑

`=0
(`= even)

(
(−1)

(
n

`

)
(x)n−` (1− x2)`/2

)
. (1.74)

The general case of the Weierstrass theorem is easily obtained from the following result

due to Féjer ([3]).

Féjer Theorem - Theorem 7 – The “Césaro weighted sum” of the Fourier Partial sum

always converges uniformly for f(x), if f(x) ∈ C([π, π]). Namely

σN(x, [f ]) =
a0[f ]

2
+

N−1∑
n=0

(
N − n

N

)
(an[f ] cos(nx) + bn[f ] sin(nx)) (1.75)

Finally we left to our diligent readers to prove that the Bessel inequality is an equality

for piecewise functions in [−π, π]. In other words:

lim
N→∞

{∫ π

−π

(
f(x)− SN(x, [f ])

)2
dx

}
= 0. (1.76)

As a last result, let us give a detailed proof of the pointwise convergence of the Fourier

Series for piecewise continous by differentiable functions as an extended solved exercise.
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Firstly, we write (exercise) the following (Dirichlet) integral formula for the N -the

Fourier sum

SN(x, [f ]) =
1

2π

{∫ π

0

dt

(
sin[(N + 1

2
)t]

sin(t/2)

)
[f(t+ x) + f(x− t)]

}
. (1.77)

After this step one has the following useful lemma.

The Riemann-Lebesgue Lemma – Let f(x) be a continuously differentiable function

on [−π, π]. Then we have the validity of the limits below

lim
N→∞

{∫ π

−π

f(x) sen(Nx)dx

}
= lim

N→∞

{∫ π

−π

f(x) cos(Nx)dx

}
= 0. (1.78)

Its proof comes from the following set of estimates for instance

a)

∫ π

−π

f(x) sen(Nx) =
1

2


∫ π

−π

[ gN (x)︷ ︸︸ ︷
f(x)− f(x+ π/N)]

]
sin(Nx)dx

 (1.79)

b) lim
N→∞

gN(x)
unif. conv.

= 0, since: |gN(x)| ≤ 2 sup
x∈[−π,π]

|f(x)| and

sup
x∈[−π,π]

|gN(x)− gM(x)| ≤ sup
x∈[−π,π]

∣∣∣∣∣∣∣∣
(|a−b|−|a−c|)≤|b−c|︷ ︸︸ ︷
f
(
x+

π

N

)
− f

(
x+

π

M

)∣∣∣∣∣∣∣∣
≤ π

(
1

N
− 1

M

)
sup

x∈[−π,π]

|f ′(x)| → 0 (1.80)

Now it is really easy to see that[
Sn(x, [f ])−

(
f(x+) + f(x−1)

2
)

)]
=

=
1

π

∫ π

0+

dt
sin
(
N + 1

2
)t
)

sin
(

1
2
t
) (

t

2

){
[f(x+ t)− f(x+)] + [f(x− t)− f(x)]

t

}
(1.81)

On basis of eq.(1.81) and the Riemann-Lebesgue lemma we have that eq.(1.81) goes

to zero if the upper and lower derivatives at a given point x ∈ [−π, π] as defined below
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[note that one can easily remove the differentiability condition on the Riemann-Lebesgue

Lemma - prove it!]

lim
t→0
t>0

(
f(x+ t)− f(x+)

t

)
def≡ (Df(x))+ (1.82)

lim
t→0
t>0

(
f(x− t)− f(x−)

t

)
def≡ (Df(x))− (1.83)

are such that the sum is finite (note that the individual terms, in principle, do not need

to be finite) (
Df(x)

)+
+
(
Df(x)

)−
< +∞.

Exercise – Analyze the existence and convergence of the Fourier Series of the function

f(x) =

ax sen2
(

1
x

)
+ bx cos2

(
1
x

)
− π < x < 0

0, 0 < x < π

We suppose now that there is a non-zero f(x) ∈ C([−π, π]) such its Fourier coefficients

are all vanishing, i.e. ∫ π

−π

f(x)

 sin(Nx)

cos(Nx)

 dx = 0 (1.83)

We are going to show that f(x) ≡ 0 or [−π, π], and thus producing a proof the

uniqueness of the Fourier Coefficients of a given continuous function.

In order to show this result let us suppose that there is x0 ∈ [−π, π] with f(x0) > 0

and δ > 0 such that f(x) > ε̄ > 0. Here ε̄ = min
x0−δ<x<x0+δ

f(x) and f(x) > 0 in I(x0) =

[x0− δ, x0 + δ]. All these assertions are true since f(x) ∈ C([−π, π]). Let us consider the

Trigonometric Polinomial Pn(x) = (y(x))n, where y(x) = (1 + cos(x − x0) − cos δ). On

the interval I(x0)([x − x0| ≤ δ) obviously Pn(x) ≥ 1. For any closed interval J ⊂ I(x0)

we have that y(x) > 1. Note either that |y(x)| < 1 for x ∈ [−π, π]\I(x0). Now we can

see that

0
(hypothesis)

=

∫ π

−π

f(x)Pn(x) dx =

(∫
I(x0)

f(x)Pn(x) dx

)
+

(∫
[−π,π]\I(x0)

f(x)Pn(x) dx

)
.

(1.84)
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By the other side we have the estimates written below, which are in contradiction with

the above written equation (1.84)∣∣∣∣∫
[−π,π]\I(x0)

f(x)Pn(x) dx

∣∣∣∣ ≤ 2π

(
sup

x∈[−π,π]

|f(x)|

)(
sup

[−π,π]\I(x0)

|y(x)|n
)

n→∞−→ 0 (1.85-a)

and∣∣∣∣∫
I(x0)

f(x)Pn(x) dx

∣∣∣∣ > ε̄

∫
J

(y(x))n dx ≥ ε̄(lengh(J))× (min
x∈J

y(x))n n→∞−→ +∞ (1.85-b)

Solved Exercises – Section 1.2

Exercise – The use of Logical Quantifiers in Mathematical Proofs.

It is very important to understand the basics of the logic quantifiers. Let us introduce

some elementary concepts. A statement frame P (x) is a mathematical sentence which

is true or false as it stands and it is written in the form of logical quantifiers. For

instance the phrases “for each x ” (or “for all x ”) is customarily represented as ∀x. The

existencial quantification is represented by the symbol ∃x and mean “there exists an x ”.

The negative logical quantifiers (not) is usually represent by the symbol ∼ ∃x, ∼ ∀x,

etc and is fully applied to a setence and shouldn’t be considered a connective at all. For

instance the statement frame that a real function f(x) is continuous at the point x0 is

written as (∀ ε) (∃ δ) (∀x)
P (x,f)︷ ︸︸ ︷

(if |x− x0| < δ then (⇒) |f(x)− f(x)| < ε) ·

Exercise – Show in details that the negation of a statement begining with a string of

logical quantifiers, one simply change each quantifier to the opposite kind and move the

negation sign to the end of the string thus

∼
[
∀(x)∃(y)(∀ δ)(P (x, y, z))

]
⇔ (∃(x))(∀ y)(∃ z)(∼ P (x, y, z)).

The reader should analyze carefully the proof of the following fundamental theorem

on convergence uniform and translating the result as frame statements with the use of

logical quantifiers.
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Theorem 8. Let fn(x) ∈ C([a, b], R), n = 1, 2, . . . and assume that the sequence {fn(x)}

converges uniformly to a given function f(x). Then f(x) is a continuous function on (a, b).

Proof. Let x0 ∈ [a, b]. We must show that ∀ ε > 0, ∃ δ = δ(ε, x0) such that |x − x0| <

δ ⇒ |f(x)− f(x0)| < ε. This result is a simple consequence of the following estimate

|f(x)− f(x0)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f(x0)|

≤ ε

3
+
ε

3
+
ε

3
= ε (1.85-c)

Since for a given ε > 0, one chooses N0(ε) such |fn(x) − f(x)| < ε/3 for n ≥ N0(ε)

due to the hypothesis of uniform convergence of the sequence {fn(x)} and δ(x0, ε) is such

that |fN0(x)− fN0(x0)| < ε/3 for |x− x0| < δ. �

Another useful result is the following Theorem:

Theorem 9. If fn(x) ∈ C([a, b], R) converges uniformly for f(x), then for a ≤ α ≤ β ≤ b,

we have the limit exchange

lim
n→∞

∫ β

α

fn(x) dx =

∫ β

α

(
lim

n→∞
fn(ξ)

)
dξ =

∫ β

α

f(ξ) dξ. (1.85-d)

Proof. Let ε > 0 be given such N ≥ N0(ε) we have that |fn(x) − f(x)| < ε
/
(b − a) for

x ∈ [a, b] uniformly. We see now the validity of the estimate for ∀n ≥ N0(ε)∣∣∣∣∫ β

α

fn(ξ) dξ −
∫ β

α

f(ξ) dξ

∣∣∣∣ ≤ ∫ β

α

dξ |fn(ξ)− f(ξ)|

≤ ε

(b− a)
|β − α| ≤ ε. � (1.85-e)

As a exercise the reader should show the Cauchy criterion for the uniform convergence

of functions. A sequence of real functions (not necessarily continuous!) converges uni-

formly on a interval [a, b] if and only if for every ε > 0, there is an integer N0(ε) such that

|fn(x)− fm(x)| < ε for ∀x ∈ [a, b] whenever n ≥ N0(ε) and m ≥ N0(ε).

Exercise – A choice function for a set A is a function f which associates to each nonempty

subset E of A an element e of E : f(E) ∈ E. In informal words, f chooses an element out
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of each nonempty subset of X. Think on the assertive (the Axiom of Choice): “For every

set there is a choice function”.

Solved Exercises in Elementary Calculus Manipulations – Section 1.3 – A formal solution

of Laplace Equation.

Exercise – The Laplace Equation is Spherical Coordinates ([3]).

In Application to Eletrostatic Problem in R3 and Quantum Mechanics, it is useful to

find the structure of solutions of the Laplace Equation in a spherical coordinates (r, θ, ϕ)

in a separated form. Power series are instrumental tools in such applied studies. Let us

thus search a solution for the Laplace Equation in spherical coordinates

1

r

∂2

∂2r
(r U(r, θ, ϕ)) +

1

r2 sen θ

∂

∂θ

(
sen θ

∂U(r, θ, ϕ)

∂θ

)
+

1

r2 sen2 θ

∂2U(r, θ, ϕ)

∂2φ
= 0 (1.86)

in the form

U(r, θ, ϕ) =
w(r)

r
P (θ)Q(φ) (1.87)

After substituting the “ansatz” eq.(1.87) into the Laplace Equation eq.(1.86) and mul-

tiplying the obtained relation by the over all factor r2 sin2 θ
/
w(r)P (θ)Q(φ), one obtains

the set of decoupled ordinary second order differential equations

1

Q(φ)

d2Q(φ)

dφ2
= −m2 (1.88− a)

1

sen θ

d

dθ

(
sen θ

dP

dθ

)
+

[
`(`+ 1)− m2

sen2 θ

]
P (θ) = 0 (1.88− b)

d2w(r)

d2r
− `(`+ 1)

r2
w(r) = 0 (1.88− c)

Here m and ` are constants. By demanding a well-defined behavior on the φ-variable, one

can write the possible solutions of eq.(1.88-a) in the form for m an integer

Q(φ) = Q0 e
± imφ. (1.89)
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Equation (1.88-c) has the immediate solution

w(r) = Ar`+1 +B r−`. (1.90)

The equation eq.(1.88-b) now can be solved by Power Series (Exercise) after consid-

ering the variable change x = cos θ(−1 ≤ x ≤ 1).

Equation (1.88-b) takes the form (p(x) = P (cos θ))

d

dx

[
(1− x2)

dp

dx

]
+

[
`(`+ 1)− m2

(1− x2)

]
p(x) = 0. (1.91)

For the special case of m = 0, one obtains a solution in the Frobenius Form, the other

involves a logarithmic term

p(x) = xγ

[
∞∑

n=0

cn x
n

]
(1.92)

with

Cn+2 =

[
(γ + n)(γ + n− 1)− `(`+ 1)

(γ + n− 1)(γ + n+ 2)

]
Cn (1.93)

and C0 6= 0 (⇔ γ(γ − 1) = 0).

Note that the power series eq.(1.92) is a polinomial (the Legendre Polinomial) if the

parameter ` is a positive integer, with the result

p`(x) =
1

2``!

d`

dx`

(
(x2 − 1)`

)
. (1.94-a)

In the general case of m 6= 0, the only possible values of m allowed in order for

the solution be defined at the points x = ±1 are (one of the basic result of Quantum

Chemestry)

m = −`, −(`− 1), . . . , 0, . . . , `− 1, ` (1.94-b)

The general solution takes the form

pm
` (x) = (−1)m (1− x2)n/2 d

m

dxn
(p`(x)) (1.94-c)

where

p−m
` (x) = (−1)m (`−m)!

(`+m)!
pm

` (x). (1.94-d)
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By the general principle of linear superposition, one should expects solutions (still

formal) of the form

U(r, θ, ϕ) =
∞∑

`=0

{ ∑̀
m=−`

[
A`m r

` +B`m r
−(`+1)

]
Y`m(θ, ϕ)

}
(1.94-e)

where we have introduced the spherical harmonics function

Y`m(θ, ϕ) =

(
2`+ 1

4π

(`−m)!

(`+m)!

)1/2

pm
` (cos θ)ei,φ (1.94-f)

Exercise – Let us consider the problem of solving the following analytical differential

ordinary equation in a given rectangle Rx0,y0 =
{
(x, y) | |x− x0| < ε; |y − y0| < δ

}
dy

dx
= f(x, y(x))

y(x0) = y0

(1.95)

where f(x, y) is an analytical function in R(x0,y0) . If one calculates sucessively the higher-

order derivatives from the differential equation eq.(1.95) at the point x = x0 , one obtains

the expression of its solution in terms of a power series around x = x0 (it can be showed

that always exists a non empty interval of convergence for it!). Namely

y(x) =
∞∑

n=0

y(n)(x0)(x− x0)
n

n!
(1.96)

with

y′(x0) = f(x0, y0). y
′′(x0) =

∂f

∂x
(x0, y0) +

∂f

∂y
(x0, y0)(f(x0, y0)), etc (1.97)

It is worth remark that this same (somewhat formal) procedure can be directly applied

for system of ordinary diferential equations line

dy1(x)

dx
= F1(x, y1, . . . , yN)

...

dyN(x)

dx
= FN(x, y1, . . . , yN) (1.98)
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with prescribed initial condition

y1(x0) = y
(1)
0 , . . . , yN(x0) = y

(N)
0 .

As an exercise, a toy model for a simple read/write head of a hard disk in computers

is described by the differential equation

J θ̈ + c(θ)θ̇ + k̄ θ = kT i(t, [θ])

where J represents the inertia of the head assembly, C denotes the viscous damping of

the bearings, k̄ the return spring constant, kT is the motor torque constant, θ̈, θ̇, θ are the

angular acceleration, angular velocity, and position of the head, respectively: i(t, [θ]) is

the current input which may be a given non-linear function the out puts {θ(t), θ̇(t), θ̈(t)}.

Show that the state-space model with x1(t) ≡ θ(t), x2(t) ≡ θ̇(t), and U = i(x, x1, x2)

satisfies the non-linear system

d

dt
x1(t) = x2(t)

...

d

dt
x2(t) = −k

J
x1(t)−

c

J
x2(t) +

kT

J
i(x, x1(t), x2(t)) (1.99)

Give the following values J = 0.01, c = 0.004, k = (0 and kT = 0.05, the reader

should determine some terms of the associated solution power series for i(x, x1(t), x2(t)) =

e−(x1(t))2 sin(x2(t)) around t = 0, and x1(0) = 0 = x2(0).

Exercise – The Korteweg-de Vries

An important equation of hydrodynamics, is the called Korteweg-de Vries equation.

Let us consider a generalization of it as given below with two “viscosity-like” coefficients

V1 and V2 both real positive numbers. Note the time dependence of the third-order x-

derivative term
∂

∂t
U(r, t) = V1

∂U(x, t)

∂x2
+ V2 t

1/2 ∂
3U(x, t)

∂x3
· (1.100)
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A self-similar solution for eq.(1.100) can be easily determined from elementary calculus

manipulations. Let us thus consider the self-similar variable (t > 0) with a ∈ R denoting

a fixed parameter

z =
x

2a
√
t

(1.101-a)

w(z) = U(x, t)

∂

∂t
= −1

2
(t−1)

(
z
∂

∂z

)
(1.101-b)

∂k

∂kx
= (2a

√
t)−k ∂k

∂kz
(1.101-c)

Our equation eq.(1.100) takes the form of an ordinary differential equation for
dw

dz
=

ψ(z)
A︷︸︸︷
V2

8a3

d2

d2z
ψ(z) +

B︷︸︸︷
V1

4a2

d

dz
ψ(z) +

1

2
zψ(z) = 0 (1.103)

In the particular case of V1 ≡ 0, one has the solution of eq.(1.103) in terms of a power

series
(
a = (V2/4)1/3

)
– the so called Airy functions from Difraction Theory

ψ(z) = ψ(0)Ai(1) (−z) + ψ′(0)Ai(2) (−z)

w(z) =
(
ψ(0)

∫ 3

dz′Ai(1)(−z′)
)

+
(
ψ′(0)

∫ 3

dz′Ai(2)(−z′)
)

(1.104)

with the linearly independent solutions

Ai(1)(z) = 1 +
∞∑

n=1

1.4.. . . . (3n− 2)

(3n)!
z3n (1.105)

Ai(2)(z) = z +
∞∑

n=1

2.5. . . . (3n− 1)

(3n+ 1)!
z3n+1 (1.106)

In the general case of V1 6= 0, after the change

ψ(z) = exp

(
− B

2A

)
γ(z), (1.107)
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we have the new Generalized Airy equation

d2γ(z)

dz2
+

(
z

2A
− B2

4A2

)
γ(z) = 0 (1.108)

whose power series solutions are left to our readers as an exercise. At this point we call

the reader attention that a manifold of solutions of eq.(1.100) can be obtained from its

n-order x-derivative.

Solved Exercise – Section 1.3

Exercise – The Proof of the Féjer Theorem.

We now present a proof of the useful Fejer theorem (Theorem 7) in details.

Firstly we define the following periodic real C∞(R) functions, the called Dirichlet and

Fejer’s kernels respectively

a) Dn(x) =
n∑

k=−n

eikx =
sin
[(
n+ 1

2

)
x
]

sin
(

x
2

) and kn(x) =
1

n+ 1

(
n∑

m=0

Dm(x)

)
(1.108-a)

We have the validity of the relationship

b) Kn(x) =
n∑

j=−n

(
1− |j|

n+ 1

)
eijx ≥ 0 (1.108-b)

c) Kn(−x) = Kn(x) =
1

(n+ 1)

{
sin
(

n
2
x
)

sin
(

x
2

) }2

(1.108-c)

d)
1

2n

∫ π

−π
Kn(x) dx = 1 (1.108-d)

e) Kn(x) ≤ 2

(n+ 1)(1− cos δ)
, δ ≤ |x| < π (1.108-e)

The proof of the above statements can be made in the following way. We have the

explicitly result

Kn(x) =
1

n+ 1

(
1− cos((n+ 1)x)

1− cosx

)
(1.109)



CBPF-NF-005/09 34

This result is obtained easily from the identity below[
(n+ 1)

{
1

n+ 1

n∑
m=0

Dn(x)

}
(eix − 1)

]
(e−ix − 1)

= (e−ix − 1)

[
n∑

m=0

(
ei(m+1)x − e−imx

)]
= 2− ei(n+1)x − e−i(n+1)x (1.110)

which leads to the searched result

Kn(x) =

[ (
2− ei(n+1)x − e−i(n+1)x

)
(n+ 1)(eix − 1)(e−ix − 1)

]

=
1

n+ 1

(
1− cos(n+ 1)x

1− cosx

)
· (1.111)

The Césaro weighted sum (see eq.(1.75)) has an analogous integral representation

(exercise)

σN(x, [f ]) =
1

2π

∫ π

−π

dtKn(t) f(x− f) (1.112)

for any δ such that 0 < δ < π

σN(x, [f ])−

[f(x)]+︷ ︸︸ ︷
f(x+) + f(x−)

2
=

1

2π

[∫ −δ

−π

dtKn(t)
(
f(x− t)− [f(x)]+

)]
+

+

∫ π

δ

dtKn(t)
(
f(x− t)− [f(x)]+

)
+

∫ 0

−δ

dtKn(t)
(
f(x− t)− [f(x)]+

)
+

∫ δ

0

dtKn(t)
(
f(x− t)− [f(x)]+

)
=

1

π

[∫ δ

0

dtKn(t)

(
f(x− t) + f(x+ t)

2
− [f(x)]+

)]
+

1

π

[∫ π

δ

dtKn(t)

(
f(x− t) + f(x+ t)

2
− [f(x)]+

)]
(1.113)

Now if our function f(x) is such that for any ε > 0, there exists δ > 0, such that

uniformly in x ∈ (−π, π), we have that for |z| < δ implies that
∣∣∣ (f(x+z)+f(x−z))

2
− [f ]+(x)

∣∣∣ <
ε (if f(x) is continuous this is always true since f(x) is uniformly continuous on the closed
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interval [−π, π] we can use eq.(1.108-e) to see that for a given ε > 0: sup
δ<z<π

Kn(z) < ε

for N ≥ N0(ε),
[
sin
(z
2

)
≥ 2δ

π
for δ < z < π

]
which by its turn leads to our “uniform

convergence” estimate for N ≥ N0(x)

sup
−π≤x≤π

|σN [x, [f ]]− [f(x)]+| ≤ ε


1︷ ︸︸ ︷

1

2π

∫ π

−π

Kn(t) dt


+ ε

∫ π

δ

dt

∣∣∣∣f(x+ t) + f(x− t)

2
− [f ]+(x)

∣∣∣∣
≤ ε+ ε

(∫ π

−π

dt f(t)

)
+ ε
(
π sup | [f ]+(x)|

)
x∈[−π,π]

= εM
n→∞−→ 0 (1.114)

if all “jumps averages” at the first species discontinuities points of our function are

bounded. Again note that if f(x) ∈ C([−π, π]), we have the truly convergence uniform

of the Césaro trigonometrical weighted Fourier Series for f(x). �

At this point we remark that this result solves the very important inverse problem in

the theory of Fourier Series: if one knows already all the Fourier coefficients {an[f ], bn[f ]},

just write the Césaro weighted Fourier Series to recover exactly in C([−π, π]) the function

f(x) possessing such set of Fourier coefficients.

Let us exemplify such important remark in an applied setting in a more advanced

mathematical context (see Chapter III for extensive details).

We search for a periodic solution of the following integral equation in the space of the

continuous functions with an absolutely convergent Fourier Series. (In the complex form
+∞∑

n=−∞
|Cn[f ]| < +∞, the so called space A([0, T ]))

h(x) =
1

T

∫ T

0

G(x, y) f(y) dy (1.115)

Let us suppose that G(x, y) is a double periodic function with period T and possessing
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the Complex Fourier Series in both variables

G(x, y) =
+∞∑

n,m=−∞

gnm e
2πim
T

x e
2πin
T

y. (1.116)

Additionally, we suppose that the following condition holds true

sup
m∈Z

{
∞∑

n=1

|gnm|

}
< 1. (1.117)

After substituting eq.(1.116) and eq.(1.115), one obtains the infinite order linear sys-

tem of equations involving the Complex Fourier Coefficients of the unknown function f(x)

(input) and given function h(x) (output)

hn =
+∞∑

m=−∞

gnm fm (1.118-a)

fn = hn +

[
+∞∑

n=−∞

(δmn − gnm)fm

]
. (1.118-b)

On basis of eq.(1.117) one can solve uniquely by the iterative Picard method eq.(1.118-

b) in the space A([0, T ]) (see Chapter III for technical details) the space of those functions

with absolutely convergent Fourier Series and this, determining explicitly the Fourier Co-

efficients of the function f(x). Namely {fn}−∞<n<+∞ . Now the usefulness of Féjer’s result

is apparent since one can recover numerically (in the sense of the uniform convergence)

the whole function f(x)

f(x) = lim
N→∞

σN(x, [f ]) (1.119)

As a last (somewhat advanced) comments we wish to point out to our readers the

following deep results on the still open subject of convergence of Fourier Series ([3]).

1 – These exists a continuous function whose Fourier Series diverges at a point.

2 – (The Lusin conjecture - L. Carleson) – The Fourier Series of a function in L2([−π, π])

(roughly f(x) ∈ L2([−π, π]) means that

∫ π

−π

|f(x)|2 dx < +∞ (see Chapter 3 for the
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Lebesgue Integral)), then the Fourier series converge pointwise with exception of a set of

Lebesgue zero measure.

Exercise – The Weierstrass’s non differentiable function is defined by the trigonometrical

series

f(x) =
∞∑

n=0

bn cos(anπx) (1.120)

with 0 < b < 1 and ab > 1 +
3

2
π with a being an odd positive integer. Let us show that

for any x ∈ R (note that the function f(x) is a continuous function since it is the limit

of a uniformly convergente sequence of continuous functions by the Weierstrass criterion

of uniform convergence since

∣∣∣∣ N∑
n=0

bn cos(anπx)

∣∣∣∣ ≤ N∑
n=0

bn =
1− bN+1

1− b
); the function is

non-differentiable.

The Newton differential coefficient can be written as of as

f(x+ h)− f(x)

h
=

Sm︷ ︸︸ ︷
m−1∑
n=0

bn
{

cos(anπ(x+ h))− cos(anπx)

h

}

=
∞∑

n=m

Rm︷ ︸︸ ︷
bn
{

cos(anπ(x+ h))− cos(anπx)

h

}
(1.121)

Let us now apply the mean value theorem as below written (with 0 < θ < 1):

| cos(anπ(x+ h))− cos(anπx)| = |anπh sen{anπ(x+ θh))| ≤ anπ|h|. (1.122)

Clearly

|Sm| ≤
m−1∑
n=0

π anbn = π

(
(ab)m − 1

ab− a

)
<
π ambm

ab− 1
· (1.123)

By the other side we can always write the term amx = αm + ξm , with αm an integer

and −1

2
≤ ξm <

1

2
· Let h = (1 − ξm)/am . We can see that 0 < h ≤ (1 − ξm)/am ≤
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1−
(
− 1

2

)
am

=
3

2am
· We have also the result

cos{amπ(x+ h)} = cos{an−mπam(x+ h)}

= cos{an−mπ
[
(αm + ξm) + (1− ξm)

]
} = cos{an−mπ(αm + 1)}

= (−1)am−n(αm+1) = (−1)2p(αm+1) (−1)αm+1 = (−1)αm+1 (1.124)

since an−m is on odd positive integer (an−m = 2p+ 1).

It follows that

cos(anπx) = cos(an−m π(αm + ξm)

= cos(an−m παm) cos(an−m πξm)− 0

= (−1)αm cos(an−m πξm). (1.125)

Hence

Rm =
(−1)αm+1

h

∞∑
n=m

(
bn{1 + cos(an−m πξm)}

)
. (1.126)

Since all the terms inside the series are positive, we just consider the first term to have

the lower bound

(
0 < h <

3

2
a−m

)

|Rm| >
bm

|h|
>

2

3
ambm. (1.127)

Collecting the above results, one obtains the following estimate for the differential

coefficient ∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≥ |Rm| − |Sm| >
(

2

3
−
(

π

ab− 1

))
ambm. (1.128)

By choosing ab > 1 +
3

2
π, and by considering h→ 0 and m→∞, we obtain that the

above written differential coefficient takes arbitrarily large values and implying thus the

non existence of the derivative of the Weierstrass function eq.(1.120) at the given point

x.
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Exercise – The solution of a RLC circuit under external periodic source.

One basic point in modern theory of electrical circuits is the problem of determining

the functional form of an electrical current I(t) as a function of the time circulating around

a simple RLC circuit. The governing differential equation of such electrical flow current

is given by

RI(t) + L
dI(t)

dt
+

1

C

∫ t

0

I(ζ)dζ = E(t) (1.129)

where R, L, C are circuits parameters-real constants, the time range is the whole real line

and E(t) is the source voltage given by a continuously differentiable function (without

any kind of discontinuities!) and periodic of period T = 2π.

Let us produce a (not unique) solution for eq.(1.129) with the same periodicity T of

the source
(
E(t+ 2π) = E(t)

)
. Firstly we consider the usual Fourier expansion

E(t) =
E0

2
+

∞∑
n=1

an

(
[E]
)
cos(nt) + bn

(
[E]
)
sin(nt). (1.130)

We consider thus the well-defined approximent E(N)(t) (the truncated Expansion

eq.(1.130) until order N) for eq.(1.129)

RI(N)(t) + L
dI(N)(t)

dt
+

1

C

∫ t

0

I(N)(ζ)dζ = E(N)(t). (1.131)

Again, we note that due the hypothesis of a solution of eq.(1.129) with the same

periodicity of the source (T = 2π), we have the obvious relationship

RI(0)+L
dI(0)

dt
+

∫ 0

0

dζ I(ζ) = E(0) = RI(2π)+L
dI(2π)

dt
+
π

C

[
1

π

∫ 2π

0

I(ζ)dζ

]
(1.132)

which leads us to the constraint

1

π

∫ 2π

0

I(ζ) dζ = 0 (1.133)

By supposing now the structural form

I(N)(t) =
a0

2
+

N∑
n=1

(
an([I]

)
cos(nt) + bn

(
[I]
)
sen(nt)

)
(1.134)
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one obtains the result

dI(N)(t)

dt
=

N∑
n=1

(
− nan

(
[I]
)
sen(nt) + nBn

(
[I]
)
cos(nt)

)
(1.135-a)

∫ t

0

I(ζ)dζ =
N∑

n=1

(
an([I])

n

)
sen(nt) + b([I])

(
(1− cos(nt))

n

)
; (1.136-b)

After inserting the above truncated expansions into our master equation eq.(1.129),

one obtains the algebraic system and constraints

E0

2
=

1

C

(
∞∑

n=1

bn(x)

n

)
(1.137-a)

Ran

(
[I]
)

+ nL bn
(
[I]
)
− bn([I])

nC
= an

(
[E]
)

(1.137-b)

R bn
(
[I]
)

+ (−nL) an

(
[I]
)

+
an([I])

nC
= bn

(
[E]
)

(1.137-c)

producing thus the following solutionan([I])

bn([I])

=


(

1

[R2 + (nL)2 − (nC)−2]

)
×

 R −nL+ 1
nC

nL− 1
nC

R


an([E])

bn([E])

 (1.137-d)

By taking now the limit of N → ∞ an eq(1.134)/eq(1.137-d), one obtains a continu-

ously differentiable solution I(t) solely under the (necesssary) condition that the source

should be a continuously differentiable function.

Note that if E(t) has a discontinuity at a given point (time) T = a (with lim
h>0

E(a +

h)− lim
h>0

E(a−b) = [E(a)]+ we have the following relationship among the complex Fourier

coefficients between the function E(t) and its derivative Ė(t) (see eq(1.75))

an[Ė]) =
1

2π

∫ 2n

0

Ė(t) eint dt =
1

2π

(
E(2n)−E(0)

)
− 1

2π
[E(a)]+ eina+in an([E]). (1.137-e)

Exercise – An useful result from elementary complex calculus (Residues Theorem) is the

following (prove!) for 0 ≤ x ≤ 2π (see next Section 1.5)

+∞∑
n=−∞

R(n)︷ ︸︸ ︷(
P`(n)

Qs(n)

)
einx = −

 ∑
{Poles of R(z)}

Res

[
R(z)

2πieizx

(e2πiz − 1)

] (1.137-f)
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where P`(x) is a polinomial of degree ` and Qs(x) another polinomial of order s ≥ `+ 2.

For instance

+∞∑
n=−∞

(
1

n2 + w2

)
einx = −

{[
1

2iw

2πi

(e−2πw − 1)
e−xw

]
+

[
− 1

2iw

2πi

(e+2πw − 1)
e+xw

]}
=

(
− π
w

e−xw

1− e−2πw

)
+

(
− π
w

exw

e2πw − 1

)
(1.137-g)

Exercise – Let us consider an analytical function G(z) on the domain Re(z) ≥ 0 (the

right-half plane) such that

a)

∫ ∞

0

|G(x)| dx is convergent

b) lim
y→∞

|G(x± iy)| e−2πy(u+1) = 0 for 0 ≤ u ≤ 2π

and y ∈ R; a ≤ x ≤ b, for any a and b.

c)

∫ ∞

0

|G(x± iy)| e−2πy(1+u) dy → 0 for x→∞ and 0 ≤ u ≤ 2π.

Then we have the formula (prove it!)

∞∑
n=0

G(n) e2πinx =
1

2
G(0) +

(∫ ∞

0

G(ξ) e2πiξ dξ

)
+ i

{∫ ∞

0

G(iy)e−2πx −G(−iy)e+2πx

(e2πy − 1)
dy

}
(1.138)

1.5 – Basics of Calculus for Complex Variable Functions ([4]-[5]).

The Arithmetic of Complex Numbers C is better defined as a field of two-uples satis-

fying the following algebric operations

a) (x, y)⊕ (x′, y′) = (x+ x′, y + y′)

b) (x, y)⊗ (x′, y′) =
(
(xx′ − yy′), (xy′ + yx′)

)
c) (x, y) = x(1, 0) + y(0, 1)

def≡ x+ iy
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d) C is isomorphic to the Matrix Field of the 2×2 matrixes of the form

 x y

−y x

. In

this isomorphic sense the imaginary unit i =
√
−1 corresponds to the matrix

 0 1

−1 0

.

Let us now firstly define an analytical function of a domain Ω of the plane (a connected

open set of R2). Let us consider an infinitely differentiable vector field F : Ω → Ω,

F (x, y) = (u(x, y), v(x, y)). Associated to this planar vector field we can assign a function

of complex variable f(z, z̄) = u(x, y) + iv(x, y) = f(x + iy, x − iy). One calls a complex

C∞(Ω) planar vector field as an analytic function in Ω if it does not depends on the

complex conjugated variable z̄ (the Cauchy-Riemann equations)

∂

∂z̄
f(z, z̄) =

1

2

(
∂

∂x
+ i

∂

∂y

)
(u(x, y) + iv(x, y)) = 0 (1.139)

which restricts to be called analytical functions in Ω solely those planar vector fields

satisfying identically in Ω the following set of equations (called Riemann Equations)

∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x

(1.140)

or in polar coordinates
∂u

∂r
=

1

r

∂v

∂θ
1

r

∂u

∂v
= −∂v

∂r

(1.141)

A great number of examples of complex variable analytic functions can be obtained

from real variable analytical functions through power series development.

Namely: if

f(x) =
∞∑

n=0

an(x− x0)
n, for −R + x0 < x < R + x0 ,

then

f(z) =
∞∑

n=0

an(z − x0)
n, for

BR(x0)︷ ︸︸ ︷
−R < |z − x0| < R



CBPF-NF-005/09 43

defines an analytical function in the (complex plane) open disk BR(x0). This can be easily

verified by noting the sequence of polinomial functions in the domain BR(x0) : fN(z) =
N∑

n=0

an(x + iy − x0)
n =

N∑
n=0

an(ρeiθ − x0)
n, converges uniformly in BR(x0) and satisfy the

set of Riemann Equations eq.(1.40)/eq.(1.41) there.

The line integrals of complex variable functions are straightforward defined from the

usual line integrals of planar vector fields, with the restriction that all curves are homo-

topical (can be deformed continuously) to the circle S1 (Jordan Curves)∫
C
f(z) dz =

∫ b

a

f(z(t))
dz

dt
dt

=

(∫ b

a

[
u(x(t), y(t))

dx

dt
− v(x(t), y(t))

dy

dt

])
+ i

(∫ b

a

[
u(x(t), y(t))

dy

dt
+ v(x(t), y(t))

dx

dt

])
(1.142)

where C is a piecewise continuously differentiable path in Complex Plane in an obvious

mathematical frame statement: C = {z ∈ C | z = z(t) = x(t) + iy(t), a ≤ t ≤ b; x(t), y(t)

belonging to C1
piece

(
[a, b]

)
}

It is a straightforward consequence of the Green theorem that if f(z) is an analytical

function in Ω ⊂ C then for any closed line C inside Ω, one has immediately that∮
C

f(z)dz = 0. (1.143)

The converse is much more difficult to prove ([2]).

At this point we call the reader attention that the Complex Plane C can be always

“compactified” to the three-dimensional sphere S2 = {(ξ, η, z) ∈ R3 | ξ2+η2+
(
z− 1

2

)2
= 1

4

by means of the application where analytical functions are mapped in a certain class of
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planar vector fields in S2. (Exercise: Re-write the Riemann Equations in S3)

ξ =
x

((x2 + y2) + 1)

η =
y

((x2 + y2) + 1)

z =
1

2

[
x2 + y2 − 1

x2 + y2 + 1
− 1

]
(
F1(ξ, η, z), F2(ξ, η, z)

)
=

(
u

(
ξ

1− z
,

η

1− z

)
, v

(
ξ

1− z
,

η

1− z

))
(1.144)

One important integral representation in the subject is the generalized Carleman-

Cauchy integral representation.

Let us suppose that the real and imaginary parts of a full complex variable function

f(z, z̄) = u(x, y) + iv(x, y) satisfie the generalized Riemann Equations in a given domain

Ω

∂u

∂x
=
∂v

∂y
+ a(x, b)u+ b(x, y)v + F (x, y)

∂u

∂y
= −∂v

∂x
+ c(x, b)u+ b(x, y)v +G(x, y) (1.145)

where (a, b, c, d) are solely continuous functions in Ω. (Note that in the case of a = b =

c = d = 0, the above written set eqs.(1.140-1.142) reduces to the Riemann set eq.(1.140).

Through the use of complex derivative operators (Chain rule!)

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
∂

∂z̄
=

1

2

(
∂

∂x
− i

∂

∂y

)
(1.146)

one can re-write the Green theorem in the complex form

1

2i

∮
C

f(z, z̄) dz =

∫∫
R(C)

(
∂f(z, z̄)

∂z̄

)
dxdy, (1.147)

where the domain R(C) is the interior (open) set bounded by the closed line C, denoted

by the (homological) formula ∂R = C (see [6]).
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Let us now consider ∂Bε(z), a small circunference around a given fixed point z ∈ Ω

and entirely contained in this domain Ω. We easily see that (Green’s theorem)

1

2i

∮
C

f(ζ, ζ̄)dζ − 1

2i

∮
∂Bε(z)

f(ζ, ζ̄)dζ =

∫∫
R(C)\Bε(z)

(
∂f

∂ζ̄

)
dxdy

(ζ − z)
. (1.148)

By noting that

lim
ε→0

1

2iπ

∮
∂Bε(z)

f(ζ, ζ̄)dζ = lim
ε→0+

{
1

2πi

[∫ 2π

0

f(z + εeiθ, z̄ + εe−iθ)

ε eiθ
εieiθ dθ

]}
(mean value theorem)

= f(z, z̄) (1.149)

one has the following result

f(z, z̄) =
1

2πi

∮
C

f(ζ, ζ̄)dζ

ζ − z
− 1

π

∫∫
R(C)

∂f(ζ, ζ̄)

dζ̄

dxdy

ζ − z
· (1.150)

In our case eq.(1.145), we just note that in complex variables notation

∂f(z, z̄)

∂z̄
= A(z, z̄)f(z, z̄) +B(z, z̄), f(z, z̄) +G(z, z̄)

A =
1

4
(a+ d+ ic− ib)(z, z̄)

B =
1

4
(a− c+ ic+ ib)(z, z̄)

G = F1 + iF2 (1.151)

which leads to the basic Cauchy (Carleman) complex variable integral representation for

a complex valued function f(z, z̄) satisfying the Riemann-Carleman eq.(1.151)

f(z, z̄) =
1

2πi

(∮
C

f(ζ)

ζ − z
dζ

)
− 1

π

(∫∫
R(C)

(
A(ζ, ζ̄)f(ζ, ζ̄) +B(ζ, ζ̄)f(ζ, ζ̄)

ζ − z

)
dxdy

)

− 1

π

{∫∫
R(C)

G(ζ, ζ̄)

ζ − z
dxdy

}
(1.152)

In the case of analytical functions in Ω with A = B = G = 0 + i0 ≡ 0, one obtains

the elementary Cauchy formula

dk f(z)

dzk
=

k!

(2πi)

∮
C

f(ζ)

(ζ − z)k+1
dζ · (1.153)
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On basis of the above written integral formula eq.(1.153), one has the important K.

Weierstrass-P. Laurent theorem:

Theorem 1. Let Ω be an region of the following annulus form Ω = {z ∈ C | R1 <

|z − z0| < R2}. Then any analytic function f(z) in Ω can be written uniquely in the

following form

f(z) =
+∞∑

n=−∞

(
An(z − z0)

n
)

= h(z − z0) +m
(
(z − z0)

−1
)

(1.154-a)

where

h
(
(z − z0)

)
=

∞∑
n=0

An(z − z0)
n (1.154-b)

m
(
(z − z0)

)−1)
=

∞∑
n=1

A−n(z − z0)
−n (1.154-c)

with {CR = z | |z − z0| = R; R1 < R < R2}

An =
1

2πi

(∮
CR

f(z)

(z − z0)n+1
dz

)
· (1.154-d)

Note that this result remains true for any region bounded by a closed line (loop)

homological to this annulus situation.

The coefficient A−1 is called the residue of the function f(z) at the point z = z0 and

denoted by

A−1
def
= Res[f(z), z = z0]. (1.154-e)

The proof of this important result is based on the Cauchy integral representation

eq.(1.150) for any closed contour C = Γ1 ∪ Γ2 lying in the region Ω

f(z) =
1

2πi

∮
Γ1

f(ζ)

ζ − z
dζ − 1

2πi

∮
Γ2

f(ζ)

ζ − z
dζ

=

(
1

2πi

∮
Γ1

|ζ−z0|<|z−z0|

f(ζ)

[
−

∞∑
n=0

(z − z0)
n

(ζ − z0)n+1

])

−

(
1

2πi

∮
Γ2

f(ζ)

[
−

−1∑
n=−∞

(
(z − z))n

)
(ζ − z0)n+1

])
≡ h

(
(z − z0)

)
+m

(
(z − z0)

−1
)

(1.154-f)
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At this point let us introduce some terminology. We say that a given point z = z0 ∈ Ω

where the analyticity of a given function fails, however there is a integer m such that

lim
z→z0

(z − z0)
m f(z) < ∞, is an pole of order m of the function f(z) in Ω. The residue of

such function at the pole z − z0 is this explicitly given by

A−1 = Res [f(ζ), z = z0] =
1

(m− 1)!
lim
z→z0

dm−1

dm−1z

(
(z − z0)

m f(z)
)
. (1.155)

An important relation with Fourier Series can be done now.

Let f(z) be an analytic function in the annulus 1 − ε < |z| < 1 + ε, for ε > 0. As a

consequence of eqs.(1.154), one has the P. Laurent expansion there

f(z) =
+∞∑

n=−∞

Cn z
n (1.156)

with

Cn =
1

2πi

∫
|z|=1

f(ζ)

ζn+1
dζ =

1

2π

∫ 2π

0

f(eiθ)e−inθ dθ. (1.157)

If we consider z = eit
(
z ∈ S1 = {z | |z| = 1}

)
, eq.(3.156) becomes the complex Fourier

Series of the function ϕ(t) = f(eit). Namely

ϕ(t) = f(eit) =
+∞∑

n=−∞

Cn e
int (1.158)

For instance, let a ∈ C such that |a| < 1. We consider now the following function with

poles in z1 = a and z2 = 1/a

f(z) =
1− z2

2i{z2 −
(
a+ 1

a

)
z + 1}

· (1.159-a)

We have now

f(z) =
1

2i

{
−1 +

1

1− z
a

+
1

1− az

}
(1.159-b)

=
1

2i

{
∞∑

n=1

an

(
zn − 1

zn

)}
(1.159-c)
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It yields too

f(eit) = ϕ(t) =
a sin(t)

1− 2a cos(t) + a2
=

∞∑
n=1

an sin(nt) (1.159-d)

It is worth remark that Laurent Series are mathematical objects equivalent to Fourier

Series of complex variable. In general a complex variable Fourier Series (z = x+ iy)

f(z) =
a0

2
+

∞∑
n=1

(an cos nz + bn sen nz) (1.160-a)

is entirely equivalent to a Laurent Series after the variable change eiz = w. Namely for

r < |w| < R

f(z) =
+∞∑

n=−∞

cnw
n. (1.160-b)

Here for n = 1, 2, . . .

C0 =
a0

2
, Cn =

an − ibn
2

, C−n =
an + ibn

2
· (1.161)

Note that the complex variable Fourier Series converges in the strip `n r < −y < `nR

and −∞ < x <∞.

We now assume that we have a given analytic function f(z) in a region Ω, where

|f ′(z)|2 6= 0. Let f(z0) = w0 . We thus determine its inverse function (which is analytic

too!) in the region W = f(Ω) through a power series

z = f−1(w) =
∞∑

n=0

bn(w − w0)
n. (1.162)

In order to accomplish this task let us consider the following integral for a closed path

Γ ⊂ Ω.

I(w) =
1

2πi

∮
Γ

(
z f ′(z)

f(z)− w

)
dz

= Res

[
z f ′(z)

f(z)− w
; z − f−1(w)

]
= lim

f(z)→w

[
(z − f−1(w))

z f ′(z)

f(z)− w

]
= lim

z→z̄=f(w)

[
(z f ′(z))(z − z̄)

f(z)− f(z̄)

]
= lim

z→z̄

[
z f ′(z))(z − z̄)

f ′(z̄)(z − z̄)

]
= z̄ = f−1(w) (1.163)
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Now

I(w) =
1

2πi

∮
Γ

zf ′(z)

 1

f(z)− w0

1(
1− (w−w0)

f(z)−w0

)
 dz

=
∞∑

n=0

−
{

1

2πin

∮
Γ

(
z
d

dz
(f(z)− w0)

−n

)
dz

}
(w − w0)

n (1.164-a)

(by parts integration)

=
∞∑

n=0

{
+

1

2πin

∮
Γ

dz

(f(z)− w0)n

}
(w − w0)

n (1.164-b)

which leads to our formulae

bn =
1

n

{
1

(n− 1)!
lim
z→z0

dn−1

dn−1z

[
(z − z0)

n

(f(z)− f(z0))n

]}
(1.164-c)

Not that L’Hôpital rule for evaluation of limits still remains true in the complex domain

(prove it!).

Exercise – The Schwartz reflection principle.

Let be f(z) = u(x, y) + iv(x, y) an analytical function in a region Ω bounded by a

closed curve in the complex upper half-plane possessing a segment a ≤ x ≤ b in the real

axis as its piece and such it is a real function there. Then f(z̄) = u(x,−y)− iv(x,−y) is

analytic in the reflected Ω along the segment in the complex lower half-plane, by a simple

application of the Riemann equations (1.145).

Solved Exercise – On the Riemann Conjecture – The Riemann’s series ζ(x) =
∞∑

n=1

n−x

converges uniformly for all real numbers x greater then or equal to a any given (fixed)

abscissa x̄ : x > x̄ > 1. It is well-known that the complex valued (meromorphic) contin-

uation to complex values (z = x + iy) throughout the Complex Plane z ∈ C is obtained

from standard analytic (finite-part) complex variables methods applied to the integral



CBPF-NF-005/09 50

representation ([1])

ζ(z) =
iΓ(1− z)

2π

(∫
C

(
(−2)z−1

ew − 1

)
dw

)
=

1

Γ(z)

(∫ ∞

0

wz−1 ×
[

1

ew − 1
− 1

w

]
dw

)
=
iΓ(1− z)

2π

{∫
C

[
(−w)z−2 − 1

2
(−w)z−1 +

∞∑
n=1

(−1)n+z−2Bn/w
z+2n−2

(2n)!

]}
, (1.166)

here Bn are the Bernoulli’s numbers and C as any contour in the Complex Plane, coming

from positive infinity and encircling the origin once in the positive direction.

An important relationship resulting from eq.(1.166) is the so called functional equation

satisfied by the Zeta function, holding true for any z ∈ C

ζ(z)

ζ(1− z)
= 2z · πz−1 · sen

(πz
2

)
· Γ(1− z). (1.167)

In applications to Number Theory, where this Special function plays a special role,

it is a famous conjecture proposed by B. Riemann (1856) that the only non trivial zeros

of the Zeta function lie in the so-called critical line Real (z) = x = 1
2
· Let us state our

conjecture

Conjecture: In each horizontal line of the complex Plane of the form Imaginary (z) =

y = b = constant, the Zeta function ζ(z) posseses at most a unique zero.

We show now that the above written conjecture leads elementarily to a proof of the

Riemann’s conjecture.

Theorem (The Riemann’s Conjecture). All the non-trivial zeros of the Riemann Zeta

function lie on the critical line Real (z) = x = 1
2
·

Proof: Let us consider a given non-trivial zero z̄ = x̄ + iȳ on the open strip 0 < x < 1,

−∞ < y < +∞. It is a direct consequence of the Schwartz’s reflection principle since

ζ(x) is a real function in 0 < x < 1 that (z̄)∗ = x̄ − iȳ is another non-trivial zero of the

Riemann function on the above pointed out open strip. The basic point of our proof is

to show that 1 − (z̄)∗ = (1 − x̄) + iȳ is another zero of ζ(z) in the same horizontal line

Im(z) = ȳ. This result turns out that (1 − (z̄)∗) = z̄ on the basis of the validity of our
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Conjecture. As a consequence we obtain straightforwardly that 1 − x̄ = x̄. In others

words Real (z̄) = 1
2
·

At this point, we call the reader attention, on the result that if z̄ is a zero of the

Riemann Zeta function, then 1−z̄ must be another non-trivial zero is a direct consequence

of the functional eq.(1.167), since sin(πz
2

) and Γ(1−z) never vanish both on the open strip

0 < Real(z) < 1.

At this point of our note, we want so state clearly that the significance of replacing the

Riemann’s original conjecture by our complex oriented conjecture rests on the possibility

of progress in producing sound results for its proof.

Let us now sketch a “hand-wave” argument to prove our conjectue. Firstly we remark

that it is well-known that the Zeta function ζ(x) does not possesses zeroes in the interval

0 < x < 1
(
ζ(x) = (1 − 21−x)(

∞∑
n=1

(−1)n · n−x)
)
. As ζ(z) is an analytic function in the

region 0 < x < 1, −b < y < b; for any b > 0, one can see that the Taylor expansion holds

true

ζ(x+ ib) =

(
∞∑

n=0

(−1)n ζ(2n)(x)

(2n)!
b2n

)
+ i

(
∞∑

n=0

(−1)n ζ(2n+1)(x)

(2n+ 1)!
b2n+1

)
(1.168-a)

Now if x0 + ib is a zero of ζ(x + ib), then necessarily we have the validity of the

(functional) equations

∞∑
n=0

(
(−1)n ζ(2n)(x0)

(2n)!

)
b2n = 0 (1.168-b)

∞∑
n=0

(
(−1)n ζ(2n+1)(x0)

(2n+ 1)!

)
b2n+1 = 0 (1.168-c)

Now for b very small (b ≈ 0), the above system of funcitonal equations should be

naively expected to be replaced by the “effective one” for x0 ∈ (0, 1):

ζ(x0) = 0 (1.168-c)

ζ ′(x0) = 0 (1.168-d)
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which is clearly impossible with the result that ζ(x) does not have zeroes in the interval

0 < xM1. This would proves the Riemann Conjecture.

The full, mathematical formalization of this “hand-wave” argument is left to our

readers-worthing US$1,000,000!.

Exercise – Bürmann-Lagrange Series.

Let f(z) and w(z) complex valued analytic functions in a region Ω of the complex

plane and w(z) an injective function in Ω
(
|w′(z)|2 6= 0 for z ∈ Ω

)
. Then one can expand

f(z) in powers series of the given function w(z) around a zero z0 of w(z):

f(z) =
∞∑

n=0

dn(w(z))n, |z − z0| ≤ R. (1.169-a)

Here the coefficients dn possesse the following complex integral representation

dn =
1

2πi

∮
C

f(ζ)w′(ζ)

wn+1(ζ)
dζ

=
1

n!
lim
z→a

{
dn

dzn

(
f(z)w′(z)(z − a)n+1

wn+1(z)

)}
(n = 0, 1, . . . ) (1.169-b)

and the closed line C is any Jordan curve such |w(z)/w(ζ)| ≤ q < 1 and |z−a| ≤ δ. Note

that the convergence radius is given by eq.(1.41) (generalized for the complex case).

Solution: Consider the complex integral

I(z) =
1

2πi

∮
C

f(ζ)w′(ζ)

w(z)− w(z)
dζ. (1.169-c)

Exercise – (Rouché theorem).

Let f(z) and g(z) be analytical functions in a region R(C); bounded by a curve C and

such that f(z) and g(z) when restricts to C are continuous functions and satisfy there the

inequality |f(z)| > |g(z)|. Then the functions f(z) and f(z)+g(z) have the same number

of zeros in R(C).

Proof: Consider the logarithmic integral

N =
1

2πi

∮
C

f ′(z)

f(z)
dz =

1

2π
∆C(arg f(ζ)) (1.170-a)
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and show that under the given hypothesis that

∆C arg(f(z) + g(z)) = ∆C arg f(z). � (1.170-b)

As a consequence we have a straightforward proof of the Algebra fundamental theorem

for complex polinomials in the complex plane.
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APPENDIX A

An Elementary Comment on the

Zeros of The Zeta Function

(on the Riemann’s Conjecture) – Version II

1 Introduction – “Elementary may be deep” ([1])

The Riemann’s series ζ(x) =
∞∑

n=1

n−x converges uniformly for all real numbers x greater

then or equal to a any given (fixed) abscissa x̄: x > x̄ > 1. It is well-known that the

complex valued (meromorphic) continuation to complex values (z = x+iy) throughout the

Complex Plane z ∈ C is obtained from standard analytic (finite-part) complex variables

methods applied to the integral representation ([1]))

ζ(z) =
iΓ(1− z)

2π

(∫
C

(
(−w)z−1

ew − 1

)
dw

)
=

1

Γ(z)

(∫ ∞

0

wz−1 ×
[

1

ew − 1
− 1

w

]
dw

)
=
iΓ(1− z)

2π

{∫
C

[
(−w)z−2 − 1

2
(−w)z−1 +

∞∑
n=1

(−1)n+z−2Bn

/
wz+2n−2

(2n)!

]}
, (1-A)

here Bn are the Bernoulli’s numbers and C is any contour in the Complex Plane, coming

from positive infinity and encircling the origin once in the positive direction.

An important relationship resulting from eq.(1) is the so called functional equation

satisfied by the Zeta function, holding true for any z ∈ C

ζ(z)

ζ(1− z)
= 2z · πz−1 · sen

(πz
2

)
· Γ(1− z) (2-A)

In applications to Number Theory, where this Special function plays a special role, it

is a famous conjecture proposed by B. Riemann (1856) that the only non trivial zeros of

the Zeta function lie in the so-called critical line Real (z) = x = 1
2
.

In the next section we intend to propose an equivalent conjecture, hoped to be more

suitable for handling the Riemann’s problem by the standard methods of Classical Com-
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plex Analysis ([2]), besides of proving a historical clue for the reason that led B. Riemann

to propose his conjecture ([2] – second reference).

2 On the Equivalent Conjecture 1

Let us state our conjecture

Conjecture: In each horizontal line of the complex Plane of the form Imaginary (z) =

y = b = constant, the Zeta function ζ(z) posseses at most a unique zero.

We show now that the above written conjecture leads elementarly to a proof of the

Riemann’s conjecture.

Theorem. (The Riemann’s Conjecture) All the non-trivial zeros of the Riemann Zeta

function lie on the critical line Real (z) = x = 1
2
.

Proof: Let us consider a given non-trivial zero z̄ = x̄ + iȳ on the open strip 0 < x < 1,

−∞ < y < +∞. It is a direct consequence of the Schwartz’s reflection principle since

ζ(x) is a real function in 0 < x < 1 that (z̄)∗ = x̄ − iȳ is another non-trivial zero of the

Riemann function on the above pointed out open strip. The basic point of our proof is

to show that 1 − (z̄)∗ = (1 − x̄) + iȳ is another zero of ζ(z) in the same horizontal line

Im(z) = ȳ. This result turns out that (1 − (z̄)∗) = z̄ on the basis of the validity of our

Conjecture. As a consequence we obtain straightforwardly that 1 − x̄ = x̄. In others

words Real (z̄) = 1
2
.

At this point, we call the reader attention, on the result that if z̄ is a zero of the

Riemann Zeta function, then 1−z̄ must be another non-trivial zero is a direct consequence

of the functional eq.(2), since sin
(

πz
2

)
and Γ(1− z) never vanishe both on the open strip

0 < Real(z) < 1.

At this point of our note, we want to state clearly that the significance of replacing the

Riemann’s original conjecture by our complex oriented conjecture rests on the possibility

of progress in producing sound results for its proof, which is not claimed in our elementary

note. However, we intend to point out directions (arguments) in its favor.
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Let us thus consider the combined zeta function of Riemann (see second reference -

[2]). As defined below

ξ(z) = Γ(
z

2
)(z − 1)π−

3
2 ζ(z). (3-A)

Since ξ(z) is an entire function on the complex plane it has the well known power

series around the real point z = 1
2

with an arbitrary convergence radius R

ξ(z) =
∞∑

n=0

a2n(z − 1

2
)2n; |z − 1

2
| < R (4-A)

where the power series coeficients are given explicitly by the Riemann’s integral formula

a2n = 4
∞∑

p=0

{∫ ∞

1

[
(p4π2x− 3

2
p2π)x

1
2 e−p2πx x−

1
4
(1

2
lgx)2n

(2n)!

]
dx
}
. (5-A)

By noting that all the above coeficients are strictly positive real numbers, one see that

in the interval 0 < x < 1, there is no zeros for ξ(x). As a consequence ζ(x) does not have

any zeros in 0 < x < 1.

Let us now analyze the important case of our conjecture, i.e. the zeros of the function

ξ(x + ib), for a given b ∈ R fixed. In this case we have the obvious power expansion for

the real part of the above horizontal, strip combined zeta-function

Real(ξ(x+ ib)) =
∞∑

m=0

(x− 1
2
)2m

(2m)!

{ ∞∑
n=2m

a2n(−1)n−mb2n−2m (2n)!

(2n− 2m)!

}
. (6-A)

Let us denote the coeficients of the above written power series by B̂m

B̂2m ≡
∞∑

n=2m

[
(a2n)(−1)n−m

(
(b2)n−m (2n)!

(2(n−m)!)

)}
. (7-A)

If all the above numbers are non-negative, one could follow the same argument exposed

above to show that the only possible root of Real(ξ(x+ ib)) is localized on the horizontal

line x = 1
2
.

As a result of our note, we have replaced a difficult statement on the precise localization

of zeroes of an entire function by a somewhat pure arithmetical statement on the non-

negativity of the infinite sums B̂m, for each m ∈ Z+.
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APPENDIX B

On the Cisotti integral representation for the Schwarz-

Christoffel polygonal-conformal transformation and a

new proof of the Riemann theorem on Conformal Trans-

formations.

Let us give the detailed proof of the Conformal Transformations ideas. Let us start

by the Cisotti formulae.

Firstly let us consider a bounded simply connected region Ω, with its Jordan curve

boundary Γ given by the map of S1 by an analytical function in the disc, namelly Γ =

{f(eiθ); 0 ≤ θ < 2π}. It is a straightforward result of elementary calculus that the angle

with the Γ-tangent at the point ω = f(eiθ), makes with the x-axis, is the following function

of the θ-argument of the z-variable:

v(θ) =

|f(eiθ)| cos
[
arg(f(eiθ))

]
+

(
dθ

dθ′

)(
d

dθ
|f(eiθ)|

)
sin
[
arg(f(eiθ))

]
(−|f(eiθ)|) sin

[
arg(f(eiθ))

]
+

(
dθ

dθ′

)(
d

dθ
|f(eiθ)) cos

[
arg(f(eiθ))

] (B-1)

Here the argument θ′ of the complex number f(eiθ) in Γ related to the argument θ in

S1 is given by the formula

θ′ = arg(f(eiθ)). (B-2)

It is now a simple result that the following holomorphic function in the unity disc

{z | |z| < 1}

g(z) = −i `n
[
−i(1− z)2 df

dz

]
(B-3)

is given by the Dirichlet integral representation in terms of its real part boundary value

v(θ). Namelly:

g(z) =
1

2π

∫ 2π

0

dθ v(θ)
eiθ + z

eiθ − z
· (B-4)
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As a consequence of eq.(B-3) and the unicity of holomorphic continuations inside

bounded domains in C, we have the Cisotti integral representation for the function f(z)

inside the unity disk

f(z) =

(
i

∫ z

z0

dz′
exp(ig(z′))

(1− z′)2

)
+ f(z0) (B-5)

Let us now consider Γ being a polygonal closed line with n-vertexs in the complex

plane with exterior angles denoted by ψk and the associated function

v(θ) =
n∑

k=1

ψk

(
u(θ − θk−1)− u(θ − θk)

)
. (B-6)

Here u(x) is the Hecviside function (u(x) = 1 if x > 0. u(x) = 0 if x < 0).

By using now the standard representation (with z = reiθ)

eiθ+z

eiθ−z
=

(
1− r2

1− 2r cos(θ − θ) + r2

)
+ i

(
2r sen(θ − θ)

1− 2r cos(θ − θ) + r2

)
, (B-7)

we can evaluate exactly the Cisotti formulae mapping of the disk with marked points

{eiθk}1≤k≤N into the Polygonal domain with vertexs Vk = f(eiθk).

d
dz

f(z)︷ ︸︸ ︷(eiθd

dr
− ie−iθ

r

)
f(reiθ) =

1

(1− reiθ)2


∣∣∣∣∣eiθk − reiθ

eiθk−1
− reiθ

∣∣∣∣∣
ψk
π


× exp

{
− 1

π

N∑
h=1

[
arctan

(
r + 1

r − 1
tan

(
θk − θ

2

))
(ψk+1 − ψk)

]}
. (B-8)

It is worth remark that we have the topological relationships below among the Polyg-

onal internal angles αk and the external angles ψk by the Gauss theorem:
π − (ψk − ψk−1) = αk(

N∑
h=1

(αk

π
− 1
))

= −2
(B-9)

At in this point one can reverse the usual analysis to produce a somewhat more

constructive Cavalieri-Arquimedes proof of the Riemann theorem by just considering a
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sequence of Polygons curves ωn(eiθ) uniformly bounded in the unit disc |ωn(ρeiθ)| ≤

sup
0≤θ<2π

|ωn(eiθ)| ≤M since by the Jordan Curve theorem all the images of the unit disk by

the Cisotti-Schwarz-Christoffel applications are in the bounded region Ω. The Riemann

conformal transformation of the unit disk onto the region Ω is straightforwardly given by

a simple application of the well-known compacity criterium in the space of the holomor-

phic mappings in the unit disk. Namely: there is a subsequence {ωnk(z)}k∈Z, uniformly

converging to a certain holomorphic function in the unit disk with a piecewise continu-

ously differentiable boundary value on the circle and applying conformally the unit disk

into the region Ω, bounded by a Jordan Curve C.

As an important application of the Conformal Transformation Methods for device

approximate numerical schemes for the Dirichlet problem with general boundaries is the

Lavrentiev approximate formulae for the conformal transformation of a circle perturbed

by a “small” curve σ(t) = ε

[
+∞∑

n=−∞
Ane

int

]
with ε denoting a small parameter, to a given

unity circle ([1])

ωLav(z) ∼= z

{
1 +

ε

2π

∫ 2π

0

σ(t)
eit + z

eit − z
dt

}
+O(ε2). (B-10)

As a consequence one may formally consider σ(t) as a random object with the Fourier

coefficients obeying probability distributions and thus throught the Poisson explicitly

formulae, try device approximate solutions for the Dirichlet problem with weakly random

(Fractal) boundaries.

We left to our readers to proceed further in these matters.


