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ABSTRACT

In this paper we give the solution of the simplified uni-
directional diffusion equations of nucleons and charged pions in
the atmosphere for a general distribution of the primary compo-
nent in the top of the atmosphere. We obtain further the Poisson
distribution law for the nucleon's interactions with the air nu-
clei, as a consequence of the respective diffusion equation. The
average interaction length A and the average inelasticity K are
supposed to be constant and independent of the nucleon incident

energy.



1 - The differential eﬁergy spectrum of the primary cos-
mic ray nucleons at the atmosphere depth x (g/cmz) may be obtained
with an elegant physical reasoning used by Y. Pal and B. Peters
|1] supposing the primary nucleon energy spectrum in the top of the

atmosphere to be represented approximately by a power function
~(y+1
Fy(0.E) = N E7(Y )
G. Brooke, P.J. Haymann, Y. Kamya and A.W. Wolfendale [2] conside-
. : *
red the case of a primary spectrum of the general form :
FN(O,E) = G(E) (1)

If we suppose the_average inelasticity KN and the average
interaction length X, to be constants, then a nucleoﬁ that makes n
interactions in traversing x(g/cmz) of the atmosbhere will have
its energy }educed from E' = E/(]-KN)n to E, so that the elementary
energy contribution of the primary energy spectrum to the x level

differential energy spectrum is given by

G(E')dE' = G(E/(]-KN)n)dE/(1-KN)" (2)

Now assuming "a priori" that the probability of a nucleon

making n interactions is given by the Poisson distribution

p(n) = e ™m"/n!  with m =

>‘I><

N

G. Brooke, et al. obtained for the total intensity at the atmos -

phere depth x, the following expression

%
Our G(E) corresponds to NP(E) of G. Brooke, et al.



-x/AN
FN(x,E) = e '

/)" :
ik LML RN A S (3)
0 C(1-Ky) (1-Ky) .

ne~— 8

n
This reasoning presuposes that the function G(E) is a reasonable

good function to ensure the convergence of the series.

2. Symbolic Method to Solve the Diffusion Equation for the Nucleons

Now we shall obtain the expression (3) integrating the

differential equation [3] [4]

*
3F(x,E) _ _ 1 1 E
PURL = - X FOuE) + ey Florig) (4)
with the initial condition
F(O0,E) = G(E) . (5)

The function G(E) is supposed to be, non negative, conti-
nuous and bounded in the interval I = [a,») a > 0, (for the exis-
tence of the integral spectrum we must also suppose the existence of

J G{E)dE). The mean inelasticity K and the mean interaction length )
E

are supposed to be constants.

For obtaining the solution of (4) we use the following

"symbolic method":

We introduce the operation oy defined as

S F(E) = i Flx,rip) K <1 (6)

Hith the aid of ogs the equation (4) becomes

For the sake of simplicity we write all the quantities without
the index N,



CAEOGE) L - L (10 )F(x,E) S

Solving it as (1-oy) be an ordinary number we have

- X1 X X

F(x,E) =e * K)G(E) ce Fer®

K 6(E) =

: - P (n)-
e"X/A Xo !ié_x_%_ﬁ GKG(E) =
n=

o n.
= e~ X/ (x/2) 1 o (—E
nZO n (1-x)" T (1-x)"

(8)

Thus we get immediately the solution (3) without any hypotheses on
the collision's probability law, which results to be the law of
Poisson. The preceding method is‘a pure heuristic mean to obtain a

tentative solution that must be verified by a rigorous mathematical

proof.

- 3. Convergence of the Solution

The solution (8) is given as a product of e-x/A by a power

series Uptuy...u +... whose general term is

NONLEE
o) = L

G(E/(1-K)™)

Denote by (T) the set defined by a<E<b and 0<x<X with
a>0, X>0 and b>a.

Under the assumption that G(E) is continuous non negative

and bounded in the interval I = [a,»). We have

G(E) < M for E (1), (9)



where M is some nositive constant.
Hence we can write

ux"

10)
nt AM(1-k)" (

lu, (x,E)] <

for any point (x,E)e(T).
The continuity of un(x,E) in (T), the inequality (10) and

the uniform convergence of the exponential

exp [ X/A(]-K)] K <1

in (T) ensures the uniform convergence of the series un(x,E) in the
set (T). Consequently its n-th partial sum yn(x,E) tends uniformly
-to a function y(x,E) continuous: in (T).

Since 0<X and b>a are arbitrary the conclusion is valid for
every set.05x5X » a<E<b.

The continuity of the functions un(x,g) in (T) merits a
brief comment.

The cdntinujty of a function f(x,y) of two variables sepa-
rately in each variable is not suffiéient to ensure its continuity
as a function of (x,y), but in the case of our functions un(x,E)
the continuity respect to (x,E) is garanteed by the special form of
u (x,E) = fn(x)gn(E) where fn(x) and gn(E) are both continuous func
“tions of its arguments in (T).

Now it rests only to do what J. Hadamard called the synthe

sis of the solution, that is to proof that the function

F(x,E) = e X 1imy (x,E) = e ¥/} y(x,F) =
nso

e/ Y g By 1
n=0 " (-0 (1-)"

(1)
K <1



sniisties the equation (4), but this is easily verified differenti
ating F(u.E). The differentiation of the series (11) term by term
is Yicit because, for every fixed value of E in (T) F(x,E) is an

entira furction of x. In fact y(x,E) is given by a power series in

the real variable x/X(1-K) whose general term has the coefficient

1 E
2 = g 8(——)
But for any fixed E we have lanl < %T so that the radius of conver
gence of the complex series § a, z" is infinite, say

0
n
% = limsup / |a | =0
n =

and consequently the interval o% convergencé of the real power se -

ries is (- =, + =) for any fixed E. |
In the next number it will be shown that the solution (8)

given by our symBo]ic method caﬁ'beiobtained by the successive appro

ximations method of Picard.

4. Successive Approximations

To simplify the work of performing the successive approxi-

mations first we put

. F(x,E) = e X/} y(x,E) (12)

With this substitution the equation (4) and the initial condition

(5) become
9 ,E 1 E
L - NAEIRALR e K<
y(0,E) = G(E) (13)



Ty~ differential equation and the initial condition (13) are equiva

leat to tne following single integral equation

y(x,E) = G(E) + + [ o, y(t,E)dt (14)

O - X

K

To solve this equation we select the function G(E) as an
initial approximate determination for y(x,E) and make the following

successive approximations

¥o(X>E) = G(E) K <1
| L x (15)
Yo (x,E) = G(E) + 3 I op y,_q(t,E)dt
. o
/
From {15) we obtain successively
. A
y{(x.E) = B(E) + T oy G(E) K <1
x 1 £2  (2)
yz(X,E) = G(E) + X GK G(E) + Vi I-z- O’K G(E)
seteaseaceneacnn o ceeeeaae cereeaeaees cevaeee ? (16)
S 1 x (v)
v=0 A
n v
1 X 1 E
= 2 —_—r — G(
va=0 V' AY (1-K)Y  (1-k)V

Convergence of the Succession yn(x,g)

Under the assumption that G(E) is non negative and bounded
in the interval I = [a;,») we have G(E)<M for E ¢ I, where M s
some positive constant. The series S = u,(x,E) (whose nth parti-
)

al sum is yn(x,E) converges uniformly with respect to x and E in



any set (T) such that: O<x<X , and a<E<b , a > 0. This can be easi

1y seen because we have

¥ v
lu (x,E)] < %T X K <1

©aV(1-K)V
This inequality and the uniform convergence of the exponen
tial exp X/(A(1-K)) in the set (T) ensures the uniform convergence
of the series S in (T), and consequently its partial sum yn(x,E)
tends uniformly to a function y(x,E) in (T). Now it is an easy mat-
ter to show that y(x,E) satisfies the equation (11). Considering the

approximations (15) we have successively

X

. 1 .
y(x,E) = limy (x,E)= G(E)).+ 5+ 1lim S o, y__.(t,E)dt
n=cw n A n=s o K “n-1
= G(E) + XT%TYT Vim yn_](t,TEK)dt
=0 0
= G(E) +‘XT%?K7 7 tinm yn_](t,TEE)Jt - (17)
0 n=e .
- 1 X E
= G(E) + TTT=K s y(t,T:K)dt
o
() + 1 7
= ++ S o, y(t,BE)dt
A o K
Hence

. »xv E
G
AV(-k)V ((I-K)V)

(18)

1
vl

ne~18

.Y(X’E) = Hmyn(x,E) =

n

v=_

is a solution of (14).

Note that y(x,E) continuous and bounded in any set (T):

D<x<X, X > 0, a<E<h a >0, b>a.



5. Unigyuoness of the Solution y(x,E)

Proof.Suppose that the equation (14) has another solution
Zix,F}, continuous and bounded in every set (T): O<x<X , X > O s

a<t<h . and satisfying the same initial condition

Z(0,E) = G(E) for E € 1
In this case the difference u(x,E) = y(x,E) - Z(x,E) should satisfy

the nhomogeneous equation

u(%,E) -1 7o, u(t.E)at (19)

Q X

Now substituting iterativeTy the function u(t,E) under the
sign of integration and using the relations (15) we have successi-

vely

u(-x,E)

'
> —
O Y%
Q
x,

c
CamY
‘-'-

-

m
S
o
o
n

t
X
= — fdt, f dt,... [ o(n)ut,Edt
o 1 o 2 o "K ( n ) n

Now consider a fixed set (T). Since y(t,E) is bounded and
continuous in (T) and Z(t,E) is also bounded an continuous in (T)
{by hypothesis), we can write:

tn—1

LI (n)
fu(x,E)]< 7 g dty... g o u(tpE)dt
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i ; M, e
= —1 7 dty... TR —
ATO-K)" o L T(1-x)" n
n
< NX)_ X X > 0 K < 1

= A"(]—K)" n!
where N(X) is the maximum of u(t,E) in (T).

Letting n > «, (with X.> 0 fiXéd) we obtain Ju(x,E)|] -~ O
whence y(t,E) = Z(t,E) for (t,E)eT.

Since T is arbitrary we have

y(t,E) = Z(t,E)
o . . Q.E.D.

6. The Inhomogeneous Equation

The symbolic method can be successfully applied to the inho

mogeneous equation

D L0 gy e P00

with the initial condition

F(OaE) = H(E)
where 0<K<1 and P(x,E) is a known function that is supposed to be
continugus and bounded in the set (T) defined in (3), and the func-

tion H(E) satisfies the same conditions admitted for G(E) in (1).

Introducing the operator Ok s the equation (20) becomes

BF(x,E) _ | % (1-0 ) F(x,E) + P(x,E)

ax (21)
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with

FI0E) = H(E)

Solving it, as (1-0K) be an ordinary number we get immedia

-

tely the solution

] 1
- 1a- 11-0,)

o xR [H(E) e r e K P(n,E)dr,] -

0 |

F(x,E)
(22)

n

Fi(x,E) # Fp(x,E)

To verify that (22) is effectively the solution of (20)we observe
that

1) for x = 0 F(0,E) = H(E)
2) F](x,E) as we have seen previously is the solution of

the homogeneous equation

3) Fz(x,E) is a particular solution of the inhomogeneous
equation (20) as can be easily verified differentiating
the function

X - %(]‘GK)(X-H)
Fz(x,E) = [ e P(n,E)dn =
)
X B X; o (x-n)n 1 £ )
= f - P(n,———)d
0 ¢ n=0 (1-k)" (n (1-x)" !

If ve put F(x,E)

FAX,E), X = Ao and K = Kv, H(E) = 0 in (22) we
obtain the solution of the one-dimension diffusion equation for the
intensity Fn(;,E) of charged pions in the atmosphere when we disre
gard the pions of the second generation and m - u decay (for pions
of energy greater than 1 TeV in the laboratory system). In this ca

se P(x,E) is the production spectrum [3] [4] [5] of pions by nucle

NN

T (x,E) at the atmospheric depth x(g/cmz) in the range of

ons P

energy E, E+dE.
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When the pions of the second generation are taken into ac
'céuht,'ihe'sdlution of the one dimensional diffusion equation for
the intensity %ﬂ(x,E) of charged pions in the atmosphere can be ob
tained by a method of successive approximations using the above
results to construct the first one.

Since the proof of convergence of the process is more in-

volved the problem will be treated later in another paper.
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