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Fock limit, the criterion for magnetic instabiiities. The general idea is to
calculate the response of the system to an external, wave vector dependent
magnetic field. Once the response is known one searches for the poles of the
static susceptibility, as a function of wave vector q, and this provides the
criterion for a magnetic instability, of wave vector q. When this work was
being finished, Jullien and Cogblin 3 pointed out to the guthors that they
succeed in discussing within the Hartree-Fock picture the magnetic
properties of the actinide metals in terms of fhe band model. In particvlar
they give a quite interesting model for the d-f hybridization and its k-
dependence. In the light of these results, the calculation presented here
seems to be a complementary approach for this problem. Y The plan of this
work is the following: firstly we compute the response to the external field 4
of a two band model (d and f) the electrons being treated within 'the Hartree-
Fock approximation, the mixing matrix elements being conﬁidered as an open
parameter. Then the condition for a magnetic instability of wave vector q is
derived, and a Stoner like criterion with effective "exchange jnteraction® is
obtained. Finally the details for numerical computation are briefly discussed,

the numerical results being discussed in a following publication.

* Since it presents the conditions for magnetic instabilities of arbitrary

wave vector q.
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I. FORMULATION OF THE PROBLEM

In this calculation, we consider for simplicity, only a static, wave
number. dependent external magnetic field. Since we are interested only in
the magnatic instabilities, and these are determined by the poles of the
susceptibility x(q, w) at zero frequency, the responsa to a static field suf-
fice~ for our purposes., The magnetic field contribution we consider here is:

-iq-R,
oext © Mo ) c(n(d) + n(ﬁ)e A (1)

i,0
where g is the wave vectgr of the applied external magnetic field, and
niﬂ)a nsp are the nunbar of d and f electrons respectively (the field being
applied parallel to the é~axis). We describe the actinide matals in terms of

d and f bands, Coulomb repulsions and the d-f hybridization 1, 2, 3

As
discussed in ref. 3 we consider k-dependent d-f hybridization matrix elements.

The Hamiltonian of the actinide metal is then (in the Wannhier representation)

o= 3 T(d) dig dgg + 1 T(f) fio Fio * ) af(Rs R)dm fio t
1,J,0 i, isj;f' ,
* Veg (RiRy) Fg dyd v uy BafD nl) v o Tal) nll) s
i ' i
d f d f
Lae. ? {"$+) “§+) * "§+) “$+)} (2)

Then the Hamiltonian for the system is:

% =%° +%’ext (3)

Now-we calculate the one-electron propagators g?g(w) = <<dg $ d§6>>w and
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gff- <<f; 3 ft >> to first order in the external magnetic field 4 Since

ij o’ "jo" w : g ’

Coulomb correlations are present in the actinide metals, one needs some type
of approximate treatment. Here we adopt the simplest one, namely the Hartree-
Fock approximation, which supposes-that Coulomb correlations are small
relatively to band widths. An opposite limit (narrow bands), should to dis-
cussed within a Hubbard 1ike approximation 5. The first order correction to

the one electron propagators as defined by:
0%5(0) = ¥5{%w) + § (), a = df (4)

satisfy the following equations of motion:
w g,d( )(uo = 2 T(d) dd(l)(w) + (U <nd >+ Ly <n & )9 a )(w) +

-“qu

+ 22 Vdf(Ri Rg)gzd(l)(w) +h A ggco)(w) + (Ud Ani_(.g) + Idf An(f))g_'d(o)(w)

(5-3)
w 95w = 3 1D o5 ¢ (upalo)e 14pend 2)gf80) () 4

-‘iq .R_

+ 1 Vfd(Ri'Rz)ggd(’)(w) +hoe g,fgm (w)+(U, anff) 41 Anéd))gf(o)( w)

df
(5-b)
f

d -~ are the d and f occupation numbers in the

In equations (5) < n_o> and <n
absence of the externa magnetic field, and should be self-consistently
determined from the zero-order one-electron propagators (cf. below}. The
fluctuations in occupation numbers (An(d) and An(f)) are to be self-

consistently calculated from the first order propagators 4.
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II. SELF-CONSISTENCY PROBLEM: DETERMINATION OF THE SUSCEPTIBILITIES

Now we solve the coupled system 5 by Fourier transformation in the

spatial variables; introducing the Hartree-Fock d and f energies:

E&:) = eéd) + Ud <nga? + Idf <nfo>

Eﬁg) " séf) + Uf <nf°>+ Idf <nfc> (6)

one gets the following equations of motion:

(wE{3))g8d(1) (u) = v o(k)gf9() () + Ny & S _q.k" gdd(0) (4

+ (Ug Anizgd) + Lye An;ggf))gg?(o)(w) (7-a)
and

(@ - B ot (@) < Veg0gid (@) + g 0 8¢ ofH (@)

+‘(Uf An;ggf) + Idf An;zgd))g:?(o)(w). (7-b)

Combining equations (7) one gets for the d-propagator:

p
| Vye(k)12)
oo o A0 - 0, g T
w-E)

ko

\

! o(f \ fd(0)

* (hg & 8 g cr + Vg tiged 414 ot Dvge(g @ (8)

i)

Now one needs the zero order propagators in order that (8) provide the full
answer for the first order correction. The equations of motion for zero-

order propagators are: |
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w ggg(o)(w) = é%~513 + ZE ng) g:g(o)(w) + (Ud<n?°>+ Idf<nfc>)ggg(°)(w)
+ Tp Vag(Ry- R (w) (9-2)

® gfg(o)(w) = zz Tsz).gzg(°)(m) + (Ug <nfo> + Ly <"§0>)9$g(°)(w)

+ Ty Veg(RyRy)sg3 ) (5-b)

Fourier transforming (9) one has:

(@ - E{)glet () = 5k Gy + Vaeth) ofE @)
(0 - E§F) gf4(0) () = vpy(k)g2d(0) () (10)
Then: Vfd(k'
o790 (w) & ——— g8V (u) « L v (k)5 2w)
(f 2n
w - Eklo,
w- E{F)
k'o

oV w) = oL - — (el an

(ef D) (el - [vgeti 12

Putting (11) into (8) one gets:

dd(

d ~o(d
gfe’ N (w) = 2 gdd(w)(n o Seq it + Vg At

} s 1, 028y o200 ()

1 =dd ~o(f -o(d y<dd
+ =TI Seg e * Yy an S0P 6 1 Al () V(K (w)
(12-a)
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or introducing k + k + g, k' > k and remembering that An,, ofa) . an, - ﬁ.),a=d.f

one gets:

dd(1)(m) =21 % d(O)(w){FOU + Uy Aﬁg(d) + 1, 40 ‘fi}'ggd(o)(w)

1 1
v g:d(O)(“’)v‘f”‘q’ "’""’,“" hgo + Ug A" o lag @ "‘g(d)} Vfd(k)ggd(o)(w)

- (f)
w EK+q o

{12-b}
The physical meaning of (12-b) is quite clear. The first term describes intra
d-band propagation where an electron of wave vector k scatters to k+q due to
the external magnetic fieid or due to the fluctuations of wave vector q
associated to the d electrons (through Ud) and f electrons (through Idf)' The
second term describes d-f mixing effects; a d electron of wave vector k is
admixed into the f-band, propagates within it through ll(w-Eég)) and is
scattered to k+q. The sources of scattering are those associated to the f-
band (ho, Uf An(f) and Idf Angd)). After scattering it propagates within f
through 1/(w - ,((2‘0) and it is admixed back to the d-band through V. (k+q).

Quite similarly (or using the symmetry of d and f) one gets (in alternative
form):

S ko) = 7 3 (z.»(w-s,ﬁfzb){n otUe i e 1y Aav(d)}w -£f)58%w)
b

+ o Vfd(k+q)Vdf(k){h NS Aﬁo(f?gk NBL dd(y)

since ggd - g{f (12-c)

Now we introduce the follcwing notation:
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Katke) = o e (o) (e ) ) oe {50

k+qo
K (k0) = 2, (5000 (D) ) £l %) (13)

Kaix(ko0) = = F[5% () 5]

where Fu is defined as usually by -2wi j dw f(w)[@(w+16)-6(w-is)]. Using

these definitions and equations (12) oné has:

+ 1 -a(d) -g(f){ o
<dk° dk+q0>( ) - {Eoc + Uy Anq + Idf Anq xd(k,q)

(14-a)

+ (1) _ =a(f) ~g(d){ o
<fkc fk+qo> -{% o+ Uf Anq + Idf An xf(k,q)

{} o + Uy Anc(d) + Ige afig ro(f) vfd(k+Q)vdf(k)x;ix(k’Q) |

(14-b)
Introducing the definitions:

Xq(a) = I, x§(k.a)
x#(9) = I, x3k,q)

and the mixing contributions
h

X3 "HE) = Ty Vgelkra) Veg(k) 5O, (k,)

om1x(q) = T Veq(k+a)x(s, (k,q) Vge(k)

one has:
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() - hoo{ (@) +x§ m‘x(q>}+ Aﬁ;"d){ud x3(a) + Typ G "“"(q)}

+ AR () {df x3(9) + Us Xg ‘“"‘(q)} (15-2)

Quite similarly:

() < ho {x‘;(q) + X3 '"“(q)} + an7ol7) {uf x3(a) + Tge X§ "‘"‘(q)}

+ an2ol) <1 { gr x2Q) + Uy 1§ "“"(q)} (15-b)

Now we introduce effective values of Coulomb interactions, namely:

o mix
ff e a9
Uz () = Uyt + -
d  x3(q)
o mix
I Xf (a)
eff(q) 1+ 3f
f o
X¢ (q)
TALTS
(d)(q) = Iye <14 (16)
e 5§ (a)
and finally:
o mix
(f) Ud Xf (9)
I (q) = Ly 1+
I o
df Xf(Q)

Then equations (15) can be written as:
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an? (). hoc{xgm) 33 """(q)} + i 0" (a) x3(@) + 27 1lD (a1xSca)

(17)
gt < h °{’<f<q> I """(q)}* 8 @@ aif( @ 1D @) x3ta)

Now consider the paramagnetic phase; all spins dependence in the susceptibili-

ty disappears and as far the external field is concerned one has 4:

Aﬁg(“) - - Ang(“), o= d,f
Imedmi(ﬂm=x(¢m+xwﬁ“mna=dxomhufmmun
Anc(d){}+U§:%IQ) xd(Q)‘f o Xg(@) = an? 1l gy o (@)
anZtF) <1 4 ulfl(q) xf(q)j} = hyo xg(a) - and(D 1{D(q) y(q) (18)

From equations (18) one finally gets:

Xg * UL Xg xe - 159(0) xq(a) Xe(a)
= hOO' (]9)
(-l hanxgta) (140014 (@) 142 () (g

Ang(d)

and a quite similar expression for Ang(f) (interchanging d with f) but with

the same denominator as (19).

From expression (19) one sees that the role of V¢ hybridization
is two fold:

i) Firstly it introduces effective Coulomb interactions U( )(q). U(f;(q)
and I(f)(Q), a = d,f which reduce to their "bare" values when V,. tends

to zero.
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11) Secondly the susceptibilities X4 and Xg are d-f renormaliz~d suscepti-
bilities, with predominantly d and f character respectively.

It should be emphasized that although the Coulomb interactions are
q-independent, due to the existence of mixing and of the I4¢ coupling the
effective interactions become q dependent.

Now it is interesting to consider some 1imiting cases. Consider

firstly the case where mixing is zero; equation (19) reduces to:

x$ (@) (140, x$2) () -1y x{? (@) x89)(a)

Ang(d)(vdf. 0) = hy o :
(4 33 (@) 090 16 (@)= 13 (@) X (@)

which in the absence of interband Coulomb repulsion reduces ko the usual

result:

x4 ()

807 (Ve = 14p = 0) = o
1+ Uy x40 (a)

Another interestingvcase corresponds to.Idf = 0 but non vanfshing hybridiza-
tion; onme gets:

mix

Xg(1 + Ug xg(Q)) = Vg xg'(9) Xg(9)

anCl) (1 _e0)eh_ o
df
X " ey, Xg(@) (1 + U xg(a)) = Ug Vg Xg X(a) X (@)

where two. band effects aﬁ ‘present due to the coupled effect of mixing and

Uf.
Next step is to explicitly calculate the involved susceptibilities

as defined-in equations (13). The explicit form of xg(ksq) is given by:
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- g(f) - g(f)
! w Ek+q w Ek
xd(qu) B o F
2w

X
(u- e D) (o ) (w-E{M)(w - €{?))

(20-a)
where Eél) and Eﬁz) are the roots of

(w - {0 - Py - vk 12 = 0 (20-b)

Incidentally one notes that in the absence of d-f hybridization, equation
(20-a) reduces to

d d
ye 1 1 1 f(5é+%) - #(ep )
o) = 2 @) ()| o4 ()

w = Ek+q w - Ep Ek+q - Eg

which is the usual d-like susceptibility, the same occuring for xf°)(k,Q).
We expect then for (20-a) that the main contribution arises from d-like
electron-hole pairs. Now the final form of the susceptibility xd(k,q) ts

obtained separating the bracketed terms in (20~a) in partial fractions;
one gets:

2 (z(“)-s(f))(E(“)-Eﬁf))f(sﬁfg)-(sﬁ“)-séfg)(Eé“)-zﬁf))f(sﬁv))
Xg(ks@)=  § (~1)M*V :
tyval (Eﬁi&-sﬁig)(zﬁ‘)-séz))(Eéf&-sk“)) -

A quite similar expression can be obtained for Xg(k,q) just by replacing in
(21) E&f) by Ead) where it appears. Finally the "susceptibility"
,)\cm'ix(k"‘) is given by:

2 #(e{)) - £(e()
o (KsQ) = (-1
e e -

(22)
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It should be emphasized at this point that the complete determination of

(21) and (22) involve the solution of a self-consistence problem, namely,
given the Coulomb repulsions Ud’ Uf and Idf and the total number of d

- and f electrons, to find out the value of the chemical potential, and the
occupation numbers <ng and <ng> in presence of the mixing Vdf‘ We will

return latter. to this problem,

ITI. DISCUSSION OF THE FERROMAGNETIC INSTABILITIES
The general criferion for magnetic instabilities is provided by the

poles of (19), or equivalently the roots of:
(40{8L xg(a) (1488 xeta)) - 189 (@) 180 (a) x4(@) xpl@) = 0 (23)

where q can be zero (ferromagnetic instability), m/a.(antiferromagnetic

instability) etc.

Here we consider in a certain detail the case of a ferromagnetic
instability, namely q = 0. The criterion for ferromagnetism is then:
(1 + u{Eh0) xq(0)(1 + UdFh(0) xg(0)) - 1§D (0) 140 (0) x4(0) x(0) < O
| (24)
ihe equality providing the border line of the fErromagnetic instability.
Now we intend-to cast equation (23) in a form that can be compared to
Stoner's criterion for ferromagnetism. Suppose one wants to emphasize the

f-electrons; equation (23) can be written in a quite suggestive way:

(1 + U9 (a) xga)) (1 + UEha) xpla)) - 18ka) 14 x,(a) xpla) =

« 1+ 3{fa) xela) (25-2)
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where the effective “exchange interaction" among f electrons, J(Q,(q) is

defined as:
i
x4(9) Xp¥(a) xg™*(a)

f
REHA) = U b + (Ug Vg - Igg) xg(a) |V -

xg(3) x¢(9) x4(Q)

mix nﬁx(

(9) + xq4 (q)
+1 (25-b)
o Xf(Q)

and the criterion for magnetic instabilities of wave vector q reads:
1+ 9l (q) xela) < (25-c)

Now we specialize equations (25) to the case of a ferromagnetic instability:
then one needs explicit expressions for Jggg(O) and x.(0). According to (25)
this amonts in caleulating x4(0), x¢(0) and x(i)mix(O). It is important

to emphasize that in the 1imiting process (q + 0) one must consider separately
the terms in (21) and (22) with u ¢ v and u = v. In (21) the terms with
u=vgive:

(- D))~ (™) [r(efl) - rel))]

lim (-1)2H
a0

42 - S el efohelt) - of)

(E(”) - E(f))(E(u) E&f))-(Eﬁu)-Eéf))(E£“)4 géf))
-1)2H *a g(n)
lim (-1) F(Epsq)
w0 (3 - B (E()- Py eel,q - )

Now the first term of (26) can be trivially calculated to give:
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E(U) - E(f) z

K K df

(-1)2¥ £r(e(M), where £1(e) = — (27-2)
Eé‘) - E&z) de

The numerator of the second term in (26) can be written as:
u) M f) _ ey e . gn)
(E£+q + E£ ) E§+A Eé )(Ek+q Ek )
giving then to the secand term of (26)

(w) | g(F)
(g g "k f(e(M) (27-b)
<E£1) _ Eéz))z

Then the total contribution of the u = v term in (21) is:

W
(W) - g(f) : e g(f)
(-1)2 £r(efM) + 2 fEM) > (28-a)
Eél) - Eﬁz) (Eax) - E&z))z

The u § v terms in (21) give:

» (M) - e{Fy2ee(M) (™ - ()2 #(€) )
(-1) _ (28-b)
(M) - gy (M - (V)

Finally the explicit expression for xd(O) is:
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E(l) - E(f) 2 E(z) - E(f) 2
X0 o L kK FrES)) 4 <K ) £r(ef)
Eél) - Eéz) E&I) . Eéz)/f
(1) () (2). g(f)
+2 5, L. f(Eﬁl)) + -Ek X F(EL2))
GRS (") - g{)y2

&
(£ £l pefM)) - () (M) e(e(™)
-2 % (2¢)
(") - )y’

A quite similar expression can be obtained for x¢(0) Just by replacing
Eéf) in (29) by E'((d). It remains to calculate x ¢ (k, 0) as given by (22);
the u = v terms give:

fEL) - f(el) |
A = 2 : ) ] 2 if'(Eﬁu))
" e - g (el - ey - )
g (30-2)
the u ¥ v terms give:
(=1)*" 1im f(Eﬁgz) & (-nH #(g) 'Af(Eﬁv))
0 (gft) - E.ﬁz))2 (Eﬁfé - (V) ({1 - ES*’)(E&“’-E&“))
(30-b)

Using the definitions of x'é"x and x';ﬁx one gets:
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N

m 1

Xg 2(0) = xIX(0) « y Vyelk)|?

ey o)
(E'((l) - E‘((Z))z ]

f(el) - #(el*)
-2 (31)
(Eél) - Eéz))s

Equations (29) and (31) complete the determination of xf(O) and of J (0},
and consequently the criterion of ferromagnetism. It remains only to
determine the chemical potential which appears in f(Eéi)) and the Hartree-

Fock renomalized energies, which in the paramagnetic phase are:

Eéd) - eﬁd) g <ng> + Lie <ng>

(32)

f d
() o ()

=g+ Up <ng> + Lyp <ng
At this point we adopt a simplifying approximation which consists in

taking the Coulomb interactions approximately equal, namely

o~

udzuf:Idf (33)

In rare-earths, where the f level is quite localized, (33) is not a quite
good, but we expect that in actinides this approximation may be reasonable.
In any case, we use (33) only in order to simplify the mathematics of the
self—consistency problem. The general case Uy ¢ Up # I4¢ may be discussed
in a similar but much more complicated way. Using (33) the effective

"exchange" interaction is: .

x4(0) Xg (0)
+ 2 —— (34)
x¢(0) x¢(0)

3 0) = upd 14
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and what one needs is J(f)(O) as a function of the band structure
(e(d) (f)) the mixing matrix elements IV f(k)l and the number of
electrons. From (29), (31) and (20-b) one sees that it remains only to
determine - the energies (32), the chemical potential u and to obtain formal
expressions for the energies Ek(i), i=1, 2.

Using approximation (33) and introducing'ng and n: as the number of d
d, f

and f electrons (of both spins) and n = ng + N, one has:
v U
9+ o L el - o)
eff) .o, nd s nf) el 0F, (35)
kT %k z ‘o " Mol ® & 2
Incidentally one notes that from (35) that
Eﬁd) + Eﬁf) = eid) + e&f) + Uen (36-a)

and
d f d f)
Eé)-Eé).eé)-g'(()

which imply that the solutions of (20-b) are of the form;

E“) 1 { (d) , elf) + Uen 3 Ak} i=1,2 (36-b)

. 1/2
8 = {(eéd) - el 4 4|Vdf(k)[2}

Now we determine the chemical potential yu; in. order perform this one

where

imposes :
g-- ngr + <ne> = § {<n:> + <n{>} (37)

The occupation numbers are directly obtained from the one electron
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propagators Q:d(") (w) and sz(")(w), which in the Hartree-Fock approxima-

tion used are given by:

w - F) w - E{F)
o) w) = L - (38-2)
(wE{ ) (0ol )~ 1vgetir 12 <" (w-E()) (e
and
w - {9 (w-e{9))
Vg k k
off (0 () « L L1 (38-b)

2n 2w,

(w-El((d))(w-EIEf))‘lvdf(k) |2 ), (w_E'((x)Xm_EI((z))
The octupation numbers follow directly from (38) using

, , e
s u gl . -2 [ #w I}:‘(ms) - gl‘(m-ie)] do

i=ad,f

Performing the calculation one gets:

(587 - (™) #e(M)) - ({7 #iel)

d
anp>wy o<>=y (39)
d k Tk k E'((‘) - E‘((z)

€~ el #el)y - (M- el el

f
<nf> = Zk <l\k> - Zk E(l) - Eﬁz)
k

where in order to explicitate the chemical potential we introduce
fO(El(J)- u), where fo(x) = (eBx + 'I)'f Now the condition determining
u(37) can be written:
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(2 €M) -E{D (7)) £ (£{)op)-(2 €D -£{D) (P £ (£{*)-)

0 (1) _ g2 )
By T - BT

n

Equation (40) can be further simplyfied introducing the results obtained from
(36-b), namely:

E&l) - E&z) - -8 (41-a)
(F)_ _(d)_

() gy kT

k k 2
elf). e&d) + 4

EéZ) - Eéd) - - (81-b)

and finally

C IE ) A

ef) - gff) - 2 (#1-)

D - ) 1,

(2) ()
Eg) ~Ep e
k k >

Introducing equations (41) into (40) one has:

" & fo(Eél)'“) " fo(Eiz)'“)

.3 - - % {%O(Eﬁx)-n) + fo(Eﬁ”-u{} (42)
- %k

NS

Now we cast equation (42) in a more illustrative way; we rewrite the roots of

equation (20-b) as ed) L F)n v
S LS LAY © B I (83)
k" - + 7;-n g T+ E- el

(d), (f)

e '+ el 4+ 4 U

E(z)- k K k+in:e(z)+lun
k 2 2 k 2  f
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Where eél) and e&z) involve only the band structure details namely eﬁd),

séf) and lVdf(k)Iz- Then (43) shows explicitly the n-dependence of the
I

energy. The condition determining u is finally:

Y E

= Lk {;o(eﬁl) + %’Uf n - )+ fo(eéz) + %-Ufn - u{} (44)

-

CONCLUSION AND DISCUSSIONS

In the above calculations the criterion for magnetic instabilities
in actinides was obtained within the Hartree-Fock picture. This criterion
turns out to be of the same form of Stoner criterion for the one-band problem,
but with effective, q dependent "exchange" interaction. It should be
emphasized that although Coulomb interactions are described by g-independent
parameters, the q-dependence arise from the ratio of the d and f-like
susceptibilities and the "mixing" susceptibility. The d-f mixing strength
appears in this pic;ure as having two different roles; firstly it contributes
in modifying the value of the f-like susceptibility xf(q). A rough idea of
this effect (at least for q = 0) has been provided by a previous work where
the electronic density of states is calculated in the three-band model 6
One sees that a quite strong effect can be obtained when d-f hybridication is
turﬁed on; the density of states of f-like electrons may be considerably
chénged. Secondly the "effeciive exchange interaction” may be changed by
this effect by changing the d and f susceptibilities and throughthe !Vdfl2
coefficient appearing in the definition of Jeff(q). Then one expects that
if Stoner criterion is satisfied for a non-hybridized band, when mixing is

turned on both Jeff(q) and x¢(q) change, implying in a deviation from the
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condition of magnetic instability. A1l these effects however require a
quite detailed numerical investigation and this is the subject of our
future work. In the last part of this work, the case of ferromagnetic
instability was examined in more detail, and the results are ready for
numerical computation. Such a computat%on involves several steps, namely,
the determination of the chemical potential-as a function of the number of
electrons, the calculation of the involved susceptibilities, and finally

the computation of the effective exchange.

* % *
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