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I. INTRODUCTION

The kink of a scalar potential in 1+1 dimensions is a static, non-singular, classically

stable and a finite localized energy solution of the equation of motion, which can be in

topologically stable sectors [1]. In a recent lecture [2], an investigation on the topological

defects starting with the simplest case of domain walls was presented, and then consider-

ations to more elaborate and realistic models were put forward.

In the present letter, one works with the algebraic technique of the SUSY QM formu-

lated by Witten [3–5], which is associated with a second order differential equation for

the q-deformed hyperbolic functions [6]. Recently, the q-deformed hyperbolic function was

used to construct a new η−pseudo-Hermitian complex potential with PT symmetry [7].

Other potentials like Rosen-Morse well, Scarf, Eckart and the generalized Pöschl-Teller

were constructed via shape invariance [8].

The stability equation for topological and non-topological solitons has been ap-

proached in the framework of supersymmetric quantum mechanics (SUSY QM) [9–14].

The marginal stability and the metamorphosis of Bogomol’nyi-Prasad-Sommerfield (BPS)

states have been investigated, via SUSY QM, and presented a detailed analysis for a 2-

dimensional N = 2−Wess-Zumino model with two chiral superfields, and composite dyons

in N = 2-supersymmetric gauge theories [15].

In this letter, the interesting program of proposing a new potential model in 1+1

dimensions, whose essential point is associated with the translational invariance of the

q-deformed kink solutions, is investigated.

II. SOLITONS IN 1+1 DIMENSIONS

Consider the Lagrangian density for a single scalar field, φ(x, t), in (1+1)-dimensions,

in natural system, given by

L (φ, ∂µφ) =
1

2
∂µφ∂

µφ− V (φ) , (1)

where V (φ) is any positive semi-definite function of φ, which must have at least two zeroes

for soliton solution to exist. It represents a well-behaved potential energy. However, as

it will be shown below, we have found a new potential which is exactly solvable in the

context of the classical theory in (1+1)-dimensions.

The field equation for a static classical configuration, φ = φc (x) , becomes

− d2

dx2
φc (x) +

d

dφc
V (φc) = 0, φ̇c = 0, (2)
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with the following boundary conditions: φc(x) → φvacuum(x) as x → ±∞.

Since the potential is positive, it can be written as

V (φ) =
1

2
U2(φ). (3)

Thus, the total energy for the q-kink becomes

E=
1

2

∫ [
(φ′)2 + U2

]
dx

=
1

2

∫ [
(φ′ ∓ U)

2 ± 2Uφ′] dx. (4)

In this case, the Bogomol’nyi form of the energy, consisting of a sum of squares and surface

terms, becomes

E ≥
∣∣∣∣∣
∫

dx
∂

∂x
U [φ(x)]

∣∣∣∣∣ , (5)

under the well-known Bogomol’nyi condition for the kink solution,

dφ

dx
= ±U(φ) (6)

where the solutions with the plus and minus signs represent two static field configurations.

III. STABILITY EQUATION

The classical stability of the soliton solution is investigated by considering small per-

turbations around it,

φ(x, t) = φc(x) + η(x, t), (7)

where we expand the fluctuations in terms of the normal modes,

η(x, t) =
∑
n

εnηn(x)e
iωnt, (8)

with the ε′ns chosen so that η(x, t) is real. A localized classical configuration is said to be

dynamically stable if the fluctuation does not destroy it. The equation of motion becomes

a Schrödinger-like equation, viz.,

OFηn(x) = ωn
2ηn(x), OF = − d2

dx2
+ V ′′(φc), (9)

where OF is the fluctuation operator. According to (3), one obtains the supersymmetric

form [12,13]
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V ′′(φc) = U ′2(φc) + U(φc)U
′′(φc), (10)

where the primes stand for a second derivative with respect to the argument.

If the normal modes of (9) satisfy ωn
2 ≥ 0, the stability of the Schrödinger-like equation

is ensured. Now, we are able to implement a method that provides a new potential from

the potential term that appears in the fluctuation operator.

Next, we consider the following generalized potential as corresponding to the potential

part of the fluctuation operator:

V ′′(φc) = V (x; q) = m2(2− 3q)sec2hq

(
m√
2
x

)
, (11)

where q > 0 and we are using the q-deformed hyperbolic functions which were introduce

by Arai [6]:

coshq(x)=
ex + qe−x

2

sinhq(x)=
ex − qe−x

2

tanhq(x)=
sinhq(x)

coshq(x)

sechq(x)=
1

coshq(x)
(12)

where xεR. Thus

d

dx
coshq(x)= sinhq(x)

d

dx
sinhq(x)= coshq(x)

d

dx
tanhq(x)= qsech2

q(x)

d

dx
sechq(x)= −tanhq(x)sechq(x)

tanh2
q(x)+qsech2

q(x) = 1. (13)

The q-deformed potential term provides a fluctuation operator, so that their eigen-

values satisfy the condition ωn
2 ≥ 0, and the ground state associated to the zero mode

(ω2
0 = 0) is given by

η(0)(x; q) = Nsech2
q

(
m√
2
x

)
, (14)

whereN is the normalization constant. Thus, the stability of the Schrödinger-like equation

is ensured.
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The potential model we are now going to study presents translational invariance, then,

the bosonic zero-mode eigenfunction of the stability equation is related with the kink by

φq(x) =
∫ x

0
η(0)(y; q)dy, (15)

so that, a priori, we may find the static classical configuration by a first integration.

Therefore, the potential model

V (φ; q) =
1

2

(
d

dx
φ(x; q)

)2

(16)

yields a class of q-deformed scalar potentials, V (φ) = V (φ; q), which have exact solutions.

Expressing the position coordinate in terms of the kink, i.e. x = x(φk), then, from

(14) and (15) we obtain the q-deformed kink

φ(x; q) =
m

λq2
tanhq

(
m√
2
x

)
. (17)

The explicit form of the q-kink for few values of q is shown in Fig. 1.

From Eqs. (16) and (17), we find a q-deformed φ4−potential model with spontaneously
broken symmetry in scalar field theory, viz.,

V (φ; q) =
λ2

4q4

(
q2φ2 − m2

λ2

)2

. (18)

It represents a well-behaved potential energy. Note that the q-deformed φ4 model has a

discrete symmetry as φ → −φ but it is spontaneously broken for the vacuum state by the

existence of two degenerate vacua:

φ1 =
m

qλ
, φ2 = −m

qλ
. (19)

The fact that the energy is finite is ensured because the kink by the behaviour of the

approaches one of the vacuum solutions at ±∞. In the q-deformed φ4 model there are

four topological sectors, which are represented by two spaces Γ1 and Γ2 containing the

q-deformed vacuum solutions φ1 and φ2 and two spaces Γ3 and Γ4 containing the kink

and the antikink solutions.

The energy density of the q-kink is given by

ε(x) =
1

2

[
(φ′)2 + U2

]
=

m4

2q2λ2
sech4

q

(
m√
2
x

)
. (20)

Therefore, the kink mass or the so-called classical mass of the pseudoparticle is given

by
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Mcl =
∫ +∞

−∞
ε(x)dx =

2

3

(
m3

√
2

λ2q4

)
(21)

which is dependent of q. Note that when q = 1 the undeformed case is re-obtained. In

figure 2, we plot the energy density given by Eq.(20), for few values of q.

The conserved topological current becomes:

Jµ =
1

2
εµν∂

ν φ̃q, φ̃q =
m

qλ
φq, ∂µJµ = 0, (22)

where εµν is the antisymmetric tensor in two dimensions ε01 = −ε10 = 1 and is zero for

the case with repeated index. The kink number or conserved topological charge is given

by

Q =
∫ +∞

−∞
J0dx =

1

2
[ lim
x→+∞ φ̃q(x)− lim

x→−∞ φ̃q(x)], (23)

which does not generate symmetries of the Lagrangian density and, therefore, Q is not

a Noether charge. However, this charge is absolutely conserved, d
dt
Q = 0, so that the

q−kink represents stable particlelike states. Thus, the q-kink states can not decay by

quantum tunneling into the vacuum.

From the q-deformed potential, one then obtains the supersymmetric form

V−(x; q) = W 2
q (x) +W ′

q, (24)

where the prime mean a first derivative with respect to the argument, and Wq(x) =

−U ′
q(φk) is the q-deformed superpotential associated to the q-kink solution. Thus, the

bosonic and fermionic sector fluctuation operator are respectively given by

OF−= − d2

dx2
+W 2

q −W ′
q

OF+= − d2

dx2
+W 2

q +W ′
q, (25)

where Wq(x) = −2mtanhq

(
m√
2
x
)
. These fluctuaction operators are also called the super-

symmetric partners, which are isospectral up to the ground state. The shape invariance

condition of the pair of SUSY partner potential will be investgated in a forthcoming paper.

In conclusion, we can say that, starting from a potential V (x; q) in terms of the

q-deformed hyperbolic functions in the stability equation, we construct the q-deformed

topological kink associated to the q-deformed φ4 potential model. We shown that the

q−kink mass is dependent of q. We stress that a very rich spectrum of the states (the

q−kink and the quantum excitations about them), which was totally unexpected in this
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model has emerged because of the existence of soliton solutions. Finally, it is important

to pointed out that one can extend our approach to 3+1 dimensions. Indeed, the present

work opens a new route for future investigations on domain walls [2] from q−deformation

of potential model in terms of coupled scalar fields. For instance, let us point out that

our approach can be applied from two [15,16] and three [17] coupled scalar fields in higher

dimensions, where in both cases the q−soliton solutions only depend on z but not on x

and y [18].
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FIG. 1. The q-deformed kink profile, with q = 0.8(thickness=1), q = 1.0(dotted curve), and

q = 3.0(thickness=3), respectively, for m = λ =
√

2.
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FIG. 2. The energy density given by Eq.(20), with q = 0.8(thickness=1), q = 1.0(dotted

curve), and q = 3.0(thickness=3), respectively, for m = λ =
√

2.


